
1. Introduction
For many years, hydrologists have been applying a set of discipline-specific tracer-based approaches to 
assess water sources, pathways, and timescales of flow with the ultimate goal to enhance our understand-
ing of how water moves through the environment (e.g., Cook & Herczeg, 2000; Jasechko, 2019; Sprenger 
et al., 2019). Surface-water and catchment hydrologists have traditionally focused on the use of stable water 
isotopes (e.g., Gat et al., 1996; Leibundgut et al., 2009), while groundwater hydrologists have a long tradi-
tion of using dissolved (noble) gases as tracers of subsurface water movement (e.g., Aeschbach-Hertig & 
Solomon, 2013; Mazor, 1972), similar to approaches in the field of tracer oceanography (Aeschbach, 2016; 
Hamme et al., 2017; Loose & Jenkins, 2014; Stanley et al., 2009). One of the possible reasons for this sep-
arate development in methods is that stable water isotopes are mostly suitable to track younger (surface) 
waters, whereas (noble) gas tracers are typically used to identify older groundwaters (e.g., Jasechko, 2019; 
Sprenger et al., 2019). Traditionally, both stable water isotope and noble gas measurements have required 
the use of expensive, laboratory-based mass spectrometry (MS) systems operated by dedicated technical 
personnel. However, since the mid-2000s, the development of lower-cost “plug and play” laser spectros-
copy systems for the analysis of stable water isotopes has greatly expanded the number of laboratories 
conducting these measurements (e.g., Galewsky et al., 2016; von Freyberg et al., 2017). More recently (with-
in the last decade), relatively low-cost commercial membrane inlet or gas equilibration MS systems have 
become available for noble gas analysis, from companies such as Hiden Analytical (www.hidenanalytical.
com), Gasometrix (www.gasometrix.com), and Bay Instruments (www.bayinstruments.com). Over time, 
these commercially available systems have become increasingly user-friendly with regard to setup and data 
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processing, and now represent new, powerful tools to advance the field of hydrology by providing insights 
and perspectives from novel data sets.

In this study, we delineate recent advances in mobile MS that now render gas tracer measurements accessi-
ble to a wider range of researchers. This commentary presents new avenues in tracer hydrology by (a) high-
lighting latest advances in low-cost and low-maintenance mobile MS systems and (b) identifying various 
potential applications of mobile MS to gain new insights into hydrological systems.

1.1. Calls for New Technologies

A recently published community study (Blöschl et al., 2019) calls for “innovative technologies to measure 
surface and subsurface properties, states and fluxes at a range of spatial and temporal scales” to advance 
the field of hydrology. Likewise, Beven et al. (2020) identify the need for “new observational techniques to 
test process representations and gain improved understanding of hydrological processes.” Similarly, an in-
creasing number of review papers suggest that adding more novel (tracer) data to (numerical) modeling can 
reduce model uncertainties (Schilling et al., 2019; Sprenger et al., 2019) and improve system understanding 
(Brunner et al., 2017). These calls underscore the continued need for novel measurement techniques to 
advance our understanding of hydrological processes. We therefore highlight recent studies using dissolved 
(noble) gas measurements analyzed with mobile MS to demonstrate the new scientific insights that can be 
gained with these systems.

1.2. Lab-Based Versus Mobile MS: Advantages and Limitations

The biggest advantage of lab-based MS systems is their analytical precision, which enables reliable meas-
urements of isotope ratios as well as a wide range of gas species typically present at very low quantities, like 
neon or xenon. Conversely, the most common disadvantage of lab-based systems is the high cost associated 
with their acquisition, operation, and maintenance (e.g., need for a lab technician, space and supply of 
material; Figure 1a). Additionally, the complex procedures of sample acquisition, handling, and laboratory 
analysis hamper high-resolution tracer measurements, which are needed to identify hydrological dynamics 
and spatial patterns.

Mobile MS systems (Brennwald et al., 2016; Cassar et al., 2009; Chatton et al., 2017; Kaiser et al., 2005; Man-
ning et al., 2016; Tortell, 2005) are comparatively inexpensive, easy to operate, and high-throughput (Fig-
ure 1b). However, the use of mobile systems does not come without its limitations including a lower analyt-
ical precision, the difficulty of transporting such systems to remote areas due to their weight (∼30–50 kg), 
and challenges of operating the system in the field, particularly in areas lacking stable power supply. It is 
difficult to exactly quantify the uncertainties originating from these limitations, as there are large variations 
across systems in all of these aspects. For example, the level of sample purification before analysis can range 
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Figure 1. Examples of (a) lab-based and (b) mobile mass spectrometry for the analysis of dissolved (noble) gases.
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from none (e.g., Brennwald et al., 2016) to relatively elaborate systems including a dry ice/isopropanol water 
trap, a CO2 trap and getters (e.g., Visser et al., 2013), but sample purification of mobile systems is never as 
sophisticated as with the complex laboratory setups. Challenges associated with the continuous operation 
under variable environmental conditions are also encountered, for example, clogging of the membrane 
and water filters, overheating or freezing of parts of the system, and diurnal temperature cycles affecting 
measurements. Moreover, the relatively large amount of water needed for on-site analysis can render port-
able systems unsuitable for studying systems on centimeter to meter scales (e.g., streambeds), because the 
required pumping rate can disrupt the natural flow paths. Similarly, in some settings (e.g., wells with a low 
hydraulic conductivity) the required pumping rate to operate portable MS systems can also prohibit their 
use (Popp, 2019). Despite these drawbacks, the performance of mobile MS systems is sufficient and promis-
ing for many in-field applications (Davey et al., 2011; Popp, 2019).

2. Recent and Potential Fields of Application of Mobile MS
This section exemplifies various recent and potential applications of mobile MS systems, which have been 
employed to address scientific questions at the intersection of hydrology, biogeochemistry, and hazard and 
risk management as shown in Figure 2.

2.1. Hydrological Processes

Dissolved noble gases analyzed by mobile MS systems have successfully been used to assess groundwater 
flow (Moeck et al., 2017), mixing between surface water and groundwater (Popp et al., 2021; 2019), and 
apparent groundwater ages (Moeck et al., 2021). Further examples of potential advances using mobile MS 
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Figure 2. Fields of application of mobile mass spectrometry (MS) to improve hydrological process understanding and 
water resource management, including hydrological (blue) and biogeochemcial (yellow) processes, as well as hazard 
and risk assessment (red).
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applications relate to groundwater recharge, particularly in mountainous regions. Here, noble gas meas-
urements can be used to approximate recharge elevations as recently demonstrated by Doyle et al. (2015) 
and Peters et al. (2018) (using traditional lab-based noble gas analysis). Schilling et al. (2021) used dissolved 
noble gas tracers to quantify groundwater recharge dynamics from snowmelt. Their approach presents a 
complementary method to using stable water isotopes alone, which are prone to biases in snow-dominated 
catchments.

2.2. Biogeochemical Processes in Aquatic Systems

Mobile MS systems have also been applied to quantify biogeochemical dynamics in aquatic systems. Follow-
ing the trend to more interdisciplinary and multidisciplinary research (e.g., Li et al., 2021), the combined 
analysis of noble and reactive gases can elucidate a range of catchment and groundwater processes, includ-
ing reaction and physical transport processes (e.g., Chatton, 2017). Example studies of application include 
the assessment of greenhouse gas emissions from rivers (Vautier et al., 2020), the quantification of oxygen 
inputs to groundwater (Mächler et al., 2013), the estimation of denitrification dynamics in riparian aquifers 
(Popp et al., 2020), and the quantification of gas transfer velocity in shallow waters (Weber et al., 2019). 
Moreover, the measurement of natural oxygen fluctuations together with added tracers such as noble gases, 
propane, or other gases can be used to quantify reaeration and net community production in surface waters 
(Knapp et al., 2019; Manning et al., 2019).

2.3. Hazard and Risk Assessment of Hydrological Systems

The real-time monitoring enabled by mobile systems makes them highly beneficial in the context of con-
taminant transport and energy storage and extraction. A recent study highlighted the use of a mobile MS 
system during controlled hydraulic reservoir stimulation experiments (Roques et  al.,  2020), while Hoff-
mann et al. (2020) used mobile MS analysis to quantify the exchange between fracture fluid and the rock 
matrix. Mobile MS systems have also been applied to monitor gas transport during controlled injections 
into aquifers (Cahill et al., 2020; Chatton et al., 2017; Chopra, 2020; Soares, 2020). Similarly, real-time meas-
urements of methane concentrations in groundwater can help to monitor natural gas development (Ruy-
bal et al., 2018) and to distinguish natural from anthropogenic methane sources in groundwater (Darrah 
et al., 2014, 2015; used grab samples). In the field of carbon capture and storage, real-time measurements 
of noble gases can be used to monitor the effectiveness of carbon removal processes (Sundal et al., 2019) 
and serve as an early warning sign for CO2 leakage from storage facilities, as demonstrated in laboratory 
experiments (Kilgallon et al., 2018). Monitoring atmospheric and aqueous contaminants (e.g., volatile and 
semi-volatile organic compounds) in industrial settings is another promising application of these instru-
ments (Bell et  al.,  2015; Cheng et  al.,  2021). In many of these applications, measurements with mobile 
techniques can be used to monitor changes over time or identify suitable locations for the collection of 
discrete samples.

3. Outlook and Future Applications
Previous studies have demonstrated the large range of possible applications of mobile MS. The increasing 
availability of these systems, along with their simple operation and limited cost, provides numerous oppor-
tunities for their use in novel contexts to enhance our understanding of hydrological processes.

3.1. Long-Term, Unattended Monitoring Strategies in Remote Areas

Mobile MS can provide a range of future opportunities for monitoring. Systems that can operate unattended 
for extended periods of time (e.g., weeks to months)—maybe even transmitting their data in real time—can 
benefit in risk environments or whenever long-term data are required, for example, in the monitoring of 
organic species in nuclear waste ponds (Brkić et al., 2018). Time series measurements also allow captur-
ing high-frequency variability that is missed by traditional methods of low-frequency grab sampling, thus 
providing novel insights into hydrological and biogeochemical processes (e.g., Rode et al., 2016). Likewise, 
mobile MS can increase our ability to record dynamic changes in less accessible locations, and MS systems 
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could be deployed on new platforms that are difficult to reach for regular spot measurements, like tree can-
opy layers or even underwater (Camilli & Duryea, 2009; Chua et al., 2016).

3.2. Combining Analysis Techniques Enhances Hydrological Process Understanding

Surface water and groundwater hydrologists have traditionally employed discipline-specific approaches and 
techniques to answer questions that are often very similar: Where does the water come from and how long 
does it take to travel through the system? What reactions may have occurred along the way, and how can we 
predict possible impacts on the larger system? Different tracers (analyzed with different instruments) may 
provide complementary insights into different processes and time scales, thus increasing our integrated 
understanding of hydrology and biogeochemistry if employed together. For example, helium-4 and other 
noble gas measurements can complement stable water isotope analysis during recharge events, resulting in 
an improved estimation of the groundwater age distribution or mixing processes. Further examples include, 
but are not limited to, combining measurements of conservative water tracers like stable water isotopes with 
the analysis of reactive gases like CO2 and CH4 (concentration and/or δ13C), or dissolved organic carbon, to 
identify biogeochemical processes or leakage along flowpaths. Coupling radon measurement devices with 
mobile MS systems is also a promising way to locate groundwater inputs to streams or untangle mixing and 
travel times of very young water (Popp et al., 2021). Combining different measurement techniques on dif-
ferent spatial and temporal scales further provides an opportunity to monitor and detect long-term changes 
and improve the integration of hydrology and biogeochemistry (e.g., Li et al., 2021; Vonk et al., 2019).

3.3. Novel Data Sets can Help to Constrain Models

Last but not least, data obtained from mobile MS can serve in the calibration and validation of hydrologic 
models. For many research questions, it is pivotal to measure different types of data that exhibit different 
physical and chemical behavior and characteristics to better constrain uncertainties of model parameters. 
High spatiotemporal resolution measurements with mobile MS systems could also improve models of pro-
cesses that govern the exchange of gases between shallow groundwater and the atmosphere, such as ebul-
lition and changes in soil moisture, air temperature, and barometric pressure (Freundt et al., 2013; Jones 
et al., 2014). Consequently, insights provided by tracer measurements from mobile MS have the potential to 
considerably enhance our hydrologic system understanding and thereby safeguard sustainable water use.

Data Availability Statement
No data, code, or models were generated for this article.
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