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Abstract

The impact of selective predation of weaker individuals on the general health of prey populations is well-established in
animal ecology. Analogous processes have not been considered at microbial scales despite the ubiquity of microbe-microbe
interactions, such as parasitism. Here we present insights into the biotic interactions between a widespread marine
thraustochytrid and a diatom from the ecologically important genus Chaetoceros. Physiological experiments show the
thraustochytrid targets senescent diatom cells in a similar way to selective animal predation on weaker prey individuals. This
physiology-selective targeting of ‘unhealthy’ cells appears to improve the overall health (i.e., increased photosynthetic
quantum yield) of the diatom population without impacting density, providing support for ‘healthy herd’ dynamics in a
protist—protist interaction, a phenomenon typically associated with animal predators and their prey. Thus, our study suggests
caution against the assumption that protist—protist parasitism is always detrimental to the host population and highlights the

complexity of microbial interactions.

Animal predators can exert overall positive effects on the
health of prey populations by removing individuals with
suboptimal health [1, 2] in a manner that has been termed
‘healthy herd’ dynamics [3]. While such top-down pro-
cesses are well-established in animal ecology [1-3], they
have largely been unconsidered in microbe-microbe
interactions.

Protist—protist parasitism is widespread in the marine
environment [4] and is generally considered to be detri-
mental to host populations [5, 6]. However, despite their
ubiquity, the ecophysiological impact of protist—protist
parasitism remains poorly understood. An important case
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that necessitates investigation is protist parasitism of dia-
toms, which have limited representation with culture-
dependent model systems despite the significance of dia-
toms in marine ecosystem functioning and global primary
production [7].

We observed and isolated a heterotrophic protist growing
epibiotically on moribund and dead Chaetoceros sp. diatoms
from a summer bloom at Station L4 in the Western English
Channel off Plymouth (UK) (Fig. 1A, B; Supplementary
Figs. 1 and 2; Supplementary Methods). Single-cell picking
achieved diatom and parasite co-cultures and uninfected host
diatoms. The 18 S rRNA gene V4 region of the protist (termed
‘Thraul 4’) identified the epibiont as a novel thraustochytrid
(Stramenopila; Labyrinthulomycota; Thraustochytrida) (Sup-
plementary Fig. 3). Searching for Thraul.4 18 S tRNA gene
homologues in the Ocean Sampling Day dataset revealed that
the parasite has a wide distribution in coastal temperate
regions (Supplementary Fig. 4).

Stable Chaetoceros-Thraul 4 co-cultures permitted the
characterisation of Thraul 4 internal structures (Supplementary
Figs. 5 and 6), epibiotic growth (Fig. 1A, B; Supplementary
Figs. 7 and 8) and infection dynamics (Fig. 1C, D). ThraulL4
also attached to other diatoms (Odontella sinensis, Ditylum
brightwellii and Coscindodiscus sp.) in a similar manner to
Chaetoceros sp. but not dinoflagellates (Fig. 1C; Supple-
mentary Fig. 9).
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Fig. 1 Growth experiments demonstrate that thraustochytrids
preferentially target and grow on unhealthy diatom cells. A Dif-
ferential interference contrast (DIC) image of Chaetoceros chain exhi-
biting different degrees of infection by Thraul4. Uninfected cell (un), a
lightly infected cell (li), heavily infected cells (hi) and a dead, empty
frustule (d). Scale bar = 20 um. B Scanning Electron Micrograph (SEM)
of a Chaetoceros diatom swarmed by Thraul4. Scale bar = 5pm. C
Thraul4 growth dynamics on a selected range of diatoms and dino-
flagellates (Alexandrium minutum and Prorocentrum minimum) (+SEM,
n=3). D Chaetoceros growth with ThrauL4 (+SEM, n =35). Dashed
lines demarcate the lag (1), exponential (2) and stationary (3) phases of
Chaetoceros growth. E Time-lapse of Chaetoceros-ThraulL4 showing
Thraul4 colonising unhealthy cells. Asterisk = cytoplasmic bleb from

The proportion of diatom cells with Thraul4 attached
increased when Chaetoceros sp. cells entered the stationary
growth phase (Fig. 1D). Time-lapse microscopy revealed
the dynamic nature of the ThraulL4-diatom interaction
(Fig. 1E, Supplementary Movies 1-6), with the motile
Thraul.4 apparently targeting physiologically ‘unhealthy’
cells identified by cytoplasmic blebbing prior to colonisa-
tion (Fig. 1E).

We set out to test the hypothesis that Thraul4 targeted
unhealthy diatoms using population-level ecophysiology
experiments. When introduced to heat-stressed diatom
populations, Thraul.4 had a higher fitness (i.e. became more
abundant) and infected more Chaetoceros sp. cells than
when exposed to healthy un-stressed diatoms (Fig. 1F, G),
confirming more optimal growth of the parasite amongst
unhealthy diatom populations. Furthermore, selective
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unhealthy diatom. Arrowhead = initial thraustochytrid colonisation.
Timestamp = HH:MM:SS. Difference in the abundance (F) and pre-
valence (G) of parasites in healthy (control), stressed and dead Chae-
toceros populations (n=15) inoculated with Thraul4 following heat
stress exposure. ANOVA Tukey’s HSD n.s p > 0.05 (not significant), *p
<0.05, **p<0.01, ***p <0.001. H Example diatom exposed to differ-
ent laser powers used to generate individual Chaetoceros cells of varying
health. Red channel overlay demarks chlorophyll autofluorescence. Scale
bar = 5 um. I Time taken for individual diatom cells (n = 15) exposed to
varying laser treatments to be colonised by Thraul 4. J Diagrammatic
representation of the proposed diatom-thraustochytrid interaction cycle
based on time-lapse microscopy observations (see Supplementary
Videos).

targeting was also demonstrated at the single-cell level
using laser-damaged individual cells and time-lapse
microscopy (Fig. 1H, I). 80% of stressed cells and 60%
of dead cells were colonised by Thraul4 during the 30 min
experimental period, whereas diatoms in healthy control
populations were un-colonised.

These results led us to investigate the physiological
impact of thraustochytrid parasitism on host diatom popu-
lations by comparing the dynamics and health of parasite
exposed and non-exposed Chaetoceros sp. populations
(Fig. 2A-C). Based on the previous growth experiments
showing ThrauL4 proliferation during the diatom stationary
phase (Fig. 1D), Chaetoceros sp. cultures grown to their
stationary phase after 7 d were chosen to mimic environ-
mental bloom decline. Using the photosynthetic quantum
yield (Fv/Fm) as a proxy for overall diatom health [8], after
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Fig. 2 Selective targeting of unhealthy diatom cells by thraus-
tochytrids improves the overall health of the diatom population.
A-C Population dynamics of the Fv/Fm (A) and total number (B) of
stationary Chaetoceros diatoms for control and parasitized diatom
populations over the experimental period (+SEM, n =5). Welch’s t-
test *p <0.05, **p <0.01, ***p <0.001. The parasite prevalence did
not exceed about a third of the total population (C) (+xSEM, n =5).
Parasites added at 0 d. In a separate experiment (D-F), a clonal
Chaetoceros population was generated. Population dynamics of the

8 d, the parasitized Chaetoceros sp. populations were
consistently healthier than those in the control non-exposed
populations (Fig. 2A). Diatom population density was
similar in both treatments (Fig. 2B) and parasite prevalence
peaked after 8 days (Fig. 2C). In a separate experiment to
investigate the role of genotype specificity in Thraul4
parasitism, we generated a clonal Chaetoceros sp. popula-
tion by single-cell picking and exposed the population to
Thraul4 cultures growing independently from diatoms.
Although the clonal population declined in health more
rapidly overall, Thraul4 parasitism also resulted in heal-
thier populations (Fig. 2D-F) suggesting that these results
are a not an artefact of genotype specificity and succession.

By removing physiologically weaker individuals from
the population, the remaining cells will constitute an overall
healthier population. However, other mechanisms may also
promote an overall healthier diatom population. It may be
that selective parasitism relieves nutrient competition
between unhealthy and healthy individuals. In the natural
environment, diatom-diatom competition is a major growth
limiting factor [9, 10] and removing the pressure exerted by
weaker cells may allow the population to be more robust. It

) Time (de) _
Fv/Fm (D), total number (E) and infection prevalence (F) of stationary
Chaetoceros diatoms for control and parasitized populations made
clonal by single-cell picking (+SEM, n =15). Significance values as
above. Parasites added at O day. Taken together these results indicate
that preferential thraustochytrid parasitism of unhealthy diatoms
strengthens the overall health of the population therefore providing
evidence for the ‘healthy herd’ hypothesis in a phytoplankton popu-
lation, which is summarised diagrammatically in (G).

is also possible that the thraustochytrid could be ‘cleaning’
the population by preventing the build-up of toxic waste
products or the proliferation of detrimental co-culture bac-
teria in an analogous way to how carrion removal by vul-
tures prevents the spread of diseases to mammals [11]. In
addition, thraustochytid parasitism could accelerate nutrient
recycling by releasing nutrients from dying cells. The
consequences of physiology-selective diatom parasitism
should be assessed in the marine environment, including
impacts at the community scale and in the context of eco-
system functioning.

The proposed influence of thraustochytrid parasitism
on diatom population health is summarised in Fig. 2G.
We suggest that this thraustochytrid-diatom interaction
provides evidence of ‘healthy herd” dynamics in a
protist—protist interaction, an ecological phenomenon
typically associated with animal predator-prey interac-
tions [3]. As we show here with ThraulL4, animal pre-
dators such as lions [12], cougars [13], African wild dogs
[14], and wolves [15] have been shown to target prey
with suboptimal health. The ‘healthy herd’ hypothesis
states that by selective predation on unhealthy prey,

SPRINGER NATURE
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predators increase the overall health of the prey popula-
tion by increasing resource availability or by removing
potential carriers of disease [3]. Evidence for ‘healthy
herd’ dynamics where predation generates healthier prey
populations has also been demonstrated in lobster-sea
urchin [16], fish-Daphnia [17], and fox-grouse [18]
predator—prey systems. Here, we provide analogous
supportive evidence from a marine protist—protist system.

‘Heathy herd” dynamics between protists challenges the
assumption that protist—protist parasitism is always detri-
mental to the host population and raises caution in this
assumption in ecosystem modelling or inference from
molecular ecology surveys (e.g., metabarcoding). Our
results have demonstrated the potential complexity of
protist—protist symbioses, highlighting the value of culture-
based experimentation and the importance of developing
model co-culture systems in resolving complex ecological
interactions. The underpinning biology and ecological
importance in natura of such interactions now require fur-
ther investigation.
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