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A B S T R A C T   

High resolution imaging spectrometers are prerequisite to address significant data gaps in inland optical water 
quality monitoring. In this work, we provide a data-driven alignment of chlorophyll-a and turbidity derived from 
the Sentinel-2 MultiSpectral Imager (MSI) with corresponding Sentinel-3 Ocean and Land Colour Instrument 
(OLCI) products. For chlorophyll-a retrieval, empirical ‘ocean colour’ blue-green band ratios and a near infra-red 
(NIR) band ratio algorithm, as well as a semi-analytical three-band NIR-red ratio algorithm, were included in the 
analysis. Six million co-registrations with MSI and OLCI spanning 24 lakes across five continents were analysed. 
Following atmospheric correction with POLYMER, the reflectance distributions of the red and NIR bands showed 
close similarity between the two sensors, whereas the distribution for blue and green bands was positively 
skewed in the MSI results compared to OLCI. Whilst it is not possible from this analysis to determine the accuracy 
of reflectance retrieved with either MSI or OLCI results, optimizing water quality algorithms for MSI against 
those previously derived for the Envisat Medium Resolution Imaging Spectrometer (MERIS) and its follow-on 
OLCI, supports the wider use of MSI for aquatic applications. Chlorophyll-a algorithms were thus tuned for 
MSI against concurrent OLCI observations, resulting in significant improvements against the original algorithm 
coefficients. The mean absolute difference (MAD) for the blue-green band ratio algorithm decreased from 1.95 
mg m− 3 to 1.11 mg m− 3, whilst the correlation coefficient increased from 0.61 to 0.80. For the NIR-red band 
ratio algorithms improvements were modest, with the MAD decreasing from 4.68 to 4.64 mg m− 3 for the 
empirical red band ratio algorithm, and 3.73 to 3.67 for the semi-analytical 3-band algorithm. Three imple
mentations of the turbidity algorithm showed improvement after tuning with the resulting distributions having 
reduced bias. The MAD reduced from 0.85 to 0.72, 1.22 to 1.10 and 1.93 to 1.55 FNU for the 665, 708 and 778 
nm implementations respectively. However, several sources of uncertainty remain: adjacent land showed high 
divergence between the sensors, suggesting that high product uncertainty near land continues to be an issue for 
small water bodies, while it cannot be stated at this point whether MSI or OLCI results are differentially affected. 
The effect of spectrally wider bands of the MSI on algorithm sensitivity to chlorophyll-a and turbidity cannot be 
fully established without further availability of in situ optical measurements.   

1. Introduction 

Globally, there are over 100 million lakes and reservoirs (Verpoorter 
et al., 2014) with the vast majority not observable using the spatial 
resolution of current ocean colour sensors. Ensuring healthy and pro
ductive inland water bodies underpins several of the United Nations 
Sustainable Development Goals (SDG) and is at the core of SDG 6 on 
clean water. Reporting on SDG 6 and international water quality 
frameworks such as the European Water Framework Directive (2000/ 

60/EC), which aim to record ambient surface water quality of inland and 
coastal water resources, is only feasible over large areas or hazardous 
regions when remote sensing is used (Papathanasopoulou et al., 2019). 
For climate studies, lake water-leaving reflectance (LWLR) was recently 
adopted in the Lakes Essential Climate Variable (ECV) by the Global 
Climate Observing System (GCOS 200, 2016). LWLR, or reflectance in 
short, describes the fate of sunlight entering the water column and al
lows biogeochemical quantities such as chlorophyll-a (chl-a) or water 
transparency, turbidity, suspended particle concentration or dissolved 
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organic matter, to be derived from diagnostic reflectance signatures. 
Accurately and consistently deriving these quantities in relatively small 
inland water bodies is now a vital next step for the water quality remote 
sensing research community, with progress made in regional studies (e. 
g. Toming et al., 2016; Bresciani et al., 2019; Pahlevan et al., 2019). 

Current satellite monitoring platforms offer unprecedented capabil
ities to observe the optical quality of water bodies globally (Groom et al., 
2018). Ocean colour satellites have offered sufficient spatial resolution, 
overpass frequency and appropriate band configuration for global-scale 
ocean monitoring since the launch of the ESA Medium Resolution Im
aging Spectrometer (MERIS). Multispectral ocean colour sensors have 
been used to inform on variables such as phytoplankton pigment con
centration, turbidity and transparency, suspended sediments and col
oured dissolved organic matter concentrations (e.g. Binding et al., 2018; 
Gholizadeh et al., 2016; Odermatt et al., 2012). Ocean colour remote 
sensing instruments with a ground resolution in the order of 300–1000 
m and high signal sensitivity have been successfully used to derive chl-a 
concentrations and turbidity in oceans with continuous global-scale 
observations since the launch of the SeaWIFS sensor in 1997 (Blon
deau-Patissier et al., 2014; Gregg et al., 2017). They have also been used 
to some success to derive these parameters in medium and large inland 
waters (Olmanson et al., 2011; Palmer et al., 2015b; Stelzer et al., 2020). 
Sensors with a higher ground resolution (in the order of 10–60 m) have 
been available for inland applications using the Landsat series since 
1972 (e.g. Carpenter and Carpenter, 1983; Guan et al., 2011; Verpoorter 
et al., 2014; Pickens et al., 2020). More recently, with the launch of 
Landsat 8 Operational Land Imager (OLI) and Sentinel-2 MSI, they have 
captured the interest of the research community for water quality 
mapping in coastal and inland waters (e.g. Pahlevan et al., 2017; Warren 
et al., 2019; Soomets et al., 2020; Bramich et al., 2021). MSI is of 
particular interest since it has wavebands centred on several of the same 
features as captured by OLCI and MERIS, albeit with wider bands and 
lower sensitivity. These common wavebands are suitable for deriving 
estimates of chl-a and turbidity, two parameters that indicate the health 
of the water body and potential risk factors to fish and mammals in the 
water. 

Over the past decades, several algorithmic approaches have been 
suggested for deriving chl-a and turbidity from remote sensing data of 
optically complex water (for recent reviews see e.g. Odermatt et al., 
2012, Matthews, 2011, Blondeau-Patissier et al., 2014). These ap
proaches can be grouped into using analytical inversion or empirical 
correlation of reflectance band ratios, matrix inversion against assumed 
(spectral shapes of) inherent optical properties of optically active water 
constituents, and neural networks. Neil et al. (2019) used a global data 
set of in situ hyperspectral reflectance to determine that band ratio al
gorithms were the most robust for lakes, albeit after further optimization 
of each algorithm to provide the best global fit. Thus far, most algorithm 
development has targeted narrow (in the order of 10 nm) wavebands 
from recent ocean colour sensors to target diagnostic optical features. 
Additional effort will be needed to properly interpret the response of 
recent high-resolution sensors with broader wavebands. However, ar
chives of in situ data that helped develop, calibrate, and validate 
biogeochemical retrieval algorithms for MERIS are still relatively scarce 
for more recent sensors. For inland waters, recent efforts have sought to 
collect together in situ observations for the purpose of satellite valida
tion (e.g. Odermatt et al. 2018, Ross et al. 2019), similar to those at
tempts for the open ocean, (e.g. Werdell et al., 2003; Valente et al., 
2019), but due to the relatively recent launch dates of both OLCI and 
MSI without dedicated global validation efforts in inland waters there 
are still large in situ data gaps that prevent direct calibration and vali
dation of products derived from these sensors. 

There is now greater than five years overlap between MSI and OLCI 
observation records, resulting in a potentially large dataset of coincident 
coverage. Globally validated algorithmic approaches have been used 
with OLCI, primarily resulting from its MERIS lineage (e.g. Smith et al., 
2018; Attila et al., 2018). Some initial validation of OLCI, and expected 

performance based on MERIS legacy, can be found in: Stelzer et al. 
(2020), Soomets et al. (2020), Alikas et al. (2020a) and Liu et al. (pers. 
comm.). While in situ data remain scarce, we can make a direct com
parison between MSI and OLCI resulting in a relative quality assessment 
and an opportunity to align the MSI response with OLCI. In this case, the 
OLCI derived chl-a and turbidity can be used to tune the MSI algorithms, 
with the benefit that these continue the MERIS legacy of in situ vali
dation. An added advantage of this approach is that uncertainties in the 
retrieval of reflectance, which cannot be resolved even for MERIS due to 
lacking in situ radiometric data, can be largely bypassed. Nevertheless, 
observing inland water bodies with OLCI and other sensors is not 
without challenges (Palmer et al., 2015a; Giardino et al., 2019), with the 
most challenging issues relating to land adjacency effects (Sterckx et al., 
2015, Kiselev et al., 2015), pixel resolution versus lake size (Hestir et al., 
2015) and potential bottom reflectance (Lyzenga, 1981). These issues 
persist even in the analysis of satellite product retrieval against in situ 
observation data. A slight advantage of a sensor-to-sensor comparison is 
that much larger data volumes can be included, potentially limiting 
these effects which occur in specific conditions. This approach, there
fore, has merit to avoid introducing bias from algorithm calibration 
using a more limited set of recent in situ observations. The most 
important question that this analysis will be able to address is whether 
the MSI band configuration lends itself to retrieve chl-a concentration 
and turbidity with similar performance as obtained with OLCI. This can 
be assessed from the distributions and statistics derived from residuals. 
Several algorithm-specific assumptions and observation conditions need 
to be taken into consideration, as discussed below. 

The overall objective of this study is to establish whether, within a 
given set of signal processing parameters (atmospheric correction, 
substance retrieval algorithms), sufficient scope exists to extend the 
relative maturity of lake water quality observations using ocean colour 
sensors to smaller water bodies, using MSI and a sensor-to-sensor cali
bration approach. The first hurdle in this process is to address whether 
consistent retrieval results can be obtained at similar pixel resolutions 
for an optimal alignment with OLCI, within the a priori validated scope 
(concentration range) of each algorithm. The rationale for tuning 
existing algorithms is that these have already been proven to have a 
degree of sensitivity to the optical water properties of interest, such as 
chl-a or turbidity. They can be relied on to extract a diagnostic optical 
signal from satellite imagery and to model this linearly with increasing 
substance concentrations. However, most of the existing algorithms 
were originally developed without a global calibration data set, for 
legacy sensors, or without including atmospheric correction. All of these 
may result in systematic bias which can be calibrated against. 

In general, it is expected that the broader MSI bands will have 
reduced sensitivity to the narrow absorption features of the chl-a 
pigment taken advantage of by band ratio algorithms, particularly in the 
red absorption band around 665 nm (31 nm width) and to a lesser extent 
the reference band at 709 nm (15 nm width). The less-featured NIR 
reflectance range used for turbidity retrieval is unlikely to show sensi
tivity effects caused by band width, but may still be affected by atmo
spheric correction uncertainties which are likely to differ between the 
two sensors because of differing overpass times, viewing angle ranges 
and the availability of bands to characterize atmospheric conditions and 
waterbodies. Any sensor-specific uncertainties may be amplified in the 
vicinity of land, as discussed further below. 

For relatively clear lakes with chl-a in the low concentration range 
(in the order of 0–10 mg m− 3), it is expected that, given adequate at
mospheric correction, methods would allow the capture of chl-a con
centration using blue-green band ratio algorithms because the MSI 
bands generally cover the blue pigment absorption range and the green 
absorption gap between prominent phytoplankton pigments. However, 
the wide optical diversity of lakes is likely to interfere with chl-a 
retrieval due to interference by coloured dissolved organic matter and 
detrital absorption in the blue, making a single algorithm calibration less 
likely to be globally successful. This uncertainty applies to both narrow 
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and broadband multispectral sensors, to a likely varying and not well 
described extent. 

Another expected challenge is the extent to which pixels at varying 
distance from land are affected by land reflectance mixing with water- 
leaving reflectance in the atmosphere. It is expected that smaller lakes 
and observations close to shore have a higher variance in both the chl-a 
and turbidity measurements due to varying adjacency affects in each 
sensor. 

To draw conclusions about global algorithm performance, lakes must 
be selected to cover both a variety of optical water types, geographic 
location and altitude. We expect that lake-specific differences in algo
rithm performance will manifest in the algorithm response when its 
specificity to the target substance is relatively poor. It is then of further 
interest to investigate to which extent lake-specific tuning improves 
results locally, and whether groupings of optimized algorithm configu
rations can be attributed to lake size, location or optical water type. 

Given uncertainties expected in the atmospheric correction proced
ures (Warren et al., 2019; Pahlevan et al., 2021), tuning of downstream 
MSI algorithms against the assumedly more capable ocean colour sensor 
lineage is expected to at least improve the continuity of observations 
between these sensors. We do not expect that specific challenges such as 
adjacent land effects or attribution to water types or atmospheric con
ditions can be fully resolved from a sensor-to-sensor comparison, 
because such issues will not be absent in the ocean colour sensor 
products. Nevertheless, our ambition for this work is to provide an im
mediate solution to the uptake of MSI products in a wider range of water 
bodies, which should then prompt more targeted validation efforts, 
particularly in small inland waters. 

2. Methods 

Four algorithms for chl-a, which performed best in the recent cali
bration study by Neil et al. (2019), were included: (i) the empirically 
derived OC2 and OC3 (O'Reilly et al., 1998) dedicated to oligo- and 
mesotrophic waters, (ii) a generic empirical NIR-red ratio (after Gilerson 
et al., 2010), which can be tuned over a large range of moderately turbid 
waters, and (iii) the semi-analytical Gons (Gons et al., 2002, 2005) al
gorithms. For turbidity we consider a narrower set of implementations, 
all adaptations of the widely validated Nechad algorithm (Nechad et al., 

2010; Dogliotti et al., 2015), tuned here to use one of the four suitable 
MSI bands: 665, 708, 782, 865 nm for waters of increasing turbidity. To 
capture a diverse set of optical water types and seasonal variation, ob
servations from 24 lakes in five continents over a two-year time frame 
are included in the data set. 

2.1. Satellite data selection 

A globally representative dataset of satellite imagery was created 
covering a range of lake sizes and optical water types from Europe, Af
rica, Asia, and North and South America (Table 1 and Fig. 1a). The 
surface area of the selected waterbodies ranged from 14 km2 to 67,000 
km2. The selection was made to represent a variety of lake size and water 
types. The two-year period 2017–2018 was used to include two full 
seasonal cycles. It is important to include large water bodies in the 
analysis for reasons such as increasing the data volume for comparison 
(due to the coarser resolution of OLCI), to include a full variety of optical 
water types and for global applicability of the algorithm parameter
isation. Similarly, small water bodies are included for these latter rea
sons and to test the limits of the experiment. In some cases, small water 
bodies near the boundary of the lakes chosen are included in the data set. 

Satellite images acquired by the Sentinel-2A/B MSI and Sentinel-3A 
OLCI were used when these were acquired within a 10-min window 
(using the times recorded in the image metadata). This narrow window 
limits the effect on data quality of different solar illumination angles and 
the state of the water quality between the acquisitions. However, 
different viewing angles and potential sun-glint effects remain. The 
number of concurrent satellite images ranged from 10 to 89 per lake 
(Table 1), depending largely on the size of the lake, satellite coverage 
and the temporal separation of satellite orbits. The OLCI data were from 
the baseline collection 002 and MSI data from processing baselines 
02.04 to 02.07 depending on date of acquisition. 

MSI data were resampled to 300 m pixel size to match the spatial 
resolution of the OLCI imagery. Following this, MSI Level-1C and OLCI 
Level-1B images were processed with IDEPIX v3.0 (https://www. 
brockmann-consult.de/portfolio/idepix/) to generate masks and then 
to Level 2 (normalized water-leaving reflectance, Rw) using the POLY
MER v4.12 atmospheric correction algorithm (Steinmetz et al., 2011). 
POLYMER was chosen as it has shown to work relatively well with MSI 

Table 1 
Overview of lakes included in this study. M is the number of concurrent MSI-OLCI scenes, N is the number of concurrent MSI and OLCI pixel observations for each 
algorithm after filtering. Latitude and longitude given in decimal degrees. The top 3 dominant optical water types (OWT) were derived from the OLCI spectra using 
spectral angle classification against the OWT clusters from Spyrakos et al., 2018, with the 13 OWTs from Spyrakos et al. (2018) shown in Fig. 1b.  

Lake Name (Longitude, Latitude) Approximate Area (km2) Top 3 dominant OWT M N 
OC2 

N 
OC3 

N 
Gilerson 

N 
Gons 

Lumina (29.5, 45.1) 13.97 3,6,9 25 80 102 53 46 
Leven (− 3.3, 56.3) 14.08 3,6,9 29 27 21 228 196 
Windermere (− 2.9, 54.3) 14.56 1,3,13 46 – – – – 
Isac (29.3, 45.1) 14.57 2,3,9 21 72 105 246 207 
Douglas (− 84.7, 45.6) 15.07 unknown 16 – – – – 
Dezadeash (− 163.9, 60.5) 78.67 1,3,9 51 42 43 1015 680 
Sasyk (33.5, 45.1) 78.96 3,5,10 16 190 179 176 176 
Assean (− 96.4,56.2) 79.24 2,3,4 28 180 147 1511 1418 
Margaret (− 115.4, 59) 80.33 1,3,9 31 371 289 70 72 
Pyhäjärvi (23.5, 61.3) 120.70 2,3,4 61 455 415 2665 2444 
Garda (10.6, 45.69) 368.64 1,3,13 15 13,027 13,031 – 1 
Couture (− 75.4, 60.1) 390.28 1,3,13 31 167 168 – – 
Dorsoidong (89.9, 33.3) 391.81 3,10,11 11 32 114 870 731 
Kinbasket (− 118.3,52.1) 401.09 1,3,13 35 5229 5243 22 15 
Trout (− 93.3, 51.1) 499.17 1,3,9 19 2739 3045 25 38 
Malaren (17.1, 59.4) 1310.31 2,4,11 65 2715 1996 34,207 34,089 
Vattern (14.7, 58.3) 1887.88 1,3,9 40 92,743 92,777 7713 5281 
Tai (120.1, 31.1) 2416.40 4,6,11 10 1 – 686 672 
Turkana (36.2, 3.5) 7566.28 2,9,12 41 31,695 585 60,974 18,782 
Titicaca (− 69.5, − 15.8) 7752.93 1,3,9 21 91,122 91,123 36,982 31,786 
Erie (− 81.1, 42.1) 25,937.72 3,9,12 52 594,248 581,831 163,924 172,141 
Michigan (− 86.6, 44.1) 58,256.63 3,9,13 40 503,988 1,042,187 25,348 16,953 
Victoria (33.1, − 1.08) 67,005.94 2,3,9 89 1,353,879 945,732 357,932 353,266  
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compared to other algorithms (Warren et al., 2019; Pereira-Sandoval 
et al., 2019). It is currently used in the Copernicus Land Monitoring 
Service for global water quality from OLCI and it has been shown to 
perform well in optically complex waters with OLCI (Mograne et al., 
2019; Alikas et al., 2020b). The following non-default settings in 
POLYMER were used: no internal masking, reinitialisation of the model 
on a negative result, initial concentrations for chl-a and suspended 
matter set to 10 mg m− 3 and 10 g m− 3, respectively for the Park and 
Ruddick (2005) case-2 bio-optical model and the [min, max] bounds set 
to 0.01 and 1000 mg m− 3 for chl-a and 0.001 to 1000 g m− 3 for total 
suspended matter. The atmospherically corrected data were extracted 
and matched between the sensors on a per-pixel basis using the corre
sponding latitude and longitude. A 3 × 3 macro-pixel (approximately 
900 × 900 m) centred on each MSI/OLCI pixel pair was then extracted to 
allow filtering based on spatial homogeneity (see Section 2.2). 

2.2. Filtering observations 

The following masking procedure was used to select pixels that were 
free from suspected effects of cloud, mixed water/land, out-of-scope use 
of POLYMER and high spatial heterogeneity: (1) data were masked 
where any of the following Idepix flags were raised on the MSI data: 
cloud_buffer, cloud_sure, cloud, cloud_ambiguous, cirrus_sure, cirru
s_ambiguous, potential_shadow and land. In addition, each pixel had to 
have the Idepix MSI clear_water flag active. (2) Pixels with MSI or OLCI 
reflectance values >1 were removed. (3) Pixels with the POLYMER 
“out_of_bounds” flag for OLCI or MSI were removed from the analysis. 
(4) Pixels with the OLCI Idepix SNOW_ICE flag raised were also 
removed. (5) Following these steps, any pixel with fewer than five valid 

neighbours in a 3 × 3 macro-pixel was removed from the analysis. 
Two additional filtering steps were added to remove outlier results 

and lessen the effect of edge conditions: (6) The top and bottom 0.05% of 
the OLCI and MSI chl-a distribution were removed to exclude the most 
extreme results, leaving the central 99.9% of data for further analyses. 
(7) MSI derived chl-a results that were greater than twice the standard 
deviation away from the mean of the chl-a dataset were removed. 

Per-algorithm filtering was additionally performed to reduce the 
dataset to appropriate ranges of chl-a concentration and turbidity, as 
described in Table 2. These ranges are based on previous validation 
studies in the literature (e.g. Gons et al., 2002, Gitelson et al., 2008, 
Gilerson et al., 2010 and Gurlin et al., 2011 for the NIR-red ratio algo
rithms, and O'Reilly et al., 1998 for the blue-green ratio algorithms). The 
selection was based on the turbidity and chl-a derived from the OLCI 
data. No filtering was done for OCx algorithms using the MSI chl-a ob
servations prior to tuning since MSI is the response variable in the tuning 
procedure and pre-filtering could bias the tuning result. However, some 
filtering by MSI chl-a was required for Gilerson and Gons05 to remove 
some data points that resulted in impossibly large chl-a values. OLCI- 

Fig. 1. (a) Map showing lake locations used in the analysis. (b) reproduction from Spyrakos et al. (2018) showing the 13 inland optical water types.  

Table 2 
Algorithm-specific filtering. Observations inconsistent with these criteria were 
omitted from the analysis. Units of chl-a are mg m− 3 and turbidity units are FNU.   

OC2 / OC3 Gilerson Gons05 Turbidity 

MSI band ratio > 0 band ratio > 0 
0 < chl-a < 250 

0 < chl-a < 250 turbidity >0 

OLCI 0.2 < chl-a < 10 
Turbidity <0.5 

band ratio > 0 
2 < chl-a < 200 

2 < chl-a < 200 turbidity >0  
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Turbidity was estimated using the Nechad algorithm (Nechad et al., 
2010, 2016) with the 708 nm waveband and chl-a was estimated using 
each of the four considered algorithms. It was decided to remove Lake 
Ladoga from all analyses after inspection showed suspect seasonal 
turbidity results, likely associated with (partial) ice cover. The resulting 
data subsets were subsequently tuned for each of the respective MSI 
algorithms. 

2.3. Algorithm optimization 

A brief description of each algorithm configuration follows with 
details on their original development and validation available in the 
work cited below. The coefficients used for the OLCI chl-a algorithm 
configurations are the same as used for the Copernicus Land Monitoring 
Service (CLMS) global lake water quality processing (versions 1.2–1.4, 
Simis et al., 2020), except for the Gilerson and OC3 algorithms where 
the originally published MERIS coefficients were used (Table 3) because 
these algorithms are not implemented in these forms in CLMS. For MSI 
the coefficients used in each case are the published algorithm co
efficients for MERIS as this sensor has the most similar waveband values 
(Table 3).  

(i) OC2 and OC3 (O'Reilly et al., 1998): The ocean chlorophyll-a 
algorithms are based on the blue-green ratio and are suitable for 
the low chlorophyll-a concentration range (0–10 mg m− 3) in 
waters where the pigment concentration covaries with other 
optically active substances. The algorithm can confuse turbid or 
CDOM rich waters with higher chl-a as these can also cause 
higher reflectance in the green waveband and/or decrease 
reflectance in the blue. OC2 uses a 490 nm: 560 nm ratio whilst 
the OC3 algorithm takes advantage of the 443 nm band also, 
using the max(443 nm, 490 nm): 560 nm ratio. These algorithms 
take advantage of the expected (non-linear) increase in green 
with respect to blue reflectance with increasing chlorophyll-a 
absorption and associated light scattering by particles. The other 
OCx algorithms (e.g. OC4, OC5, OC6) cannot be used with MSI as 
it lacks the required wavebands. 

The OC formula for chl-a is: 

log(Chla) = a0 + a1x+ a2x2 + a3x3 + a4x4 (1)  

where 

OC2 : x = log
Rw490
Rw560  

OC3 : x = log
max(Rw443,Rw490)

Rw560  

with Rw the normalized water-leaving reflectance and ai a set of 
empirically tuned coefficients.  

(ii) The generalised NIR-red algorithm (Gilerson et al., 2010) uses a 
ratio of near-infra-red and red bands (708: 665 nm) and is better 
suited to waters with moderate to high chl-a concentrations 
(2–200 mg m− 3) and, because the longer wavebands show less 
overlap in absorption between optical substances, it is more 

suitable for waters where CDOM and particles do not necessarily 
covary with chl-a concentration. Around 708 nm the absorption 
is presumed dominated by water, whereas 665 nm corresponds to 
the red absorption peak of chl-a. The ratio of these bands is 
relatively insensitive to other background absorption (without 
spectral features in this range) and can therefore be empirically 
related to the chl-a concentration. The formula used is: 

chla = (ax − b)c (2)  

where x =
Rw(708)
Rw(665) and a, b, c are the coefficients subjected to cali

bration.  
(iii) The semi-analytical Gons05 algorithm (Gons et al., 2005) uses a 

ratio of near-infra-red and red wavebands (708: 665 nm) together 
with coefficients for water absorption and chl-a absorption co
efficients at these wavebands, and the backscattering coefficient 
derived from analytical inversion of reflectance at 778 nm, where 
water absorption is assumed to be dominant. The algorithm has 
previously been validated over a range of 3–185 mg m− 3 (Gons 
et al., 2002) although the same band ratio has been validated in 
other algorithms for chl-a 2–200 (e.g. Gitelson et al., 2008). The 
included retrieval of the backscattering coefficient corrects for 
wider variations in the amplitude of reflectance due to detritus, 
minerals and phytoplankton particles (Gons, 1999). 

The formula is: 

chla =

[(
Rw709
Rw665

)

×(aw709+ bb) − aw665 − bp
b

]/

a*
chl665 (3)  

where aw is the absorption by pure water at the given wavelength, bb 
the backscattering coefficient, and p and achl*are tuneable co
efficients. The backscattering is calculated from: 

bb =
0.6 × aw(779) × Rw(779)
0.082 − 0.6 × Rw(779)

All MSI chl-a algorithm coefficients were tuned using a non-linear 
least squares minimization technique (the optimize least squares pack
age within the Python scipy library (Virtanen et al., 2020) using the trust 
region reflective algorithm (Branch et al., 1999)) to improve MSI – OLCI 
chl-a alignment. In the minimization procedure, a Cauchy loss function 
was used to reduce the effect of large outliers on the convergence, and 
the parameter solution was unbounded. In addition, an alternative 
method of tuning the OC2 algorithm has been implemented where a 
linear scaling of the MSI band ratio is applied to align it to the OLCI band 
ratio, and using the OLCI OC2 coefficients with the scaled band ratio to 
derive chl-a. This is denoted OC2scale in all relevant tables to differ
entiate from the traditional tuning method labelled OC2. 

Four implementations of the Nechad turbidity algorithm (Nechad 
et al., 2010) were adapted for MSI, using the water-leaving reflectance 
bands at either 665, 705, 783 or 865 nm. It is a reflectance-based al
gorithm whose parameters are tuned based on in-water optical model 
and seaborne reflectance observations: 

Table 3 
Chl-a algorithm coefficients prior to tuning.  

OLCI MSI 

OC2 
a0-a4 

OC3 
a0-a4 

Gilerson 
a,b,c 

Gons05 
p,a* 

OC2 
a0-a4 

OC3 
a0-a4 

Gilerson 
a,b,c 

Gons05 
p,a* 

0.1731 0.2521 35.75 1.06 0.2389 0.2521 35.75 1.06 
− 3.9630 − 2.2146 − 19.30 0.025 − 1.9369 − 2.2146 − 19.30 0.016 
− 0.5620 1.5193 1.124  1.7627 1.5193 1.124  
4.5008 − 0.7702   − 3.0777 − 0.7702   
− 3.0020 − 0.4291   − 0.1054 − 0.4291    
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T =
A × Rw

1 − Rw
C

(4)  

where T is turbidity, Rw is the chosen water-leaving reflectance band and 
parameters A and C are given as waveband-dependent look-up tables 
(Nechad et al., 2010; Nechad et al., 2016) and not calibrated in this 
study. The algorithm was linearly tuned using the formula: 

Tt = a*T + b (5)  

where Tt is the tuned turbidity and a and b are factors derived through 
the tuning. This tuning will reduce the biases originating from (a) 
applying the algorithm to a specific dataset of globally distributed lakes, 
(b) any sensor and observation differences and (c) the atmospheric 
correction algorithm used. 

The number of observations available per lake was heavily skewed 
towards larger lakes (Table 1). To help mitigate this potential source of 
bias, each algorithm was tuned using a bootstrap analysis where each 
lake provided the same amount of observations, therefore giving each 
lake equal weighting in the minimization. Observations were selected at 
random, with replacement, such that each lake contributed 150 obser
vations. Lakes with fewer than 140 unique MSI – OLCI matches were 
excluded. The number of observations of 150 was chosen as a compro
mise between the number of lakes contributing and the total number of 
observations in the minimization. The minimization was performed on 
this subset and then repeated 10,000 times. The median value of the 
resulting coefficients was used to calculate the optimized MSI chl-a and 
calibrated turbidity. The root mean squared difference (RMSD), mean 
absolute percentage difference (MAPD), mean absolute difference 
(MAD), bias and Pearson cross-correlation (R) (Table 4) were calculated 
between the OLCI and MSI derived chl-a (labelled before) and the OLCI 
and optimized MSI derived chl-a (labelled after) to assess the relative 
performance of the MSI-based retrieval. 

3. Results 

From 880 concurrent MSI and OLCI observations of the selected 
lakes, over 17.6 million pixel matches were created and 6,703,736 pixels 
passed the filtering criteria. These were further filtered per individual 
algorithm (Table 2) to yield 2,693,002 data points for OC2, 2,779,133 
for OC3, 638,972 for Gilerson and 694,633 for the Gons05 algorithm. 
Data from 16 lakes were used to tune OC2, OC3, Gilerson and Gons05 
algorithms, out of the original set of 24 lakes (due to the bootstrapping 
minimum of 140 observations per lake). The greater number of match
ing pixels for the OC algorithms was due to relatively clear water pixels 
being associated with larger lakes. Some lakes, such as Lake Taihu, 
rarely had clear water and resulted in more observations matching the 
filtering criteria of the Gilerson and Gons05 algorithms. Two of the 
smallest lakes included in the study, Lakes Windermere and Douglas, 
resulted in zero matching pixels. For Lake Windermere, all concurrent 
MSI-OLCI observations were removed during the filtering process since 
all had fewer than five valid neighbours in the 3 × 3 macro-pixel, 
whereas Lake Douglas had no matching valid clear water after flag
ging and atmospheric correction. 

3.1. Reflectance distribution 

The distributions of water-leaving reflectance (Fig. 2a) of the OC2 
dataset for 490 and 560 nm bands show an overestimation of MSI at both 

wavebands, with MSI showing a bi-modal distribution not seen in the 
OLCI data. This overestimation is also shown in the OC3 max(443,490) 
and 560 comparison, but both sensors show a bi-modal distribution. The 
665 and 708 reflectance in both Gilerson and Gons05 show much more 
aligned histograms, with the bi-modal distribution matching well be
tween both sensors, and the Gons05 778 nm aligns well too. The dis
tribution of reflectance for the turbidity dataset (Fig. 2b) shows an 
overestimation in MSI Rw of the second peak, most prominent in the 665 
nm band, and for higher wavelengths much reduced signal. Density plots 
of the Rw without the limits from Table 2 applied (Fig. 2c), for each band, 
show a high density along the line of unity but with prominent scatter, 
particularly in the 443, 490 and 560 nm bands. 

3.2. Adjacency effects 

The difference of MSI and OLCI chl-a was compared to the distance to 
the nearest land map from Carrea et al. (2015). There was a clear in
crease in the magnitude of residual error at distances close to land 
(Fig. 3) for each of the algorithms. The effect, in terms of absolute dif
ference between MSI and OLCI chl-a retrieval, was stronger and visible 
at greater distance from land for the red band ratio algorithms compared 
to the OC2 algorithm. Overall, the number of observations with elevated 
residuals was far fewer than those with small residuals, even at the 
distances close to land. For example, at distances <5 km for OC2, 97.5% 
of the data had residual less than 7.27 mg m-3 (the maximum error at 80 
km distance to land). Statistical analyses were performed using a dataset 
of points < 5 km and another >5 km from land described in Table A in 
Appendix A. From these statistics, it was decided to keep all observations 
in the dataset in further analyses rather than restrict the tuning to only 
the larger lakes, which would then reduce the dataset and potentially 
narrow the range of optical properties and global applicability. 

3.3. Chl-a algorithm optimization 

Statistics relating the OLCI and MSI chl-a were produced both before 
(Table 5) and after (Table 6) algorithm optimization. As well as looking 
at the statistics it is prudent to investigate the intermediary products. 
The water-leaving reflectance band ratios derived from OLCI and MSI 
can be seen to be strongly correlated (Fig. 4). The correlation suggests 
that the algorithms can be applied to MSI, particularly with further 
tuning of MSI-specific algorithm coefficients. Considering OC2, the 490: 
560 nm band ratios, the MSI is generally over-estimated compared to the 
OLCI (Fig. 4a) with a bias of 0.124 and regression slope of 0.89. The max 
(443,490): 560 ratio appears more centred with bias − 0.011 and 
regression slope 0.92 (Fig. 4b). The 708: 665 ratio shows a general trend 
of underestimation by MSI with bias − 0.03 and regression slope 0.60 
(Fig. 4c). 

MSI derived chl-a using the initial algorithm coefficients for OC2 is 
generally overestimated for log chl-a < 0 and underestimated for log chl- 
a > 0, compared to OLCI derived chl-a, with clustering of results around 
0.5 and 4.0 mg m− 3 and relatively poor agreement from the bias − 0.11 
mg m− 3 and regression slope of 0.34. Optimization of the algorithm 
coefficients successfully removed most of the bias (resulting bias 0.01 
and regression slope 0.74), while a clustering of results remained 
evident (Fig. 5a). After optimization 90% of the residuals lie between 
− 3.36 and 1.62 (Fig. 5c). The bootstrap analysis of the coefficients 
showed that the higher power terms were subject to wider variation than 
the lower power terms (Appendix C: Table C1), with an interquartile 

Table 4 
Statistical performance metrics, where xi is the MSI observation and yi is the OLCI observation.  

MAD MAPD RMSD R Bias 

1
N
∑⃒

⃒xi − yi
⃒
⃒ 100

N
∑

⃒
⃒
⃒
⃒
xi − yi
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⃒
⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑(

xi − yi
)2
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(
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)
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∑
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range of 30 for the a4 term (− 31.5261) compared to 0.01 for the a0 term 
(0.3818), suggesting a high dependency on the input dataset. 

For the OC3 algorithm, the middle 90% spread of the optimized re
siduals were between − 3.68 and 1.10 (Fig. 5f). The regression slope and 
bias are better before (0.96 and − 0.01) than after (0.66 and − 0.03) 
optimization. The interquartile ranges of the bootstrapped coefficients 
were markedly narrower than for the OC2 optimization (in particular for 
coefficients a2, a3 and a4 – Appendix C), suggesting that the optimization 
of OC3 was not as sensitive to the input data set as observed with OC2. 

The results for the Gilerson algorithm optimization show the middle 
90% of the residuals range from − 14.09 to 4.92 mg m− 3 (Fig. 5i) with a 
frequency peak close to 0 mg m− 3. The bias decreased from − 1.79 to 
− 1.54 mg m− 3 and the RMSD decreased by 0.13 mg m− 3, however the 
MAPD increased by 3.2%. The optimized log chl-a (Fig. 5g) shows good 

agreement along the axis of unity for values of log chl-a > 1, but the MSI 
derived chl-a is generally overestimated for log chl-a < 1. The inter
quartile ranges of the bootstrapped coefficients (Appendix C) were 1.5, 
0.9 and 0.1 for a (9.38), b (− 3.38) and c (1.73) respectively. 

After optimization the Gons algorithm middle 90% of residuals 
(Fig. 5l) were between − 10.30 mg m− 3 and 3.52 mg m− 3 with the peak 
close to 0. The optimized chl-a (Fig. 5j) shows an alignment along the 
axis of unity, with a small reduction in MAPD (0.6%) and MAD (0.06 mg 
m− 3) but an increase in bias (− 1.5 mg m− 3) and RMSD (0.14 mg m− 3). 
The interquartile range of the bootstrapped coefficients were tight, with 
0.01 for p and 0.0003 for achl*. 

The optimized coefficients for each algorithm (Table 8) differ from 
the initial substantially in most cases. The deviation is shown as a 
multiplier of the initial coefficient values. It can be seen that the Gons05 

Fig. 2. a: reflectance distributions after filtering dataset for each chl-a algorithm as labelled, for the bands used in that algorithm. b: reflectance distributions after 
filtering dataset for each wavelength as labelled, for the band used in that version of the Nechad algorithm. c: density plots (log scale) of OLCI vs MSI Rw for all 
data (unfiltered). 
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tuned coefficients are most similar to the initial coefficients, with p 
increasing by 0.2% and achl* by 20%. A reduction of the Gilerson co
efficients a and b is seen, compared to an increase for c. For the OC2 and 
OC3 algorithms, most coefficients increase in magnitude, also with a 
change in sign for a2 and a3 for OC2 and a3 for OC3. 

3.3.1. Per-lake optimization 
The clustering of points evident in Fig. 5a further suggests that al

gorithm performance varies between (groups of) lakes. Lake-wise opti
mization of the coefficients can express the difference in algorithm 
performance between the global algorithm solution and locally opti
mized algorithms. To investigate the sensitivity of the algorithm tuning 
to local variation, the algorithm coefficients were also optimized on a 

per-lake basis and compared with the combined solution above. Note 
that bootstrapping was not used in the per-lake optimization since there 
was no need to remove bias caused by larger lakes. Statistics describing 
the per-lake tuning are in Appendix B (Table B1) together with derived 
OC2 coefficients (Table B2). The per-lake solutions showed wide vari
ation (Table 7) and hence a strong dependence on the tuning dataset. As 
an example, a sample which yielded a chl-a concentration of 2.0 mg m− 3 

using the bootstrapped solution yielded 7.7 mg m− 3 with the equivalent 
algorithm based on the median coefficients of the per-lake solutions. 
When combined, the per-lake optimized data (Fig. 6a) show correlation 
along the axis of unity, but hide the poor performance of some lakes, 
which may be seen as horizontal strips with little correlation between 
OLCI and MSI (e.g. at around y = 0.9, y = 0.3, y = 0.02). The data after 
optimizing using the single set of the median parameters shows little 
correlation along the axis of unity (Fig. 6b), simultaneously showing the 
merit of the bootstrapped analysis to arrive at a global solution, and 
potential limitations of the OC2 algorithm specificity. 

To investigate the apparent clustering further, we determined the 
similarity of the OLCI spectra to the inland optical water types (OWT) 
developed by Spyrakos et al. (2018). Note that matching MSI data to 
MERIS/OLCI derived OWTs is not ideal since the sensors are optically 
different (e.g. configuration of wavebands) and therefore detect 
different features. To date there is not a set of global OWTs derived from 
MSI data available, however, using OLCI derived OWTs as reference 
allows an initial investigation. The dominant OWT was identified for 
each OLCI spectra and used to separate algorithm results per OWT. The 
MSI-tuned OC2 algorithm consistency was inspected against OLCI- 
derived chl-a (also using OC2). As expected from the a priori filtering, 
most of the data where the OC2 algorithm was applied correspond to 
types 3, 9 and 13 (Fig. 7), which are the OWTs with deepest secchi 
depth. After algorithm optimization, consistency between the two sen
sors is highest in these OWTs, whereas the data points from the other 

Fig. 3. Density plots showing residual chl-a versus distance to land for the four chl-a algorithms. The colour denotes the number of observations per cell.  

Table 5 
Descriptive statistics of MSI vs OLCI derived chl-a before optimization.   

MAD RMSD BIAS R MAPD 

OC2 1.95 2.67 − 1.54 0.61 75.9 
OC3 1.18 2.34 − 0.04 0.74 37.62 
Gilerson 4.68 11.27 − 1.79 0.67 41.37 
Gons 3.73 8.79 − 0.91 0.67 37.7  

Table 6 
Descriptive statistics of MSI vs OLCI derived chl-a after optimization.   

MAD RMSD BIAS R MAPD 

OC2 1.11 1.61 − 0.40 0.80 54.47 
OC3 1.16 1.65 − 0.51 0.88 45.68 
Gilerson 4.64 11.14 − 1.54 0.68 44.52 
Gons 3.67 8.92 − 2.5 0.67 37.07 
OC2scale 1.36 2.23 − 0.29 0.72 51.77  
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OWTs have larger variability. This can be described by the following 
statistics: R = 0.8, bias = − 0.4, MAD = 1.11, MAPD = 54.5 and RMSD =
1.6 for the set of OWTs 3, 9 and 13. For the set of all other OWTs the 
corresponding statistics are: R = 0.57, bias = − 2.6, MAD = 2.98, MAPD 

= 62.7 and RMSD = 3.57. 

3.3.2. Linear scaling 
The relationship between MSI and OLCI band ratios (Fig. 4a) appears 

Fig. 4. Band ratios for the (a) 490: 560 nm (b) max(443,490): 560 nm and (c) 708: 665 nm wavebands. Note that pixels with density of fewer than 100 are not 
shown. The dotted line shows unity and the solid line regression. 

Fig. 5. Panel of results showing (column 1) optimized log chl-a plots, (column 2) residuals prior to optimisation and (column 3) residuals after optimisation. Each 
row is for a different algorithm (OC2, OC3, Gilerson and Gons05 from top to bottom). Dashed lines on residual plots show the 5th and 95th percentiles. Solid and 
dashed lines on the density plots show the regression and line of unity respectively. 

M.A. Warren et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 265 (2021) 112651

10

approximately linear over the range of data, which suggests that, as an 
alternative approach to tuning the algorithm coefficients, for those 
methods only dependent on the band ratio, a linear correction of this 
band ratio could suffice to align the MSI response with OLCI. To test this, 
for OC2, the linear function was derived as: 

y = 1.442x − 0.51 (6)  

where x is the MSI band ratio. Using the resulting scaled band ratio along 
with OLCI coefficients the OC2 chl-a was derived (Fig. 8). This aligns 
well with the axis of unity and shows a reduction in the bias of 1.2 mg 
m− 3, RMSD of 0.4 mg m− 3 and MAPD of 24% and has 90% of residuals 
between − 3.60 and 2.84 mg m− 3. 

3.3.3. Spatial analysis 
The residuals were binned and plotted per lake to identify spatial 

Table 7 
Statistics describing distribution of OC2 coefficients (a0 – a4) optimized per lake.  

Coefficient Mean Standard dev. Min Median Max 

a0 0.97 3.5 − 6.5 0.3 12.2 
a1 36.05 99.9 − 33.1 − 0.1 392.7 
a2 186.58 1156.7 − 2045.8 − 2.6 4647.3 
a3 1806.94 5615.6 − 4658.2 85.5 23,992.5 
a4 2363.63 12,951.5 − 18,871.9 80.6 45,903.6  

Fig. 6. (a) Density plot of per-lake optimized log chl-a using 16 different parametrizations – one for each lake. (b) Density plot of optimized log chl-a using the 
median of the per-lake coefficients. 

Table 8 
Chl-a algorithm coefficients after optimization and their deviation from the coefficients prior to tuning, as a multiplier of their initial values.  

Optimized MSI Deviation of coefficients (multiplier) 

OC2 
a0-a4 

OC3 
a0-a4 

Gilerson 
a,b,c 

Gons05 
p,achl* 

OC2 
a0-a4 

OC3 
a0-a4 

Gilerson 
a,b,c 

Gons05 
p,achl* 

0.3818 0.3121 9.3803 1.0624 1.60 1.24 0.26 1.002 
− 4.9640 − 1.7612 − 3.3763 0.0192 2.56 0.79 0.17 1.2 
− 0.9966 2.9117 1.7304  − 0.57 1.92 1.54  
57.3857 3.2944   − 18.6 − 4.28   
− 31.5261 − 28.3593   299.1 66.1    

Table 9 
Statistics describing the fit of OLCI and MSI derived turbidity for wavelengths 665, 708, 783, 865 nm before optimization. RPn denotes the nth percentile of the 
residuals.  

wavelength MAD RMSD BIAS R MAPD RP5 RP50 RP95 

665 0.85 2.28 0.54 0.96 147.6 − 3.3 − 0.32 0.14 
708 1.22 4.91 0.69 0.91 435.17 − 4.12 − 0.27 0.33 
778 1.93 12.13 1.12 0.76 702.28 − 4.07 − 0.91 0.04 
865 1.52 18.06 − 0.36 0.66 641.68 − 1.20 − 0.24 2.33  

Table 10 
Statistics describing the fit of OLCI and MSI derived turbidity for wavelengths 665, 708, 783, 865 nm after optimization. RPn denotes the nth percentile of the residuals.  

wavelength MAD RMSD BIAS R MAPD RP5 RP50 RP95 

665 0.72 2.43 0.10 0.96 115.18 − 1.84 − 0.15 0.71 
708 1.10 4.80 0.16 0.91 460.22 − 2.66 − 0.17 0.95 
778 1.55 11.55 − 0.04 0.76 371.69 − 2.19 − 0.23 1.62 
865 1.52 18.05 − 0.41 0.66 626.34 − 1.16 − 0.22 2.48  

Table 11 
MSI algorithm tuning coefficients for the Nechad et al. (2010) turbidity algo
rithm using four different MSI wavebands.   

665 nm 708 nm 778 nm 865 nm 

a 0.882 0.868 0.843 0.990 
b − 0.024 0.087 − 0.333 − 0.008  

M.A. Warren et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 265 (2021) 112651

11

patterns in the data. Lake Victoria (Fig. 9) shows a general reduction in 
median residual after optimisation of OC2, although striping of MSI 
detectors is clearly visible in the data after optimisation. The same for 
OC3 (Fig. 10) shows median residuals in certain areas of the lake were 
increased but also that there was a decrease of the largest median values 
(e.g. central region and north east). Lake Sasyk (Figs. 11 and 12) qual
itatively shows little change after optimisation of the Gilerson algorithm 
whereas with the Gons05 optimisation there is a clear reduction in 
median residual across the lake. 

3.4. Turbidity 

There were, after filtering, 5,119,210 observations used in the 

turbidity algorithm calibration for the algorithm based on the 665 nm 
band, 3,183,299 for the 708 nm band algorithm, 4,790,170 for the 778 
nm band and 2,977,693 for the 865 nm band. The bootstrapping 
incorporated observations from 20 lakes in the 665 and 708 nm cali
bration, 21 in the 778 nm and 13 lakes in the 865 nm calibration. The 
residual distributions before and after calibration (Fig. 13) show that the 
residuals after tuning gave a median closer to 0 and a tighter inter
quartile range except for the 865 nm case which showed a relatively 
small difference. Not shown is that the turbidity data were in general 
skewed to lower values, with approximately 80% of the dataset at <5 
FNU. For the wavebands 665, 708 and 778 nm, the bias and MAD all 
reduced after optimization (Tables 9 and 10). The RMSD increased for 
the 665 nm waveband but decreased for the 708 and 778 nm wave
bands, and the MAPD decreased for 665 and 778 nm but increased for 
708 nm. There was little change for the 865 nm waveband. The gain 
values, a, (Table 11) are below 1.0 for each waveband suggesting MSI 
typically overestimates turbidity compared to OLCI prior to calibration. 
Welch's t-test was performed for each waveband and in all cases the null 
hypothesis that the calibrated turbidity sample mean equalled the initial 
turbidity sample mean was rejected. 

4. Discussion 

Despite offering broader wavebands, the MSI detector shows distinct 
capability to adopt established algorithm concepts for the retrieval of 
chl-a as supported by the statistics in Tables 5 and 6. In general, as ex
pected, the retrieval precision of the MSI algorithms appears lower in 
comparison with OLCI, resulting in wider distributions across the range 
of observed chl-a concentrations. This alignment of MSI algorithms with 
OLCI demonstrates four potential advances for remote sensing of lakes at 
high resolution:  

- A more consistent retrieval of chl-a and turbidity from lakes across 
multiple sensors  

- An increase in the confidence of observations for smaller lakes, albeit 
with caution near adjacent land 

- possible future integration of data and increased number of obser
vations by combining OLCI and MSI  

- Resolving refined spatial structures in chl-a and turbidity within 
lakes observable by OLCI 

However, there are implications of using a sensor-to-sensor tuning. 
The residual error from atmospheric correction influences the tuning, 
therefore the tuned algorithms will perform best with data corrected by 
the same correction algorithm. Similarly, if either the level1 data are 
reprocessed resulting in different radiances, or upgrades to the atmo
spheric correction algorithm are released, then the tuning would likely 
also need to be repeated. 

Relating the residual chl-a to distance from land (Fig. 3) showed that 
the largest deviations of MSI derived results from OLCI tend to be closer 
to land, which suggests that the adjacency effect had a differential effect 
on MSI and OLCI retrieval. It is not possible to determine which obser
vation approach is more affected, or whether either results in acceptable 
product uncertainty, but this confirms that product uncertainty is rela
tively high in these environments. Thus, combining the two sensor types 
to derive a smooth transition from nearshore waters at high resolution, 
while adopting the more sensitive medium-resolution sensor results in 
open water, may not be straightforward. The largest deviations 
appeared to be restricted to distances less than 5–10 km to the shoreline, 
while there were also many observations with small deviations within 
this distance range. Appendix A showed tuning with match-ups greater 
than 5 km distance to shore didn't make a large difference statistically to 
using the whole data set, but had the penalty of removing the smaller 
lakes from the data set. It would be of interest to further explore whether 
the deviations are associated with optical properties of the atmosphere, 
water or surrounding land at the time of observation. Bulgarelli and 

Fig. 7. Dominant optical water type clustering of OC2 derived chl-a observa
tions. Shading denotes the density of points per-pixel. 

Fig. 8. Log chl-a plot of the OC2 algorithm when using the scaled MSI band 
ratio with OLCI coefficients (OC2scale). Dashed line is the line of unity. 
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Zibordi (2018) showed that adjacency effects can exceed radiometric 
noise thresholds at distances from land of 36 km for OLCI and 20 km for 
MSI when the land surface is bright (e.g. sand, snow), and around 10 km 
for MSI for darker reflecting surfaces. Residual error distributions did 
not show any clear trends when plotted as per-lake or by latitude (results 
not shown).The distributions of POLYMER-derived Rw for OLCI and MSI 

were comparable, especially for the 665, 708 and 778 nm bands used in 
the chl-a tuning (Fig. 2a). This suggests the atmospheric correction was 
consistent between the sensors in the red to NIR spectral region, which is 
comforting because chl-a and turbidity retrieval from these bands on 
ocean colour sensors have already been more widely validated for the 
>10 mg m− 3 concentration range (e.g. Odermatt et al., 2012). 

Fig. 9. Spatial overview of the median residual (a) before and (b) after optimisation of the OC2 algorithm, (c) the number of observations and (d) the modal 
dominant optical water type per pixel for Lake Victoria. 

Fig. 10. Spatial overview of the median residual (a) before and (b) after optimisation of the OC3 algorithm, (c) the number of observations and (d) the modal 
dominant optical water type per pixel for Lake Victoria. 

Fig. 11. Spatial overview of the median residual (a) before and (b) after optimisation of the Gilerson algorithm, (c) the number of observations and (d) the modal 
dominant optical water type per pixel for Lake Sasyk. 
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Considering the distributions in the turbidity dataset (Fig. 2b), which 
had less restrictive filtering than the chl-a dataset, there may be an over- 
estimation in MSI compared to OLCI in the 665 nm waveband. The 490 
nm and 560 nm bands showed an elevated atmospherically corrected 
reflectance for MSI compared to OLCI, which suggests the atmospheric 
correction does not perform consistently in these wavebands. This can 
also be seen in the reflectance scatter plot (Fig. 2c) with the 443 to 665 
nm wavebands showing many pixels with elevated Rw for MSI, but also 
more pixels on the one-to-one line. This inconsistency can be explained 
when considering the POLYMER atmospheric correction relies on 

populating a bio-optical model with realistic concentrations of optically 
active water constituents. With optically complex waters, water itself is 
the only consistent strong absorber and this is mostly visible in the red, 
NIR and short wave infra-red (SWIR). Thus, the uncertainty of atmo
spheric correction increases towards shorter wavebands. When a sensor 
provides more narrow bands, finding the optimum solution of the 
various atmospheric and water components benefits from more degrees 
of freedom. MSI has a limited set of visible and NIR wavebands (8 in the 
range 443–865 nm vs 15 for OLCI). The OLCI sensor follows on from 
MERIS, as does its validation through match-up analyses (Attila et al., 

Fig. 12. Spatial overview of the median residual (a) before and (b) after optimisation of the Gons05 algorithm, (c) the number of observations and (d) the modal 
dominant optical water type per pixel for Lake Sasyk. 

Fig. 13. (a) Distribution of residual turbidity values calculated from 665, 708, 778 and 865 nm bands.  
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2018, Alikas et al., 2020a, Stelzer et al., 2020), and together these 
explain why, at least in theory, the OLCI product should be the 
reference. 

The OC algorithms using a global parameterization show effects 
visible as clustering of points (e.g. Figs. 4a, b, 5a, d). Although some 
filtering was performed to remove points with turbidity >0.5 FNU and 
chl-a > 10 mg m− 3, other optical scattering substances or CDOM could 
remain and make the use of (globally tuned) OC algorithms a poorly 
performing solution in those waters. Bottom reflectance is a particular 
risk in clear waters and can in part be accounted for by the filtering 
applied, while some of the MSI pixels may still show these effects due to 
a higher spatial resolution. Bio-optical diversity in inland waters is very 
wide and can be studied in terms of phytoplankton community 
composition, phenotypic variability resulting in local or seasonal dif
ferences in e.g. pigment expression or cell size in the phytoplankton 
community. These effects are governed by environmental conditions 
including seasonality, nutrient load, vertical mixing and weather pat
terns. Algorithms targeting the absorption features of chl-a are subject to 
uncertainty due to this natural variability and physical forcing. There
fore, local optimization of non-analytical retrieval algorithms is always 
likely to outperform any global solution. It is, however, only advisable to 
follow local tuning if validation can be carried out systematically, to 
avoid biases in the calibration data set. 

Per-lake tuning of the chl-a algorithms (Table 7) shows a wide 
variation in the optimized parameters of the OC algorithms for MSI. For 
example, the standard deviation for coefficients a2, a3 and a4 was greater 
than 1000 with min-max ranges in the thousands, suggesting that the OC 
algorithms cannot be parameterized in a global fashion and per-lake or 
per optical water type parameterization would perform better. There is 
also wide variation between those coefficients for lakes with similar 
optical water types, such as lakes Garda, Couture and Kinbasket. This 
could result from localised differences including adjacency, atmospheric 
correction performance and a large variation in number of observations, 
all of which can be influenced by lake size and shape, surrounding 
environment and altitude. The variable presence of CDOM in different 
lakes could largely affect the Rw in blue bands, and therefore the OCx 
algorithm coefficients within the tuning. Appendix B lists the co
efficients derived for each individual lake. The per-lake optimized data 
(Fig. 6a) showed good correlation along the axis of unity, which may be 
expected since the algorithm is tuned specifically for each lake. Never
theless, using the new global algorithm parameterization, the distribu
tion of MSI chl-a (Fig. 5a) was still closer to that of OLCI than the MERIS 
parameterization of MSI chl-a. This is reflected in the residual plot 
(Fig. 5c) which shows a peak centered close to 0 and that 90% of re
siduals lie between − 3.3 and 1.6 mg m− 3. 

Separating the algorithm configuration by (global) optical water 
types would provide an intermediate solution between a single global 
optimization such as presented here, and tuning of algorithms per lake 
or location, which is impossible to achieve for the vast majority of lakes. 
Thus far, OWT characterization with MSI is still limited (e.g. Soomets 
et al., 2020) and should be further explored at the global scale. The 
limited bandset (fewer and wider wavebands) of the MSI instrument do 
not allow all 13 optical classes of Spyrakos et al. (2018) to be distin
guished from MSI data. From corresponding OLCI spectra it was shown 
(Fig. 7) that the optical water types 3, 9 and 13 (those described with 
highest transparency) consist of the majority of data points and that 
these lie approximately on a straight line after optimization. Data points 
from the other OWTs were scattered, and therefore are likely unsuitable 
OWTs for the OC2 chl-a algorithm. For future work, a global set of MSI 
OWTs needs to be developed to allow filtering and algorithm selection 
based on the MSI data itself, rather than OLCI, which should reduce 
some of the uncertainty seen in the results. 

An alternative approach to the OC2 algorithm tuning was used where 
the MSI band ratio was mapped, using a linear function, to the OLCI 
band ratio range, and the OLCI OC2 coefficients used to derive chl-a. 
This is possible because the two sensor ratios showed a linear 

relationship (Fig. 4a) and a sensor-to-sensor tuning is being followed. 
Statistically, the RMSD and MAD are higher, the bias, R and the MAPD 
are lower for the chl-a derived here compared to the traditionally tuned 
algorithm (Table 6). The chl-a derived via this method does not show the 
same clustering at the lower limit as seen in the traditional tuning 
method (Figs. 5a, 8). The highest order coefficient (a4) shows a change 
in magnitude of 299 times in the traditionally tuned method, which may 
suggest the algorithm's relationship to the (bio)physics, in this tuned 
form, has been weakened, and is likely why there is a large cluster of 
points at the lower limits in Fig. 5a. It is noted that the OC3 result does 
not show this cluster of points at the lower limits. As a similar result can 
be attained by tuning the band ratio and using coefficients that work for 
OLCI, it is important that future work concentrates on the reliability of 
the MSI band ratio (e.g. atmospheric correction) as this is the limiting 
factor to deriving chl-a with this algorithm. The Gilerson and Gons05 
NIR: red band ratios (Fig. 4c) showed a tight agreement between the 
OLCI and MSI reflectance distributions and improvement in the opti
mized chl-a distributions, providing confidence that consistent atmo
spheric correction and constituent concentration retrieval is feasible 
between these sensors. The optimized Gilerson MSI chl-a (Fig. 5g) agrees 
well with the OLCI log chl-a for values >1 but shows general over
estimation for log chl-a values <1, hence may not be applicable in wa
ters with chl-a < 10 mg m− 3. Optimization of the Gons05 MSI chl-a 
(Fig. 5j) has resulted in a chl-a distribution whose centre of gravity is 
more along the line of unity. Residual plots for both Gilerson and Gons05 
(Fig. 5i,l) show tails deeper into negative residual (i.e. MSI underesti
mation) than the OCx, but the frequency count is low (e.g. for Gilerson 
there is <0.01% of dataset with residual < − 50 mg m− 3). The mid 90 
percentile ranges after optimisation are reduced in all cases suggesting 
an improved global tuning. 

For the OC2 algorithm, the MAD, RMSD, bias and MAPD showed 
improved performance after algorithm coefficient optimization and R 
increased from 0.61 to 0.80. The OC3 algorithm showed improvement 
such as a decrease in RMSD from 2.34 mg m− 3 to 1.65 mg m− 3 and 
increase in R from 0.74 to 0.88. For the Gilerson and Gons05 algorithms 
the improvements in the overall statistics were far more subtle (Tables 4 
and 5). Of course, these algorithms have both different underlying 
theory and use cases (OC algorithms for oligo-mesotrophic waters, 
Gilerson and Gons05 for more turbid waters). The improved alignment 
of MSI-OC2 and OC3 algorithms with OLCI retrieval suggest that algo
rithms that use the blue and green MSI bands will benefit most from the 
configurations derived here. The first reason for this result is perhaps 
that there was no established MSI configuration for the OC algorithms, 
and the ‘initial’ reference here used a configuration that was tuned for 
MERIS retrieval. Moreover, reflectance in the blue and green bands 
differed more with respect to OLCI than the red and NIR bands (Fig. 2a). 
Despite red and NIR reflectance from MSI, corrected for the atmosphere 
using POLYMER, showing good consistency with OLCI, previous studies 
have shown these bands, after atmospheric correction, are more un
certain than the blue and green (Warren et al., 2019; Pahlevan et al., 
2021). If we (realistically) assume the retrieval of reflectance from OLCI 
to be relatively more reliable, these results provide another indication 
that atmospheric correction of MSI over water should remain a research 
priority. 

Although the distance to land experiment shows that the highest 
residuals are from matches close to land, there are still unexplained 
biases present in the data set. No obvious patterns in the residuals 
emerged when plotted versus lake, latitude or OLCI optical water type. 
Atmospheric correction performance will vary per scene due to an array 
of factors discussed in the literature (e.g. uncertainties in models, 
aerosols, illumination conditions) and is one likely source of residual 
error. Another possible source could be low signal sensitivity in the MSI 
over clear water or additional signal in glint affected waters. Future 
work should consider identifying these regions to investigate the suit
ability of MSI water quality in such affected waters. 

In this work we compared two chl-a algorithm strategies, those based 
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on blue-green and NIR-red band ratios, as these have proven effective 
over the low and medium-high chl-a concentration range, respectively. 
Alternative methods, ranging from analytical to empirical, and the use of 
Optical Water Types (e.g. Moore et al., 2014) to deploy appropriate 
algorithms, or machine learning techniques (e.g. Pahlevan et al., 2020) 
to extend the range of applicability of more complex statistical solutions, 
can of course also be considered. However, the limitations of MSI in 
reproducing the chl-a retrieval of dedicated ocean colour sensors can be 
established from the bands that carry the most important optical infor
mation for characterizing phytoplankton presence. 

Turbidity was calculated using coefficients from the published look- 
up tables in Nechad et al. (2010, 2016), which were generated for use 
with narrow band sensors. MSI does not have such narrow red/NIR 
bands (bandwidths ranging from 15 nm to 31 nm), and while the NIR 
bands do not typically show narrow reflectance features, these algo
rithms may need further tuning to align the MSI and OLCI responses. 
Coefficients for MSI are available in the ACOLITE software package but 
have not been used here because they needed to be separately assessed 
for POLYMER. This can be achieved in part by applying a linear scaling 
function to the turbidity after calculation, as performed here. The MAD 
and bias after such optimization (Table 10) showed improvements for all 
wavebands except at 865 nm. The MAPD decreased for 665, 778 and 865 
wavebands whereas the RMSD showed a slight increase at 665 and 708 
nm and a slight improvement for the other wavebands. The 95-percen
tile range of the residuals decreased after calibration for all but the 
865 nm waveband and for all wavebands the median residual value is 
closer to 0 after optimization. With increasing wavelength, we can 
observe a tendency for the RMSD to increase and R to decrease. This is 
likely a reflection of predominantly low to medium-turbidity waters in 
the dataset, as longer wavebands are more appropriate for increasingly 
turbid waters. This is backed up by the reflectance distributions (Fig. 2b) 
showing large number of observations with very low Rw for increasing 
wavelength, and almost twice the number of observations at 665 nm 
than at 865 nm. It is suspected that the coefficient a for waveband 865 is 
close to 1 due to the low reflectance at this wavelength. Investigating 
particularly turbid waters in future, such as estuaries, may add further 
information suitable for this waveband. 

An integral part to adopting a global MSI approach using these al
gorithms is the availability of OWTs derived from MSI itself, to enable an 
OWT switching approach, and the mapping of algorithms to the OWTs. 
An optical water switching approach for MSI data would require the 
following work undertaken in future:  

• Creation of a MSI derived set of global optical water types with 
assignment to chl-a and turbidity algorithms.  

• Application of these tuned algorithms to water bodies of varying size, 
shape, altitude, latitude etc. in conjunction with organised validation 
campaigns to establish how uncertainties vary with observation 
conditions and spatial resolutions. 

5. Conclusions 

A data set of near-coincident MSI and OLCI observations over inland 
waters was used to (further) tune chl-a and calibrate turbidity 

algorithms from previously published formulations. Four algorithms for 
chl-a (OC2, OC3, Gilerson and Gons05) and a turbidity algorithm 
(Nechad) were used and coefficients derived to improve the algorithm 
performance with MSI. All algorithms show statistical improvement 
after optimization, with blue-green chl-a ratio algorithms benefiting 
most from the proposed adjustments. These results show that MSI ob
servations can be used to complement chl-a and turbidity obtained from 
OLCI. However, significant uncertainty remains, particularly near land 
as a result of adjacency and/or shallow water effects. There is further 
uncertainty related to the optimal application domain of each algorithm, 
particularly at low chl-a concentrations (< 10 mg m− 3) where blue - 
green band ratio algorithms are sensitive to the presence of other opti
cally active substances, thus requiring additional information to adopt 
the most suitable algorithm for each condition. 

With monitoring regulations such as the European Water Framework 
Directive and ambitious objectives for the quality of ambient water 
under UN SDG 6.3 it is of increasing importance to be able to estimate 
lake water quality parameters such as chl-a and turbidity in an efficient 
manner. For all countries to be able to report these figures for all rele
vant water bodies the use of Earth observation is vital. The use of OLCI 
and MSI can continue the observation timeline from the MERIS era 
(2002− 2012) using a satellite-to-satellite calibration, leading to an in
crease in spatial resolution to capture more inland water bodies than 
previously possible. To reach this point it will be important to know how 
the atmospheric correction performs at these high resolutions (and 
lower signal: noise ratios), and how the band ratio algorithms cope with 
the time delay between individual band acquisitions with MSI. How
ever, the update of existing algorithms to be usable by these newer, 
higher-resolution satellites is an important part of extending the time
line of MERIS observations and gaining a better understanding of spatial 
heterogeneity in inland water bodies. 
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Appendix A. Distance-to-land effects 

Tuning results for OC2 from four alternative datasets (Table A). The first row shows the result when tuning using only data where distance to land 
(D) was greater than 5 km. The statistics in the second row are for tuning when using only data where D < 5 km. The third row shows statistics 
generated when using all data points but with the tuning parameters from the dataset D > 5 km, and the fourth row shows the statistics generated 
when tuning the full dataset.  
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Table A 
Statistics generated using 4 datasets and tuning parameters.   

MAD RMSD Bias R MAPD 

D > 5 km 1.20 1.70 0.04 0.80 49.93 
D < 5 km 1.28 1.88 − 0.40 0.78 63.88 
All (D > 5 km) 1.24 1.78 0.04 0.79 52.63 
All 1.11 1.61 − 0.40 0.80 54.48  

There is no clear best-performing set. Comparing the 3rd and 4th rows, statistics generated using all points, shows a lower MAD and RMSD but 
higher BIAS and MAPD for the set tuned using all points. As the difference is small it was decided to use the entire dataset as this does not exclude small 
lakes from further analysis, improving global applicability of the results. 

Appendix B. Per-lake tuning of the OC2 algorithm  

Table B1 
Statistics from per-lake tuning of OC2 algorithm.   

Prior to tuning After tuning  

MAD RMSD Bias R MAPD MAD RMSD Bias R n 

Victoria 3.04 3.46 − 2.94 0.33 59.68 1.25 1.63 − 0.08 0.54 1,353,879 
Michigan 0.67 1.08 0.15 0.59 128.48 0.4 0.91 − 0.18 0.72 503,988 
Erie 0.78 1.14 − 0.1 0.89 72.26 0.44 0.91 − 0.08 0.83 594,125 
Titicaca 0.53 1.41 0.2 0.07 78 0.37 0.57 − 0.06 0.57 91,122 
Turkana 5.59 5.7 − 5.43 − 0.44 75.68 0.83 1.05 0.02 0.5 31,694 
Vattern 0.59 1.08 − 0.36 0.19 36.37 0.52 0.87 − 0.18 0.45 92,743 
Malaren 6.3 9.2 5.47 − 0.06 646.61 1.84 2.85 − 1.4 0.07 2713 
Kinbasket 0.37 0.58 − 0.03 0.43 30.11 0.36 0.56 0.01 0.49 5229 
Couture 0.26 0.31 0.22 0.4 53.66 0.16 0.21 − 0.01 0.51 167 
Trout 2.56 3.64 − 2.31 0.25 69.18 2.03 2.98 0.1 0.39 2738 
Dorsoidong 2.24 3.2 − 1.66 0.59 107.62 1.39 2.53 − 0.02 0.6 32 
Garda 0.35 0.42 0.16 0.63 36.12 0.27 0.39 − 0.1 0.6 13,027 
Dezadeash 2.33 3.28 1.06 0.04 161.9 1.46 2.44 − 1.21 0.08 42 
Assean 5.64 6.58 5.27 − 0.1 634.81 1.66 2.72 − 1.11 0.06 180 
Sasyk 1.54 3.26 0.25 − 0.02 156.26 1.08 3.77 0.49 0.1 190 
Margaret 2.55 3.79 − 2.14 0.04 93.5 2.27 3.29 − 1.1 0.23 371 
Leven 6.76 8.16 6.17 − 0.13 578.15 0.63 1.27 − 0.39 0.66 27 
Lumina 2.86 3.58 − 0.3 0.29 158.37 2.57 3.09 − 0.22 0.3 80 
Isac 3.39 3.8 0.87 0.18 162.67 2.36 3.46 − 1.62 0.27 72 
Pyhajarvi 4.55 5.64 3.88 0.04 357.39 2.32 2.88 − 0.11 0.04 455   

Table B2 
Coefficients from OC2 per-lake tuning.   

a0 a1 a2 a3 a4 

Victoria 0.61 − 1.01 8.54 − 50.14 − 402.4 
Michigan 0.33 − 5.95 − 6.98 113.3 − 191.8 
Erie 0.28 − 5.5 − 14.2 53.4 832.85 
Titicaca 0.27 − 1.67 − 14 27.84 104.51 
Turkana 1.59 20.96 227.27 975.89 1299.92 
Vattern 0.33 − 2.78 − 2.63 39.77 56.58 
Malaren − 0.02 1.08 37.58 187.06 249.08 
Kinbasket 0.27 − 3.1 − 2.52 134.39 271.93 
Couture − 6.49 194.71 − 2045.77 8991.38 − 14,236.58 
Trout 0.89 0.84 − 72.63 − 30.02 1811.47 
Dorsoidong 0.82 3.69 0.24 − 4658.15 30,462.52 
Garda 0.28 2.53 − 348.46 4776.79 − 18,871.85 
Dezadeash 12.18 392.7 4647.26 23,992.51 45,903.59 
Assean 0.63 27.69 313.32 1258.44 1668.76 
Sasyk 0.36 − 4.07 − 5.77 − 314.46 − 1031.95 
Margaret 0.03 − 8.1 14.03 140.64 − 284.9 
Leven 8.95 207.98 1627.18 5259.3 6052.77 
Lumina − 0.39 − 33.13 − 366.8 − 1482.77 − 1928.09 
Isac 0.38 11.18 140.43 605.05 913.14 
Pyhajarvi 0.3 2.2 − 26.9 − 322.12 − 642.64  
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Appendix C  

Table C1 
Statistics describing the spread of the bootstrapping results for each algorithm coefficient.   

Mean Std dev. Min 25% 50% 75% Max 

OC2: a0 0.382 0.0096 0.347 0.376 0.382 0.388 0.419 
OC2: a1 − 4.96 0.134 − 5.426 − 5.053 − 4.964 − 4.871 − 4.132 
OC2: a2 − 1.017 1.303 − 8.601 − 1.819 − 0.997 − 0.209 4.126 
OC2: a3 57.215 4.783 39.107 53.733 57.386 60.573 72.335 
OC2: a4 − 31.14 24.134 − 126.69 − 46.045 − 31.526 − 16.67 102.45 
OC3: a0 0.312 0.006 0.289 0.308 0.312 0.316 0.336 
OC3: a1 − 1.762 0.059 − 2.025 − 1.801 − 1.761 − 1.722 − 1.526 
OC3: a2 2.902 0.443 0.686 2.613 2.912 3.201 4.375 
OC3: a3 3.416 0.989 0.437 2.760 3.294 3.905 12.276 
OC3: a4 − 28.207 3.533 − 41.439 − 30.525 − 28.359 − 26.097 − 5.982 
Gilerson: a 9.426 1.184 5.351 8.612 9.380 10.192 14.071 
Gilerson: b − 3.404 0.659 − 6.073 − 3.830 − 3.376 − 2.947 − 1.265 
Gilerson: c 1.735 0.084 1.491 1.676 1.730 1.788 2.197 
Gons05: p 1.066 0.009 1.053 1.060 1.062 1.073 1.105 
Gons05: a*chl 0.019 0.0002 0.0183 0.0191 0.0192 0.0193 0.0198  
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