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Early Warning of Harmful Algal
Bloom Risk Using Satellite Ocean
Color and Lagrangian Particle
Trajectories
Junfang Lin* , Peter I. Miller, Bror F. Jönsson and Michael Bedington

Plymouth Marine Laboratory, Plymouth, United Kingdom

Combining Lagrangian trajectories and satellite observations provides a novel basis for
monitoring changes in water properties with high temporal and spatial resolution. In this
study, a prediction scheme was developed for synthesizing satellite observations and
Lagrangian model data for better interpretation of harmful algal bloom (HAB) risk. The
algorithm can not only predict variations in chlorophyll-a concentration but also changes
in spectral properties of the water, which are important for discrimination of different
algal species from satellite ocean color. The prediction scheme was applied to regions
along the coast of England to verify its applicability. It was shown that the Lagrangian
methodology can significantly improve the coverage of satellite products, and the unique
animations are effective for interpretation of the development of HABs. A comparison
between chlorophyll-a predictions and satellite observations further demonstrated the
effectiveness of this approach: r2 = 0.81 and a low mean absolute percentage error of
36.9%. Although uncertainties from modeling and the methodology affect the accuracy
of predictions, this approach offers a powerful tool for monitoring the marine ecosystem
and for supporting the aquaculture industry with improved early warning of potential
HABs.
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INTRODUCTION

Harmful algal blooms (HABs) occur in many coastal regions around the world and appear to be
increasing in severity and extent (Hallegraeff, 1993, 2003; Grattan et al., 2016; Gobler, 2020). HABs
have caused severe economic losses to aquaculture, fisheries, and tourism while creating major
environmental and human health impacts (Anderson et al., 2000; Landsberg, 2002; Heisler et al.,
2008). Toxic bloom-forming algae can cause wildlife mortality or human seafood poisoning, and
even HAB species that do not produce toxins are able to cause harm through development of high
biomass, leading to foams or scums, depletion of oxygen as blooms decay, or destruction of habitat
for fish or shellfish by shading of submerged vegetation (Sellner et al., 2003). Such impacts from
HABs pose a serious threat to aquatic ecosystems and can disrupt their associated food web (Fogg,
1969; Paerl, 1988). Therefore, considerable attention has been focused on methods to reduce the
risks of HAB impacts (Sengco and Anderson, 2004; Anderson, 2009; Anderson et al., 2012).

Satellite ocean color sensors offer a means of detecting and monitoring HABs in the ocean and
coastal zone. The potential value of remote sensing for HABs was first described by Mueller (1981),
after an experimental ocean color sensor attached to an aircraft detected a bloom of Karenia brevis.
As the instrument was developed to simulate the Coastal Zone Color Scanner (CZCS), launched
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in late 1978, this indicated the capability for satellite detection of
blooms. Various approaches were further developed for detection
and monitoring of HABs from satellite remote sensing (reviewed
by Klemas, 2012; Blondeau-Patissier et al., 2014).

There are many advantages of satellite ocean color products
compared to in situ monitoring: wide temporal and spatial
coverage, and inexpensive; however, there are significant
limitations. First, the coarse spectral resolution of current
ocean color satellites is only sufficient to distinguish certain
clear anomalies in bloom coloring, as the visible spectrum is
mostly determined by optical properties of varying concentration
of chlorophyll pigments. Second, data from satellite ocean
color only reflect the state of the waters at the moment the
measurements are taken, whereas the blooms are subject to
physical forcing from tidal and wind-driven currents which will
advect them away from this state. It is thus very challenging from
satellite data alone to provide information regarding the future
development and movement of HABs. Another limitation of
ocean color remote sensing is that satellite observations are often
hampered by weather conditions, such as clouds and sea fog,
which can substantially reduce the number of valid ocean color
pixels. As a result, satellite imagery may only partially capture
features of HABs.

In recent years, the use of Lagrangian particle tracing (or
other numerical models) for HAB monitoring has gained more
interest (Olascoaga et al., 2008; Wynne et al., 2011; Son et al.,
2015; Kwon et al., 2019; Li et al., 2020; Fernandes-Salvador
et al., 2021). Lagrangian particle tracing models are useful for
determining sources, trajectories, and destinations of drifting
water parcels, with high temporal and spatial resolution. Thus,
this approach could compensate for some of the limitations
of satellite ocean color. However, this approach has so far
been used to track particle locations along limited trajectories,
preventing a synoptic view of the variability of water properties
associated with HABs, e.g., algal concentration. Recently, a new
methodology was proposed for synthesizing ocean color data (or
in situ observations) with ocean circulation velocity fields from
an operational model (Jönsson et al., 2009; Jönsson and Salisbury,
2016). This method could significantly improve our capability for
monitoring of HABs.

Therefore, this paper aims to expand the Jönsson et al. (2009)
scheme for synthesizing satellite observations and Lagrangian
data to include extrapolation for better interpretation of the
development of HABs. This improved scheme can not only fill
gaps in HAB patches in the satellite images captured on cloudy
days but also provides an early warning of harmful algal risk. An
application example is presented showing the development of a
Karenia mikimotoi bloom along the southern coast of England.

METHODS AND DATA

Satellite Data
In this study, the prediction scheme is based on the algorithm of
Jönsson and Salisbury (2016), which combines simulated velocity
fields with ocean color observations to create prediction of
biological production in spatial and temporal scales. We applied

this prediction scheme to reprocessed Sentinel-3A OLCI Level-
3 products, which were downloaded from Plymouth Marine
Laboratory (PML) ocean color archive. These products include
chlorophyll-a (Chl) and remote sensing reflectance (Rrs, sr−1) at
400, 443, 490, 560, 620, 665, 681, 709, 885, and 1020 nm with
a spatial resolution of 300 m (Tilstone et al., 2020). The region
of interest covers coastal and offshore areas in the southeastern
England including the Celtic Sea and English Channel. The
satellite passes the study region at around 12:00 a.m. (local time).
Two case studies will be presented, covering September 10–15,
2019 and June 29 to July 5, 2019.

Lagrangian Particle Model
The particle tracking model PyLAG (Uncles et al., 2019) is used to
produce the Lagrangian trajectories. PyLAG uses a fourth order
Runge–Kutta scheme to advect particles, numerically integrated
over a 100 s timestep. PyLAG is forced using hourly output from
a hydrodynamic model with the horizontal turbulence statistics
from the same model used to parameterise the diffusion term as
random displacements.

The hydrodynamic forcing is from an operational setup of the
Finite Volume Community Ocean Model (FVCOM) (Chen et al.,
2003). This solves the prognostic equations on an unstructured
grid, allowing higher resolution around complex coastlines and
bathymetry, and lower resolution in the open ocean. Horizontal
mixing is parameterised through the Smagorinsky scheme
(Smagorinsky, 1963) and vertical turbulent mixing is modeled
with the General Ocean Turbulence Model (GOTM) using a κ−ω

formulation (Umlauf and Burchard, 2005). Lateral boundary
conditions for the model are taken from the CMEMS North
West Shelf data product (AMM7) and surface forcing from a
Weather Forecast and Research (WRF) model which downscales
output from the NOAA GFS global forecast model to provide
6-hourly forcing at 1 km resolution over the hydrodynamic
model domain. Output of temperature and precipitation from
the WRF model is also used to drive a neural network model to
provide forecast river flows.

Merging Satellite and Particle Tracking
The algorithm that merges satellite products and velocity fields
using Lagrangian particle tracking is described in previous
studies (Jönsson et al., 2009, 2011; Jönsson and Salisbury, 2016).
Here we summarise the main steps as follows (flowchart shown
in Figure 1). Satellite products are firstly remapped to a uniform
grid with a spatial resolution of 300 m. Virtual particles are then
seeded randomly in each grid and advected for 7–10 days at
hourly intervals using PyLAG. Next, satellite data are attached
to the particle trajectories for the first 5–7 days, where the
time difference between ocean color measurements and particle
trajectories is limited to 30 min. The attached values are set to
missing if satellite data are unavailable. Any particles leaving
the model domain are removed to avoid errors. Further, an
extrapolation procedure is conducted to predict the values of
the satellite data (e.g., Chl) associated with each particle for the
remainder of the particle drift, 2–3 days. The extrapolation is
similar to the interpolation procedure in Jönsson and Salisbury
(2016), but expanded to employ a linear extrapolation to calculate
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FIGURE 1 | Flowchart of ocean color prediction algorithm for water properties and early warning maps of HAB using Lagrangian particle trajectories and ocean color
observations.

a prediction based on any two valid satellite matchups. Note that
the extrapolation will be stopped if only one valid matchup is
obtained. In most cases there can be more than two matchups,
thus an average value of all these extrapolations (v) is calculated
using a weighting function of 1 divided by the days offset
according to the following equation:

v =
n∑

i = 1

wivi (1)

wi =
1/di∑n

i = 1 1/di
(2)

where vi is the extrapolation value of the ith pair, n is the number
of extrapolations, and d is the days offset.

Prediction of Remote Sensing
Reflectance
The optical spectra of water bodies provide useful information
on its constituents. Hence, the above approach is revised for
the capability to predict Rrs. It is worth noting that Rrs is an
apparent optical property (AOP), which highly depends on the

light distribution. It would be questionable if Rrs is estimated
by linear weighting from extrapolations of all trajectories, as the
light distribution for the particles along the trajectories could
vary significantly. In this study, we propose a revised approach
for prediction of Rrs based on inherent optical properties (IOPs),
which solely depend on optically properties of constituents in
the water but are not affected by the changes of light field. The
details are described by following steps. In the first step, the
quasi-analytical algorithm (QAA) is employed to retrieve IOPs:
absorption (a) and backscattering (bb) coefficients of water (Lee
et al., 2002). Then a new set of IOPs is predicted from the
retrieved a and bb. Next, the predicted a and bb are used to
reconstruct Rrs with the following equation (Gordon et al., 1988).

rrs (λ) =

(
g0 + g1 ·

bb (λ)

a (λ)+ bb (λ)

)
bb (λ)

a (λ)+ bb (λ)
(3)

where g0 = 0.0949 sr−1, g1 = 0.0794 sr−1, and Rrs can be
converted from rrs with:

Rrs (λ) =
0.52 · rrs (λ)

1−1.7 · rrs (λ)
(4)
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FIGURE 2 | Particle trajectories during September 10–17, 2019, which were
used for an application of the prediction scheme.

Following these steps, we are thus provided with time-series
images of Chl and Rrs at 30-min intervals for the domain.
These predictions are important as they will be used by
algorithms to determine a quantitative estimate of HAB risk:
this will be the focus of a future study. However, here we
use Rrs to predict the ocean color to enable visual forecasts of
bloom development.

Animation of Map Sequences
To demonstrate water property changes over time frames, we
combine individual images of Chl by interpolating intermediate
timesteps for a smoother appearance using the Matplotlib
Animation Python package.1 To further diagnose more details
on various water types, images were composited with red–
green–blue (RGB) bands from Rrs(560), Rrs(490), and Rrs(443),
respectively, and animated in an analogous way. These
wavelengths cover the blue–green section of the optical spectrum,
within which most ocean color variability is exhibited; hence this
provides an enhanced view of the ocean rather than the true color.

RESULTS

The applicability of this prediction scheme is demonstrated by
analyzing the predictions of water properties in two applications
in the coastal and offshore regions of southeastern England.

The Celtic Sea and English Channel
Six days of ocean color data were used for this case study
(September 9–15, 2019). A total of ∼1 million particles were
seeded randomly and advected at hourly intervals for 8 days from
September 9 to 17, 2019, including 48 h of predictions following
the satellite period, at the same spatial resolution as the ocean
color data (300 m× 300 m). Figure 2 shows a map of all modeled
particle trajectories over the 8 days: the path of each particle is
represented by a random colored line, which overlap each other

1https://imageio.github.io

FIGURE 3 | Maps of chlorophyll-a concentration (Sentinel-3 OLCI Level-3 products) during the days with ocean color observations used for prediction of HABs (or
other bio-optical parameters).
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due to the high density of particles. Figure 3 shows maps of
Sentinel-3 OLCI Level-3 Chl, from which we can identify the
variable availability of ocean color during the 6 days due to cloud
cover and orbit trajectories. There are some missing pixels in the
study region but for most regions there was coverage for at least
50% of the time, e.g., for the region of English Channel, there were
3 days of ocean color observations available (September 9, 10, and
15) out of the 6 days. It is worth mentioning that from these maps
we can observe that some algal blooms occurred along the coastal
regions of England with high Chl (>∼4 mg/m3).

Figure 4 presents the time series predictions of Chl that
shows the advection of surface waters during the first of the
2-day forecast. The most dynamic feature in this sequence is the

movement of an algal bloom along the south coast of England,
highlighted within the fixed ellipse in Figure 4. The value of this
approach can be fully appreciated by viewing the animation of
the sequence of predicted Chl maps that accompanies the figure.
Advection effects are stronger in regions of the eastern English
Channel with significant Chl variabilities over time, consistent
with stronger tides in this region. The coastal waters generally
demonstrate sharper Chl gradients than open ocean water, which
is expected when considering tide, river runoff, and other forces
dominating the shelf. The time series and animation of the
predicted enhanced ocean-color results is shown in Figure 5:
the colors in the maps indicate different water types, e.g., yellow
colors in river estuaries may indicate high concentration of

FIGURE 4 | Frames of predicted Chl distribution at 4-h intervals during the first forecast day (September 16, 2019). The dashed ellipse is in the same location in
each frame, highlighting the movement of a bloom along the south coast of England. The animation of the complete 2-day forecast can be found via
https://rsg.pml.ac.uk/shared_files/junl/paper_animation/example1/chl.gif.
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FIGURE 5 | Frames of predicted enhanced ocean-color RGB images indicating variabilities of water types (animation:
https://rsg.pml.ac.uk/shared_files/junl/paper_animation/example1/rgb.gif).

sediments, and dark brown colors in the eastern English Channel
could be due to a suspected K. mikimotoi bloom.

To further demonstrate the efficiency of the prediction
approach, the conditions of water quality were also studied
by plotting changes over time. Three transects were selected
along latitudes 50◦ N, 51.3◦ N, and 52.5◦ N (Figure 6),
covering possible bloom regions (e.g., estuaries, south-east
England coasts). Figure 7 shows the time series and animation
of predicted Chl along the three transects. It was found that
Chl varied over a wide range each day, usually with a periodic

pattern mainly due to different stages of the tidal cycle that
influence the advection of water parcels. In Figure 7B, the
upward slope indicates a net westward advection of water
along the transect.

An error estimation for the prediction algorithm was
performed by comparing the predicted Chl on the second forecast
day (September 17, 2019 12:00 p.m.) against the satellite-observed
Chl scene that day (12:29 p.m.). The scatter plot of cloud-free
pixels in the two datasets are shown in Figure 8. The predicted
Chl agrees well with satellite Chl with an r2 of 0.81 and a
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FIGURE 6 | Map showing the distribution of predicted Chl at 15th September
8 p.m. (first predicted image) overlaid with lines of latitudes at 50◦ N, 51.3◦ N,
and 52.5◦ N.

mean absolute percentage error (MAPE) of 36.9%. The MAPE
is defined by

MAPE =
1
n

n∑
i = 1

∣∣∣∣xp − xs
xs

∣∣∣∣ (5)

with xp and xs representing predicted and satellite values,
respectively, n is the number of values. The results further
demonstrate the robust performance of the prediction scheme for
changes of water properties.

High Spatial Resolution in English
Channel
Monitoring of water bodies at high spatial resolution is of
paramount importance, especially in dynamic coastal waters,
where the water constituents can vary dramatically over
a small distance. To evaluate the ability of the prediction
algorithm for high spatial resolution, a further period was
studied in the English Channel, June 29 to July 5, 2019
when a large coccolithophore bloom was observed. In
this case, many more particles were seeded (∼10 million
particles). To demonstrate the techniques using computer
time feasible for an operational monitoring system, the region
of interest was limited to the English Channel and only
16 h of predictions were generated. The spatial resolution
of the resulting prediction images is 100 m with a temporal
resolution of 1 h. Figure 9 shows and animates the changes
of Chl distributions over time. Small scale structures are
interpreted here (e.g., some fine structures of algae patches
were revealed). To gain a precise understanding of water
types, the enhanced ocean-color images with high spatial

FIGURE 7 | Hovmöller plot showing time series of predicted Chl (mg/m3)
along zonal lines: (A) 50◦ N, (B) 51.3◦ N, and (C) 52.5◦ N.

FIGURE 8 | Comparison of Sentinel OLCI Chl with predicted Chl on
September 17, 2019 (MAPE = 36.9%); the linear regression between the two
datasets is y = 0.79 x + 0.28 (r2 = 0.81).

resolution are shown and animated in Figure 10. The (harmless)
coccolithophorid bloom occurred in the northern English
Channel, covering thousands of square kilometers with milky
blue. The prediction method here successfully discriminated
the locations of the bloom and its advection over time, further
demonstrating the value of using this prediction method for
monitoring algal blooms.
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FIGURE 9 | Prediction algorithm applied to the English Channel, June 29 to July 5, 2019: maps showing distribution of predicted Chl at 4-h intervals with high
spatial resolution (100 m) (animation: https://rsg.pml.ac.uk/shared_files/junl/paper_animation/example2/chl.gif).

FIGURE 10 | Frames of predicted enhanced ocean-color RGB in the English Channel with high spatial resolution (100 m) showing more details of water properties
including the movement of a bright coccolithophore bloom near 53◦ N (animation: https://rsg.pml.ac.uk/shared_files/junl/paper_animation/example2/rgb.gif).

DISCUSSION

It is quite clear, as seen both in our findings and in earlier studies
(e.g., Jönsson et al., 2009; Jönsson and Salisbury, 2016), that
biological processes in coastal are strongly affected by physical
advection of water parcels, and that combining satellite derived
products and simulated velocity fields using particle tracking
provides a powerful approach for such analyses. While earlier
works by Jönsson et al. (2011) and Jönsson and Salisbury (2016)

are primarily focused on estimating the rate of change in satellite
properties, we present results showing that the method can
be expanded to predict locations and concentrations of the
properties. This novel application can be used to better predict
HAB events and to identify the extent and location of blooms
more precisely, especially in regions with strong tidal cycles
where surface currents are predictable.

We find our results to be generally physically coherent and
that any patches of high phytoplankton biomass are predicted
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and advected in a reasonable way. The nature of the method
is such that we expect significant methodological errors to be
seen as noise or spurious changes in our predicted fields (see
Jönsson et al., 2009 for further discussion). We see for example,
as expected, generally sharper Chl gradients in coastal waters
compared to the open ocean in the Celtic Sea and English
Channel. The method is also able to successfully predict the
location of a coccolithophore bloom. The skill of the method
discussed here is in line with what earlier studies have reported
from the California Current (Jönsson and Salisbury, 2016) and
Gulf of Maine (Jönsson et al., 2009) when estimating rates of
change, which suggests that the extrapolation approach has a
similar ability to provide useful information.

While the prediction tool presented in this study has the
potential to improve regional HAB monitoring by more precisely
assessing how the current state will develop in the near future, we
readily agree that there are limitations. It is inevitable that there
will be inaccuracies due to imperfections in the modeling and
methodology. Errors in the prediction method could arise from
many aspects, e.g., imperfect velocity of fields, extrapolation of
model velocities in time and space, numerical integration of the
trajectory path, and the omission of vertical velocity.

In this study, Lagrangian particle trajectories were computed
according to the effect of both advection and diffusion. However,
because each trajectory only contains a limited number of
particles, the final locations of simulated particles could not be
representative of all possible particle locations due to diffusion.
The problem could be especially acute for some areas with large
horizontal current shear. Thus, it would be important to keep
in mind that uncertainty from diffusion always exists in these
areas. The problems could be solved by seeding many more
particles at each initial location, though the additional burden
of computing their trajectories is currently unfeasible for this
real-time application. A practical solution could be to introduce
a probability density function indicating possible locations for
each traced particle. However, it is beyond the scope of this
study and substantial studies of this question are anticipated in
the future. Regarding errors from advection, this was assessed
in the previous study of Jönsson et al. (2009) by comparing the
changes in Chl and sea surface temperature (SST) between the
start and end positions of particle trajectories advected between
two satellite images. The results showed that the advective errors
are small relative to total changes due to other factors.

The extrapolation procedure will also introduce errors to
the predictions. The predicted values were estimated via linear
extrapolation with a weighting function. To reduce error from
the extrapolation, when the extrapolated value for a trajectory
exceeded 50% of the mean value of all extrapolations, this
trajectory was disregarded and was not included for the
calculation of final prediction. Considering uncertainty from
the IOPs retrieval algorithm, errors in predicted IOPs are
inevitable, but errors in Rrs could possibly be compensated
by reconstruction from these IOPs. Furthermore, it is also
worth noting that although individual trajectories have errors,
the statistics obtained from thousands of particles are still
very informative.

Still, while not perfect, the resulting predictions provide an
enhanced set of information for managers and stakeholders to

include when assessing the risk of HABs that has not been
available until now. The prediction tool is also agnostic to any
of its component modules. We are able to easily leverage new
improved ocean circulation models and satellite products into the
framework to provide as accurate predictions as possible.

CONCLUSION

This study set out to develop a prediction scheme for monitoring
HABs by merging satellite observations and Lagrangian particle
tracking. Two case studies in regions along the coast of
England have shown that the Lagrangian methodology is
effective for the interpretation of satellite data for early
warning of HAB risk. The accuracy of the predictions relies
on many factors. Particularly, the uncertainties from modeling
and methodology, e.g., velocity of fields, extrapolation of
model velocities in time and space, numerical integration of
the trajectory path, and the omission of vertical velocity,
may have big impacts on determining the accuracy of final
predictions. Notwithstanding these imperfections, this work
offers a powerful tool for monitoring and observing the
state of the marine ecosystem. The synoptic, time-resolved
quantification is invaluable to our understanding of HABs
developments. Animated sequences generated by this method
promote greater understanding and usage of satellite ocean
color data for communicating with aquaculture farmers. Future
research will extend the approach to predict quantitative risk
maps for key high-biomass HAB species. Hence our future
priority is to seek further applications of this new technique to
support the aquaculture industry with improved early warning
of potential HABs.
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