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In his 1953 paper, Harald Sverdrup argued that the development of a spring bloom in the ocean depends on the juxtaposition of two depth
horizons: the mixed-layer depth and the critical depth. Mixed-layer depth shallower than the critical depth favours phytoplankton growth in
the layer and vice versa. However, mathematically, Sverdrup left the problem unsolved in the form of a transcendental equation. In spite of
the high number of citations that this paper has garnered, the solution to this equation has not been found, until now. In this work, we pre-
sent an analytical solution for the critical depth, as originally defined by Sverdrup. The paper opens with the definition of the critical depth
and the description of the Lambert W function. The analytical solution for critical depth follows. Sverdrup’s original model is extended to in-
clude the effect of light attenuation by phytoplankton and the analytical solution for steady-state biomass in the mixed layer is derived. The
expression for mixed-layer production at steady state is also presented. Two novel variants of the critical depth are defined: the optically
uncoupled critical depth and the optically coupled critical depth. It is demonstrated that at steady state the optically coupled critical depth
equals the mixed-layer depth and that the irradiance at the base of the mixed layer equals the irradiance at the optically uncoupled critical
depth. Competitive exclusion is demonstrated to hold and the optically uncoupled critical depth is linked to the critical light intensity in
multi-species competition. Finally, a conservation principle for the critical depth is found.
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Introduction
In 1953, 4 years before his death, Harald Sverdrup published a

paper titled: “On Conditions for the Vernal Blooming of

Phytoplankton”; in which he sought to explain spring bloom ini-

tiation in the ocean, by providing a mathematical backbone to

the theory of Gran and Braarud (1935). The paper opens with the

following sentence:

In order that the vernal blooming of phytoplankton shall

begin it is necessary that in the surface layer the production

of organic matter by photosynthesis exceeds the destruction

by respiration.

With the opening sentence he defined phytoplankton growth

as an inbalance resulting from two competing factors: photosyn-

thesis and respiration. He closed the paper with the following

sentence:

On certain assumptions a “critical depth” is defined. The

depth of a mixed surface layer must be less than this critical

depth if the phytoplankton population of the mixed layer

shall increase.

With the closing sentence he translated an argument of growth

versus loss into an argument of mixing depth versus critical

VC International Council for the Exploration of the Sea 2021. All rights reserved.
For permissions, please email: journals.permissions@oup.com

ICES Journal of Marine Science (2021), doi:10.1093/icesjms/fsab013

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsab013/6166287 by guest on 04 M

ay 2021

http://orcid.org/0000-0001-6413-8218
mailto:zkovac@pmfst.hr


depth. These two sentences perhaps best summarize the key ques-

tion asked by Sverdrup’s paper: How does a phytoplankton

bloom get initiated?

Modern variants of the concepts advanced by Sverdrup, aiming

to explain the mechanism and ultimately predict the outbreak of

phytoplankton blooms can be classified into three groups

(Lindeman and St. John, 2014): the Critical Depth Hypothesis

(Sverdrup, 1953; Bishop et al., 1986), the Critical Turbulence

Hypothesis (Huisman et al., 1999, 2002), and the Disturbance

Recovery Hypothesis (Behrenfeld, 2010; Behrenfeld et al., 2013a). All

three use the concept of the critical depth in one form or another, ei-

ther to argue in its favour, to complement it, or to argue against it.

Although simple in its premise and consequences, the Critical

Depth Hypothesis sparked much debate in recent years

(Behrenfeld et al., 2013a, b; Chiswell, 2013; Lindeman and St.

John, 2014; Sathyendranath et al., 2015), but tests of Sverdrup’s

hypothesis against in situ observations continue to demonstrate

its relevance to the problems of the day (Rumyantseva et al.,

2019). Perhaps this debate can be aided by providing the analyti-

cal solution for the original Sverdrup’s critical depth. In his paper,

Sverdrup (1953) stated the critical depth implicitly in the form of

a transcendental equation [Equation (6) in Sverdrup (1953)]. To

this day, the solution to this equation has not been found even

though the paper itself has been cited 1391 times according to

Web of Science (at the time of writing). If it had not been so, and

Sverdrup had provided an explicit expression for the critical

depth, perhaps the ensuing debates would have been less fierce.

In fact, Sverdrup’s transcendental equation can be solved ex-

plicitly for the critical depth. In 1779 Leonhard Euler solved the

equation xex ¼ a, by finding the inverse of xex (Euler, 1779).

Today, this inverse is called the Lambert W function, named after

Johann Heinrich Lambert (Gray and Tiling, 1978) who was the

first to solve the trinomial equation, which laid the groundwork

for Euler. The history behind the W in the name is somewhat de-

batable (Corless et al., 1996; Hays, 2005). The procedure of apply-

ing the Lambert W function to a given problem is simple. Reduce

the problem to a statement of the form xex ¼ a and simply invert

it by using the Lambert W function. This procedure has been ap-

plied numerous times in several disciplines, so much so that

Gouvea (2000) even pushed for the function to be included

amongst the elementary functions.

A seminal paper by Corless et al. (1996) provides a survey of

applications of the Lambert W function: those of interest to ocean-

ographers include the inversion of the dispersion relation of surface

gravity waves (Mez}o and Keady, 2016) and the exact expression for

Wien’s peak in the solar spectrum (Stewart, 2011). Here we provide

another application of the Lambert W function in oceanography:

We derive the first analytical solution for Sverdrup’s critical depth

(Sverdrup, 1953), an important principle in the ecology of the pe-

lagic ecosystem related to the outbreak of phytoplankton blooms.

The primary aim of the paper is to gain further insight into

Sverdrup’s original work by mathematical means.

Governing equations
Model
The model we employ to describe phytoplankton distribution in

the vertical is a generic one-dimensional model of the advection-

diffusion-reaction type, commonly used in oceanographic prac-

tice (Huisman et al., 2002; Ryabov and Blasius, 2008; Du and

Mei, 2011; Enriquez and Taylor, 2015; Dai et al., 2015). For this

model setup, let the z axis be positive downwards. Let B ¼ Bðz; tÞ
mark the phytoplankton cell concentration (biomass), w the

sinking velocity of phytoplankton cells and Kz the vertical eddy

diffusivity. The governing equation for biomass reads:

@B

@t
þ w

@B

@z
¼ 1

v
P z; tð Þ � L z; tð Þð Þ þ Kz

@2B

@z2
; (1)

where v is the carbon to chlorophyll ratio. The P(z, t) term

describes photosynthesis, which can be parametrized in numer-

ous ways (Kova�c et al., 2017b) and the L(z, t) term represents

losses in the broadest sense (respiration, grazing), which can also

be parameterized in numerous ways (Zhai et al., 2010). A detailed

list of notations and parameters used throughout the paper, along

with corresponding units, is provided in the Supplementary data.

Let us now consider a mixed layer of depth Zm, subject to no-

flux boundary conditions at the ocean surface (z¼ 0) and the

base of the mixed layer ðz ¼ ZmÞ. The reader is referred to

Huisman and Sommeijer (2002), Platt et al. (2003), and Kova�c
et al. (2020) for the study of mixed-layer phytoplankton dynam-

ics with an open boundary condition at the base of the mixed

layer. By integrating the previous equation from the surface to

the base of the mixed layer and acknowledging boundary condi-

tions we get:

@B

@t
¼ 1

vZm

ðZm

0

ðPðz; tÞ � Lðz; tÞÞdz; (2)

as the governing equation for the evolution of average mixed-layer

biomass, where now B ¼ BðtÞ is the uniform phytoplankton bio-

mass in the mixed layer and the right-hand side gives the average

production and losses in the mixed layer. We see that growth or de-

cline in phytoplankton biomass is determined by the overall balance

between photosynthesis and losses in the mixed layer. As photosyn-

thesis is light-driven, and light decreases with depth in the ocean

(Figure 1), the stage is set for the following question: How deep can

Zm be for the right-hand side to remain positive? Numerous authors

have attempted to answer this question recently, e.g. Chiswell et al.

(2015); Levy (2015); Behrenfeld and Boss (2018), with the first quan-

titative attempt given by Sverdrup (1953). We now demonstrate

how Sverdrup approached this problem in his seminal 1953 paper,

but with a slightly altered formalism.

Critical depth
Photosynthesis is light-driven, therefore to model P(z, t) light at

depth has to be specified (Platt and Sathyendranath, 1991). Let ir-

radiance at depth be given by the Beer–Lambert law (Kirk, 2011):

Iðz; tÞ ¼ I0ðtÞ expð�KzÞ; (3)

where I0ðtÞ is the surface irradiance and K is the attenuation coef-

ficient (not to be confused with the vertical eddy diffusivity Kz).

Following Sverdrup (1953), we use a linear dependence of pro-

duction on available light:

Pðz; tÞ ¼ B aBIðz; tÞ; (4)

where B is the average phytoplankton biomass in the mixed layer

and aB the initial slope of the photosynthesis-irradiance function

2 �Z. Kova�c et al.
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(Platt et al., 1980). We also assume a depth-independent,

biomass-specific, loss rate, such that the total loss L(z, t) at each

depth and time is given by:

Lðz; tÞ ¼ BLB; (5)

where LB is the loss rate per unit biomass (Smetacek and Passow,

1990). In his work, Sverdrup (1953) subtracts losses from produc-

tion and integrates their difference over time, obtaining a func-

tion of depth f(z):

f ðzÞ ¼
ðD
0

aBI0ðtÞ expð�KzÞdt �
ð24

0

LBdt ; (6)

where D is daylength (time from sunrise till sunset). Note that aB

and LB are rates per hour, and D is in hours in this equation, and

that integration is carried out over the daylight hours for primary

production (due to it being zero overnight) and over 24 h for the

loss terms, such that f(z) yields change in biomass per day. The

first integral on the left is aBIT expð�KzÞ, with the total available

light energy at the surface over 1 d designated as IT ¼
ÐD

0
I0ðtÞdt .

Sverdrup then integrates over depth:

FðZÞ ¼ aBIT

ðZ
0

exp ð�KzÞdz �
ðZ
0

LB
T dz; (7)

obtaining a function of the upper limit in the integrals, here

marked Z. The loss term, being constant, now incorporates the

24 h integration interval LB
T ¼ 24 LB . Explicitly, for F(Z) we

have:

F Zð Þ ¼ aBIT

K
1� e�KZð Þ � LB

T Z : (8)

In this formulation, the critical depth Zc is defined as the depth

for which the following holds:

FðZcÞ ¼ 0; (9)

where FðZcÞ refers to the integral over the layer ð0;ZcÞ. If there is

to be a positive growth of the overall population the following

condition has to be met:

Zc > 0; (10)

implying:

f ð0Þ > 0: (11)

The condition f ð0Þ > 0 means that daily production (photosyn-

thesis) at the surface has to be greater than losses. This translates

into the following condition:

aBIT

LB
T

> 1: (12)

To solve (9), we employ the Lambert W function. Before doing

so, we provide a short description of it.

Lambert W function
Consider the transcendental equation:

xex ¼ a; (13)

where both x and a are real numbers. The Lambert W function is

the inverse of the left-hand side function xex and is denoted W. It

is defined as (Corless et al., 1996):

W ðxÞeW ðxÞ ¼ x; (14)

where in general x can be a complex number. By using W(x), the

solution of (13) follows:

x ¼ W ðaÞ: (15)

There are two real branches of the Lambert W function (Figure

2). By convention, the branch satisfying W ðxÞ � �1 is taken to

be the principal branch and is denoted W0ðxÞ (blue curve in

Figure 1). The branch satisfying W ðxÞ � �1 is denoted W�1ðxÞ
(dashed blue curve in Figure 1). More details on the Lambert W

function can be found in Corless et al. (1996), Gautschi (2011),

and Golicnik (2012). We now proceed to use the Lambert W

function to solve for Sverdrup’s critical depth explicitly.

Figure 1. Depiction of the vertical dependence of photosynthesis P
(orange curve) and losses L (blue line) in a water column with a mixed
layer of depth Zm (red line). Photosynthesis declines with depth due to
the reduction in light intensity, whereas losses are assumed constant in
the mixed layer. At a given depth, the integral of photosynthesis
(the area prescribed by the orange curve and the z axis) and losses
(area prescribed by the blue line and the z axis) will equal and this
depth is referred to as the critical depth Zc. Sverdrup (1953) argued that
when Zc exceeds Zm phytoplankton in the mixed layer will be sustained
and with Zc shallower than Zm it will not be sustained.
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Solutions
Explicit solution for the critical depth
Our strategy in solving Equation (9) is to reduce is it to the form

(13) and simply apply the Lambert W function. From (9), we

have:

1� e�KZc ¼ LB
T

aBIT

KZc ; (16)

[Equation 6 in Sverdrup (1953)]. We define fc as the optical

depth corresponding to the critical depth:

fc ¼ KZc ; (17)

and we also define A as the ratio of surface production to losses

(uniform over depth):

A ¼ aBIT

LB
T

: (18)

With these definitions, the starting Equation (16) becomes

simply:

1� e�fc ¼ fc

A
: (19)

We rewrite this equation as:

ðfc � AÞeðfc�AÞ ¼ �Ae�A; (20)

which is now in the form of (13) and we can use the Lambert W

function. The equation has the trivial solution fc ¼ 0 and the

non-trivial solution (Stewart, 2011; Houari, 2013):

fc ¼ W0ð�Ae�AÞ þ A; (21)

from which we get the explicit expression for the critical depth:

Zc ¼
1

K

�
W0ð�Ae�AÞ þ A

�
: (22)

From (12) and the definition (18), we have A> 1. Therefore, the

minimum value the argument �Ae�A could take is �1=e so that

W0ð�Ae�AÞ � �1, making Zc � 0. Plot of (21) is given in Figure

(3) both as a function of A and 1=A to highlight the non-

linearity. Fully expended expression (22) reads:

Zc ¼
1

K
W � aBIT

LB
T

exp
�aBIT

LB
T

 ! !
þ aBIT

LB
T

" #
: (23)

Critical Depth Hypothesis
Let us now reconsider a mixed layer of depth Zm. Having

selected a model for P(z, t), the equation for the temporal evo-

lution of the mixed-layer biomass (2) becomes (Kova�c et al.,

2017a):

dB

dt
¼ 1

24 v
FðZmÞ

Zm

B; (24)

where B ¼ BðtÞ, with 24 in the denominator as the scaling factor.

The scaling factor is easily removed by opting to use instanta-

neous production and losses. In this case, daily irradiance IT has

to be replaced with I0ðtÞ and daily losses LB
T with instantaneous

losses LB. The resulting equations with these changes would still

hold. We chose to use the 24 h time scale to be in line with the

original work of Sverdrup (1953).

Since FðZmÞ is a function of only Zm, the equation is linear

with respect to biomass. The solution is simply:

Figure 3. Critical depth (expressed as optical depth) fc as a
function of: (i) the ratio of surface production to losses A (blue
curve) and (ii) the ratio of losses to surface production 1=A (orange
curve). Both plots are given by (21). To calculate the critical depth in
metres, simply apply Equation (22).

Figure 2. Real branches of the Lambert W function. The thick blue
curve is the principal branch W0 and satisfies WðxÞ � �1. The
dotted blue curve is the W�1 branch and satisfies WðxÞ � �1.
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B ¼ B0 exp
1

24 v
FðZmÞ

Zm

t

� �
; (25)

where B0 is the initial condition. Equation (25) has the form of

an exponential growth equation, with the growth rate given by

FðZmÞ=ð24vZmÞ. From this solution, we can determine whether

biomass will grow or decline based on the relation between Zc

and Zm. It is clear that the exponent dictates the behaviour of B

with time. We have three cases:

FðZmÞ > 0 B=B0 > 1;
FðZmÞ ¼ 0 B=B0 ¼ 1;
FðZmÞ < 0 B=B0 < 1:

(26)

Now, the critical depth Zc from Equation (22) gives the depth

for which F(Z) ¼ 0. Therefore, if Zm happens to equal Zc we

have a steady state B� ¼ B0, the only steady state possible for

this model, aside from the trivial steady state B� ¼ 0 (the aster-

isk indicates steady state). That this is the only possible steady

state is a consequence of not considering light attenuation by

phytoplankton, as we now proceed to demonstrate.

Explicit solution for steady-state biomass
To be more realistic, we set the attenuation coefficient to be bio-

mass dependent, which represents the physical process of absorb-

ing and scattering of light by phytoplankton (Sathyendranath and

Platt, 1988; Platt et al., 1990):

K ¼ Kw þ kBB; (27)

where Kw is the attenuation coefficient of sea water, including

non-varying vertical attenuation by any substance present in the

water, such that we can consider Kw as representing a constant

background attenuation independent of phytoplankton; and kB is

the specific attenuation coefficient of phytoplankton. Note that

Equation (27) assumes that the effect of other substances that co-

vary with phytoplankton is accounted for, through kB. Equation

(24) now becomes non-linear in B:

dB

dt
¼ 1

24 v
FðZm;BÞ

Zm

B; (28)

where F(Z, B) is now:

FðZ ;BÞ ¼ aBIT

Kw þ kBB
1� expð�ðKw þ kBBÞZÞ� � LB

T Z :
�

(29)

The steady state B� satisfies FðZ ;BÞ ¼ 0, or:

1� expð�ðKw þ kBBÞZmÞ ¼
ðKw þ kBBÞZm

A
; (30)

and we wish to solve it for B. Following the same procedure as in

Explicit solution for the critical depth section, we obtain the solu-

tion for the steady-state biomass B�:

B� ¼ 1

kBZm

�
W0ð�Ae�AÞ þ A

�
� Kw

kB

: (31)

Noticing that the expression in the brackets is given by (22) and set-

ting K¼ Kw in that equation, and after some algebra we have:

B� ¼ Kw

kB

Zc

Zm

� 1

� �
; (32)

where Zc is the critical depth for the case in which the diffuse at-

tenuation coefficient is not optically coupled to phytoplankton

biomass (K ¼ Kw). Plot of (32), with Zc and Zm expressed as opti-

cal depths for generality, is given in Figure (4). For the biomass in

the mixed layer of depth Zm to be sustained, we require B� > 0,

translating (32) into:

Zc > Zm; (33)

which is recognized as the critical depth criterion. The system

also admits the trivial steady state B� ¼ 0, which is reached when

the previous condition is not met.

Critical depth properties
Considering that Zc in Equation (32) is not optically coupled to

the phytoplankton biomass, such that Zc in Equation (22) is de-

termined by Kw and not by K as given in (27), theoretically we are

led to distinguish two critical depths. The first one, we re-label as

the optically uncoupled critical depth C and the second one, as

the optically coupled critical depth S. We give the following

definitions:

Optically uncoupled critical depth C is the critical depth associ-

ated with kB ¼ 0 and is defined as:

C ¼ 1

Kw

�
W0ð�Ae�AÞ þ A

�
: (34)

The optically uncoupled critical depth is independent of time

C 6¼ CðtÞ.
Optically coupled critical depth S is the critical depth associated

with kB 6¼ 0 and is defined as:

S ¼ 1

Kw þ kBB

�
W0ð�Ae�AÞ þ A

�
: (35)

Optically coupled critical depth is time-dependent S ¼ SðtÞ, as

explored in more detail in the next section.

Figure 4. Steady-state biomass as a function of fm ¼ KwZm for
Kw=kB ¼ 1 and fc ¼ 1. After fm becomes larger than 1, the critical
depth criterion is violated and biomass can no longer be sustained.
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With the previous definitions, the steady-state biomass (32)

simply becomes:

B� ¼ Kw

kB

C

Zm

� 1

� �
: (36)

For C < Zm, this equation yields negative biomass, which is

physically unrealistic. However, C < Zm corresponds to the con-

dition in which biomass losses exceed production, and this result

suggests that in this instance, losses would continue until biomass

drops to zero. Hence, the solution is only valid for C=Zm larger

than one, which is in accordance with the Critical Depth

Hypothesis.

Having B�, we are now in a position to calculate daily mixed-

layer production PZm ;T at steady state. We first recognize that

daily mixed-layer production is given by the first term on the

right-hand side of expression (29) multiplied by B:

PZm;T ¼
BaBIT

Kw þ kBB
1� expð�ðKw þ kBBÞZmÞ�:½ (37)

Inserting (32) into (37) we get:

PZm ;T ¼
aBIT

kB

1� expð�Kw CÞ½ �C � Zm

C
; (38)

as the daily mixed-layer production at steady state, which is seen

to be linearly dependent on mixed-layer depth Zm. Only when

C > Zm is this expression positive in accordance with the Critical

Depth Hypothesis. In other words, we have to bear in mind that

C is the critical depth in case of no shading by phytoplankton,

given by (34).

Having defined the two critical depths and knowing B�, we can

now calculate the light intensity at the base of the mixed layer at

steady state and compare it with the light intensities at C and S.

By inserting (27) and (36) into (3), the irradiance at the base of

the mixed layer can be shown to be equal to the irradiance at the

optically uncoupled critical depth:

IðZmÞ ¼ I0 expð�Kw CÞ ¼ IðCÞ; (39)

although the two depths Zm and C need not be equal (Figure 5).

Therefore, at steady state the light intensity at the base of the

mixed layer equals the light intensity at the optically uncoupled

critical depth. Although the mixed-layer depth does not equal the

optically uncoupled critical depth, their light levels are equal, due

to shading by phytoplankton. It is important to stress that I(C) is

biomass independent and this result is therefore a more general

result than (32). We can now rewrite (38) as:

PZm ;T ¼
aB

kBC
ðIT � IT ðCÞÞðC � ZmÞ: (40)

We can also calculate S at steady state. Inserting (36) into (35)

gives:

S� ¼ Zm; (41)

where we have labelled the optically coupled critical depth at

steady state as S�. Therefore, at steady state the optically coupled

critical depth equals the mixed-layer depth, but the optically

uncoupled critical depth does not (Figure 5).

Time evolution of the optically coupled critical depth
Having defined the optically coupled critical depth (35)

and knowing its value at steady state (41) enables us to calcu-

late it at any time instance, given information on B. It also ena-

bles us to derive an equation describing the time evolution

of S. This equation is obtained by taking the time derivative

of (35):

dS

dt
¼ � kB

Kw þ kBB

dB

dt

� �
S; (42)

which translates to:

dS

dB
¼ � kBS

Kw þ kBB
: (43)

Integration by separation of variables from Sð0Þ ¼ S0 to S(t) ¼ S

and Bð0Þ ¼ B0 to B(t) ¼ B gives:

S ¼ S0

Kw þ kBB0

Kw þ kBB

� �
; (44)

whereas integration from S(t) ¼ S to Sð1Þ ¼ S�, while acknowl-

edging (41), gives:

S ¼ Zm

Kw þ kBB�

Kw þ kBB

� �
: (45)

This result was first derived by Platt et al. (2003) [their

Equation (4.5)] for a non-linear production model with discrete

Figure 5. Sketch of the relation between mixed-layer depth Zm,
optically uncoupled critical depth C and optically coupled critical
depth S. With time S converges to Zm, while C remains constant.
Simultaneously, irradiance at the mixed-layer base IðZmÞ converges
to irradiance at the optically uncoupled critical depth I(C). Finally, at
steady state, we have S� ¼ Zm and IðZmÞ ¼ IðCÞ.
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time steps. It is now shown that the linear model of Sverdrup

(1953) also leads to the same equation. The fact that both, the lin-

ear and non-linear, production models have the same solution

adds to the generality of the result.

Critical light intensity
The analysis thus far is valid for a single phytoplankton type, with

its traits aggregated in the model through A (18). In case multiple

phytoplankton species were present in the mixed layer, their traits

could be represented for each phytoplankton functional type

(Anderson, 2005). With multiple functional types the system dy-

namics gets altered and competitive exclusion has to be consid-

ered. Huisman and Weissing (1994) and Weissing and Huisman

(1994) explored the role light plays in relation to the competitive

exclusion principle in multi-species phytoplankton populations.

They first analysed the monoculture case and defined the critical

light intensity for a monoculture population: the light intensity at

the bottom of the water column at steady state. They further

demonstrated that in a multi-species population the species with

the lowest critical light intensity competitively excludes all other

species. We now explore whether the competitive exclusion prin-

ciple holds for the Sverdrup (1953) model and demonstrate that

the critical light intensity is in fact the light intensity at the opti-

cally uncoupled critical depth.

Let us divide the biomass into N phytoplankton functional

types, each with biomass Bi, and let us group all functional types

into a vector B (size N � 1) whose elements are Bi. In this nota-

tion, total biomass is given as a scalar product of B and a unit

vector u of the same size as B (see Supplementary data).

Therefore, the total biomass B is now:

B ¼ u � B: (46)

Likewise, the attenuation coefficient is now given as:

K ¼ Kw þ kB � B; (47)

where kB is a vector (size N � 1) with elements kB;i , the specific

attenuation coefficient of each phytoplankton functional type.

Irradiance at depth is now calculated as:

Iðz; tÞ ¼ I0ðtÞ expð�ðKw þ kB � BÞzÞ: (48)

In this formalism, the equation for the time evolution of total

biomass reads:

dB

dt
¼ 1

Zm

aB � B IT

Kw þ k � B 1� expð�ðKw þ k � BÞZmÞ� � LB
T � B;

�
(49)

where aB and LB
T are vectors of size N � 1 (see Supplementary

data).

For each individual phytoplankton functional type Bi, we can

define the optically uncoupled critical depth Ci:

Ci ¼
1

Kw

�
W0ð�Aie

�Ai Þ þ Ai

�
; (50)

and the optically coupled critical depth Si:

Si ¼
1

Kw þ kB � B

�
W0ð�Aie

�Ai Þ þ Ai

�
; (51)

where Ai is the ratio of surface production to losses (18) of each

functional type. For each Bi, we can also calculate the monocul-

ture steady-state biomass B�i by using (36):

B�i ¼
Kw

ki

Ci

Zm

� 1

� �
: (52)

As demonstrated in the previous section, this steady-state bio-

mass is reached when only Bi is present in the mixed layer. We

are now interested to explore what steady state is reached when

multiple phytoplankton functional types are present in the mixed

layer and how it is related to the critical depth.

Let us assume that at t¼ 0, we have Bið0Þ > 0 and Ci > Zm for

all i, so that dBi=dt > 0 at t¼ 0. Let us also assume that Ai 6¼
Aj ; Ci 6¼ Cj and Sið0Þ 6¼ Sjð0Þ for all i 6¼ j. Taking the time deriv-

ative of (51) we have:

dSi

dt
¼ � 1

Kw þ kB � B
kB �

dB

dt

� �
Si; (53)

which integrated over time from t¼ 0 to t, yields:

SiðtÞ ¼ Sið0Þ
Kw þ kB � B0

Kw þ kB � BðtÞ
: (54)

The expressions obtained are multi-species analogues of (42) and

(44), respectively, describing the time evolution of each optically

coupled critical depth Si.

Starting from t¼ 0 as biomass grows so does the product

kB � B, reducing mixed-layer irradiance and consequently primary

production. The optically uncoupled critical depths Ci remain

constant, but the optically coupled critical depths Si become shal-

lower as the product kB � B increases. At a certain instance of

time one Si will become shallower than Zm, at which point a re-

versal of its growth rate will occur, making dBi=dt < 0.

Subsequently, the same will occur for another functional type and

the process will continue until only one functional type is left.

For this functional type, we will have Si ¼ Zm and it will reach its

monoculture steady-state biomass (52). At this point, the particu-

lar functional type has won the competition. Detailed equations

for simulating this process along with the code for running the

simulations are provided in the Supplementary data.

According to (39) when a single phytoplankton type is present

in the mixed layer, at steady state, we have IðZmÞ ¼ IðCÞ. The

same condition can be written for Ci:

IðZmÞ ¼ IðCiÞ: (55)

By acknowledging (48) and (52), this expression becomes:

k � B ¼ kiB
�
i ; (56)

implying that all phytoplankton functional types have zero bio-

mass except Bi, which has won the competition and reached B�i ,

so that at steady state B ¼ B�i , given by (52). At this point, irradi-

ance at the mixed layer base equals the irradiance at the optically

uncoupled critical depth of the winning functional type.
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This solution, cast in the form of a critical light argument, was

first obtained by Huisman and Weissing (1994) and Weissing

and Huisman (1994) as the outcome of multi-spices competition

in a light gradient. According to these authors, the species with

the lowest monoculture light intensity at the base of the water

column (critical light intensity) wins the multi-species competi-

tion. In our work, the critical light intensity corresponds to the

light intensity at the bottom of the mixed layer, which at steady

state was shown to equal the light intensity at the optically

uncoupled critical depth (39). Therefore, the argument of

Huisman and Weissing (1994) and Weissing and Huisman

(1994) is translated back to a critical depth argument. The species

with the deepest optically uncoupled critical depth wins the

competition.

However, in these considerations, the physiological parameters

of each phytoplankton functional type are constant. In the real

ocean, this assumption may be questionable. One way to include

the effect of changing environmental conditions on the phyto-

plankton physiology is to allow the physiological parameters to

change with respect to average light conditions in the mixed layer

(Jackson et al., 2017; Sathyendranath et al., 2020). Since average

light conditions are determined by surface irradiance, mixed-

layer depth, and the phytoplankton biomass itself, having the

phytoplankton adopt to average light conditions could affect the

outcome of competition and consequently bloom initiation

(Lindemann et al., 2015).

Discussion
In 1779, Leonhard Euler solved the equation xex ¼ a, by finding

the inverse of xex , today called the Lambert W function, named

after Johann Heinrich Lambert, who laid the groundwork for

Euler by solving the trinomial equation. Lambert W function laid

dormant for quite some time since its discovery, until its re-

emergence in the second half of the twentieth century. The re-

emergence occurred in the field of computations (Corless et al.,

1996) and since has been spreading over to other fields steadily.

Today the function is easily accessible in many mathematical

programmes.

In this paper, we have successfully used the Lambert W func-

tion to find the analytical solution for the critical depth (22), as

formulated by Sverdrup (1953), in what is perhaps the first usage

of Lambert W function in optical oceanography. In the field of

optical oceanography, Lambert is most known for the extensive

application of the Beer–Lambert Law to model the underwater

light field (Kirk, 2011). Interestingly, the same law was used by

Sverdrup (1953) in formulating his model (3). Therefore, it is fit-

ting that the analytical solution for Sverdrup’s critical depth was

found using the Lambert W function.

Lambert W function enabled the expression of the critical

depth in terms of surface light intensity, attenuation coefficient,

initial slope of the photosynthesis-irradiance function, and the

loss rate (23). It further led to the analytical solution for steady-

state biomass (32). The expression for the steady-state biomass

was found to be in accord with the critical depth criterion: If the

critical depth is larger than the mixed-layer depth ðZc > ZmÞ, a

positive steady-state biomass is attainable. Further analysis led us

to distinguish between the optically uncoupled critical depth C

(34) and the optically coupled critical depth S (35). To the best of

our knowledge, this distinction had not been made in the litera-

ture prior to this work. We have demonstrated that at steady state

the optically coupled critical depth matches the mixed-layer

depth (41) with the light intensity at the bottom of the mixed

layer equal to the light intensity at the optically uncoupled critical

depth (39). This demonstration would not have been possible if

the distinction between the optically uncoupled critical depth and

the optically coupled critical depth had not been made.

That the critical depth converges to the mixed-layer depth was

already known, as was first demonstrated by Platt et al. (2003) for

a dynamically evolving model. Recently, it was found by Kova�c
et al. (2020) that the convergence occurs due to phytoplankton

shading. In the context of this work, we can now say the optically

coupled critical depth converges to the mixed-layer depth,

whereas the optically uncoupled critical depth remains constant.

We can therefore look at the optically uncoupled critical depth as

the maximum attainable critical depth when the biomass goes to

zero and attenuation of light by phytoplankton in the mixed layer

is negligible.

Another important perspective on the two new versions of the

critical depth must be highlighted. Optically uncoupled critical

depth being deeper than the mixed-layer depth is a prerequisite

for a positive biomass in the mixed layer. In this context, the opti-

cally coupled critical depth determines the sign of the growth

rate. Optically coupled critical depth deeper than the mixed layer

yields a positive growth rate, whereas optically coupled critical

depth shallower than the mixed-layer depth yields a negative

growth rate. Note that optical coupling introduces a level of dy-

namic stability to phytoplankton: when mixed-layer deepens be-

low the optically coupled critical depth, phytoplankton decrease

towards a lower steady-state value, rather than towards zero, as in

the optically uncoupled case. This highlights the importance of

knowing the optical properties of phytoplankton, and the back-

ground optical properties, to understand phytoplankton

dynamics.

It is also important to highlight that the light intensity at the

optically uncoupled critical depth is independent of mixed-layer

biomass and equal to the light intensity at the bottom of the

mixed layer at steady state (39). In a dynamical context, this

implies that biomass evolves over time until the two light levels

equal. The fact that the light intensity at the optically uncoupled

critical depth is independent of biomass also implies that all

steady states have the same light intensity at the base of the mixed

layer, despite having different steady-state biomass and different

mixed-layer depths. We conclude that the optically uncoupled

critical depth determines the light intensity that can be reached at

the base of the mixed layer and how high a biomass will be pre-

sent in the mixed layer further depends on the depth of the mixed

layer according to (32). Mixed-layer production is determined in

a similar fashion according to (40). It is important to stress that

these expressions hold for a linear dependence of production on

light, as used by Sverdrup (1953). These results also indicate the

importance of water clarity in determining the steady-state

biomass.

Non-linear formulations of the production–light relationship

are well known (Platt and Jassby, 1976) and are modelled with

photosynthesis irradiance functions (Jassby and Platt, 1976).

Having a non-linear production–light dependence modifies pro-

duction with depth, yielding a different production profile for

each photosynthesis irradiance function (Kova�c et al., 2017b). A

distinction between a linear production profile, such as the one

Sverdrup (1953) used, and a non-linear one is in production sat-

uration, which typically occurs near the surface (Kova�c et al.,

2016b). Quantifying the total effect of production saturation on
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mixed-layer production can easily be done by using the analytical

solution for a non-linear model for mixed-layer production (Platt

et al., 1990). In the context of critical depth this changes the F(Z)

function (7), making it harder so solve (9) analytically and obtain

the critical depth for this case.

However, validity of Sverdrup’s argument does not lie in the

linearity of the photosynthesis-light relation, nor in taking the

loss term as constant. Production and losses can both be homoge-

nized by turbulent mixing, irrespective of the mathematical for-

mulation of these terms (Platt et al., 1991). In other words, with

respect to photosynthesis, it is not the exact form of the photo-

synthesis–light relation that is relevant, just the magnitude of pro-

duction in the mixed layer. Although Sverdrup used a linear

model of the photosynthesis–light relation (4), which for some

time now is known to be non-linear (Jassby and Platt, 1976; Platt

and Jassby, 1976), it does not change the argument. The reason is

that all the commonly used photosynthesis–light functions give a

monotonically decreasing rate of photosynthesis in a declining

light field (Kova�c et al., 2016a, b). This implies that the integral of

production over the mixed layer will be bounded. Therefore, how

we calculate mixed-layer production does not reflect on the criti-

cal depth argument qualitatively, simply quantitatively. An argu-

ment in favour of this reasoning is that the expression for the

convergence of the critical depth to the mixed-layer depth (45) is

the same for a linear production–light model used by Sverdrup

(1953) and a non-linear one used by Platt et al. (2003).

In fact, Equation (45) can be generalized easily by observing

that it is a statement of a conservation principle. Rearranging

(42), recognizing (27), and applying the chain rule, yields:

dðKSÞ
dt
¼ 0; (57)

demonstrating that the product of the attenuation coefficient and

the optically coupled critical depth remains constant over time.

Given initial conditions (K0, S0), when the critical depth criterion

is met the system ends in a steady state characterized by S ¼ Zm

and B ¼ B�. When the critical depth criterion is not met the sys-

tem ends in the trivial steady state characterized by S¼C and

B¼ 0. On the approach to these states, the system moves along a

trajectory, which keeps the KS product constant (Figure 6).

Following the definition (35) and acknowledging (21), we ob-

serve that the quantity, which is conserved is in fact the critical

depth expressed as an optical depth fc (21) and therefore we can

restate the previous expression simply as:

dfc

dt
¼ 0: (58)

We term this the Critical Depth Conservation Principle

(Figure 6). Working backwards from it leads to Equation (45).

The fact that both a linear model used in this paper and a non-

linear production model of Platt et al. (2003) yield the same solu-

tion (45) points in the direction of generality of the Critical

Depth Conservation Principle. Exploring this in more detail is a

potential direction for future research.

The theory presented is valid for a mixed layer, which by defi-

nition is a region of uniform properties in the vertical (Chiswell,

2011). As Franks (2015) pointed out we are led to distinguish the

mixed layer from the turbulent layer, in that a turbulent layer is a

layer of active mixing, and the mixed layer is a layer of uniform

properties in the vertical. The second definition is an operational

one, as the depth of the mixed layer can be easily determined

from say the temperature profile. The depth of the turbulent layer

is harder to determine operationally. In this work, the wording

mixed layer was used in the context of a layer in which active

mixing is occurring so that homogenization of biomass and losses

is taking place within it, therefore every phytoplankter experien-

ces the same light conditions (Franks, 2015). This is in line with

Sverdrup (1953) who also referred to the turbulent layer as the

mixed layer. Distinct usage of the mixed-layer term in modern lit-

erature should not be used to argue against Sverdrup, as he clearly

stated:

. . . a phytoplankton population may increase independently of

the thickness of the mixed layer if the turbulence is moderate. In

this case the plankton may be unevenly distributed. . .
This paragraph demonstrates that Sverdrup (1953) was in fact

referring to a turbulent layer, phrased in the modern terminology

of Franks (2015), when using the wording “mixed-layer”.

In the real ocean, the mixed-layer depth is seldom constant

over time. During winter, the mixed-layer depth tends to be deep

and phytoplankton concentration low, implying the effect of

shading on the attenuation of light may be negligible. In these

conditions, it is the optically uncoupled critical depth that deter-

mines the onset of positive growth. As the season progresses,

Figure 6. Illustration of the Critical Depth Conservation Principle.
According to (57), the product of the attenuation coefficient K and
the optically coupled critical depth S remains constant over time.
Starting from the initial state with K0 and S0, the system moves
either to the steady state B� (32) (critical depth criterion met
C > Zm), or to the trivial steady state B� ¼ 0 (critical depth
criterion not met C < Zm). The product KS remains constant,
therefore the surfaces enclosed by the axes and the red/blue/orange
lines are all equal. When S0 > Zm (as in the figure), the biomass
grows over time until it reaches steady state S� ¼ Zm . When S0 <
Zm (not shown), the biomass declines over time until it also reaches
steady state S� ¼ Zm . In both cases, the condition C > Zm has to be
met in order for biomass to reach a non-trivial steady state (32).
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mixed layer typically shallows, biomass rises, and the effect of

phytoplankton absorption and back-scattering on light attenua-

tion becomes more prominent and may become non-negligible.

Under these conditions, it is the optically coupled critical depth

that determines the sign of the growth rate. Therefore, as the

mixed-layer depth varies over the season so too does the strength

of the bio-optical coupling and with it the very magnitude of the

critical depth. This should be noted when discussing different hy-

potheses of bloom onset. As demonstrated, the condition C > Zm

(optically uncoupled critical depth deeper than the mixed-layer

depth) tells us nothing on whether SRZm (optically coupled criti-

cal depth deeper/equal/shallower than the mixed-layer depth). If

one is to judge positive growth from the condition C > Zm alone

erroneous conclusion may result, because the sign of the growth

rate will be set by the relation of S and Zm (Figure 6). However,

when C < Zm (optically uncoupled critical depth shallower than

the mixed-layer depth) the sign of the growth rate is always nega-

tive. This realization will perhaps aid the discussion on the

Critical Depth Hypothesis.

Conclusions
In 1935, Graan and Braarud (1935) raised a vivid question:

Thus, the question, whether violent turbulence may make

the phytoplankton increase or decrease, must to a large ex-

tent depend on the thickness of the productive layer and

thus on the light conditions.

In 1953, Sverdrup attempted to answer this question in his semi-

nal paper. To what extent the assumptions of Sverdrup (1953) are

satisfied in the real world and the mathematical elegance and

richness of the Sverdrup formalism applicable are still areas of ac-

tive research (Sathyendranath et al., 2015; Behrenfeld and Boss,

2018). The significance of Sverdrup (1953) paper, in a historical

context, is that Sverdrup presented the first mathematical model

for the growth of phytoplankton in the mixed layer, as a balance

between photosynthesis and losses in the mixed-layer depth. This

opened the way for quantitative tests, refinements, and modelling

based on first principles to come to prominence in this scientific

field, which at the time was quite revolutionary (Sathyendranath

et al., 2015). Sverdrup gave mathematical elegance to an already

elegant concept of Gran and Braarud (1935), by providing a neat

mathematical formulation for the critical depth (Sverdrup, 1953).

Hopefully, the analytical solution presented here provides a fit-

ting closure to the original work, in mathematical terms, with an

exact solution to Sverdrup’s original equations.
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