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Abstract
Satellite remote sensing can provide indicative measures of environmental variables that are crucial to understanding the

environment. The spatial and temporal coverage of satellite images allows scientists to investigate the changes in envi-

ronmental variables in an unprecedented scale. However, identifying spatiotemporal patterns from such images is chal-

lenging due to the complexity of the data, which can be large in volume yet sparse within individual images. This paper

proposes a new approach, state space functional principal components analysis (SS-FPCA), to identify the spatiotemporal

patterns in processed satellite retrievals and simultaneously reduce the dimensionality of the data, through the use of

functional principal components. Furthermore our approach can be used to produce interpolations over the sparse areas. An

algorithm based on the alternating expectation–conditional maximisation framework is proposed to estimate the model.

The uncertainty of the estimated parameters is investigated through a parametric bootstrap procedure. Lake chlorophyll-

a data hold key information on water quality status. Such information is usually only available from limited in situ

sampling locations or not at all for remote inaccessible lakes. In this paper, the SS-FPCA is used to investigate the

spatiotemporal patterns in chlorophyll-a data of Taruo Lake on the Tibetan Plateau, observed by the European Space

Agency MEdium Resolution Imaging Spectrometer.

Keywords Functional principal component analysis � State space model � AECM algorithm � Remote sensing images �
Lake chlorophyll-a

1 Introduction

Satellite remote sensing technology provides a novel

source of information for environmental monitoring, with

increasingly high spatial and temporal resolution. Space

borne sensors, such as the MEdium Resolution Imaging

Spectrometer (MERIS), on board the European Space

Agency Envisat platform, can be used to observe lake

ecosystems around the world (Hout et al. 2001). The

application that motivates this research is the investigation

of spatiotemporal changes of lakes under environmental

change through monthly lake chlorophyll-a (Chl) retrievals

from the MERIS. Lakes are regarded as sentinels of change

(Williamson et al. 2009) and ‘social development and

economic prosperity depend on the sustainable manage-

ment of freshwater resources and ecosystems’ (The United

Nations 2018). Remote sensing data, such as the MERIS

Chl retrievals, are a great source of information to com-

plement in situ measurements and can provide information

on water bodies which are otherwise inaccessible.

The data that motivates the model development in this

paper is the Chl time series of Taruo Lake (also known as

Taro Co). Taruo Lake is located on the southwestern

Tibetan Plateau. It is a saline lake, has an elevation of

4566 m and covers an area of 486.6 km2 (Alivernini et al.

2018). The major Tibetan lakes are regarded as indicators

of climate change on the Tibetan Plateau (Wu et al. 2017).
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Research on the changing water level, temperature and

paleo-climatology has been carried out in order to better

understand the regional responses to the changing climate

in recent decades (Fang et al. 2016; Huang et al. 2017; Ma

et al. 2014). However, the often remote locations of these

lakes make it difficult to monitor them regularly. In the

meantime, ground sampling to accurately capture the spa-

tiotemporal change across the lake is not possible because

of its size. In such situations, remote sensing data provide a

unique source of information and have shown to be crucial

to the study of lake areas and water levels (Wu et al. 2017;

Fang et al. 2016). The Chl data analysed in this paper are

retrieved by the Plymouth Marine Laboratory, as part of

the GloboLakes project (www.globolakes.ac.uk). Section 1

of the supplement provides details of the data processing

procedure. The data set provides observations of monthly

Chl data from June 2002 to April 2012 (i.e. 119 months) at

a spatial resolution of 0:0027� � 0:0027�, for over 1000

large lakes globally, including Taruo Lake. Examples of

the retrieved Chl images from Taruo Lake are displayed in

Fig. 1. Log transformation was applied here as the original

data are right skewed. The percentage of pixels with

observations in the lake area over the monitoring period is

74.58%.

Remote sensing data are often stored as a three-dimen-

sional array, indexed by longitude, latitude and time. They

can be viewed as a time series of spatial images, where

each image is comprised of a set of pixels. The dimen-

sionality of the data, in terms of both the number of images

and the number of pixels which make up each image can be

high, particularly as technology advances and the resolu-

tion of remote sensing instruments increases. However,

despite the potential for high dimensional data, it is often

the case that there are relatively high percentages of

missing observations in both space and time due to factors

such as cloud cover inhibiting sensor views, or losses in

communication with instruments. This combination of high

dimensional but sparse data sets, along with the spatial and

temporal correlations typically displayed in data which are

collected at locations and time points close to one another,

presents a substantial challenge in the statistical modelling

of such data.

The model proposed within this paper aims to identify

and investigate the main spatiotemporal patterns in

potentially high dimensional sparse data, which account for

the complexities in the underlying correlation structure and

reduce the dimensionality of the data to ensure computa-

tional efficiency. More specifically this paper will consider

the example of modelling the spatiotemporal patterns in the

remote sensing lake chlorophyll-a data of Taruo Lake.

Throughout the paper, the phrase ‘spatiotemporal patterns’

refers to the statistical measures that reflect the spatial/

temporal features in the data and their evolutions, e.g. an

(auto)correlation function describing the dependence of

data in time or space, a principal component showing the

contrasts of data in different areas of the lake.

Functional data analysis (FDA) is a common approach

to modelling high dimensional data. Here a functional data

representation is proposed to transform the image data into

bivariate functions. This helps to reduce the dimension of

the remote sensing images from the number of pixels N, to

the dimension of the basis K (K � NÞ. Then a functional

principal component analysis (FPCA) can be applied to

these bivariate functions. A principal component analysis

(PCA), or empirical orthogonal function (EOF) analysis as

referred to in climate science literature, is widely used to

identify important spatial patterns or driving forces of an

environmental process (National Center for Atmospheric

Research 2013). In the case of FPCA, the resulting func-

tional principal components (PCs) provide not only an

interpretation of the spatiotemporal covariance structure of

the data, but also a way of further dimension reduction by

keeping only the functional PCs that contribute most to the

variation in the data in further analysis. However, sub-

stantive missing observations prohibit the use of standard

methods, such as eigen-decomposition and singular value

decomposition, to obtain the functional PCs. Therefore, the

FPCA is reframed as a mixed effect model where the

functional PCs are specified as the random effect of the

mixed effect model (James et al. 2000; Zhou and Pan

2014). This method, referred to as the FPC model in this

paper, can be estimated using the EM algorithm (Rice and

Wu 2001), which is widely used in incomplete data esti-

mation problems.

However, the FPC model in James et al. (2000) and

Zhou and Pan (2014) assumes that the functional objects

(e.g. the longitudinal curves, the spatial images) are inde-

pendent from each other. This may not be appropriate for

modelling remote sensing Chl data, and implementing

functional PCA on correlated data could compromise the

identification of the functional PCs. To overcome this

problem, this paper proposes a new method, the state space

functional principal component analysis (SS-FPCA), to

estimate the functional PCs while taking into account the

temporal correlations in the data. In a nutshell, the SS-

FPCA extends the model in James et al. (2000) by adding a

vector autoregressive (VAR) structure and further reframe

it as a state space model. This new approach is motivated

by the spatiotemporal random effect (STRE) model of

Cressie et al. (2010). The STRE is a state space model of

three hierarchies. It consists of

1. a data model (i.e. the observation equation in a state

space model) associating the observations in specific

locations at time t to the spatiotemporal process of

interest;
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2. a process model (i.e. the state transition equation in a

state space model) describing the spatiotemporal

dynamic of the process of interest;

3. a parameter model specifying distributional assump-

tions and constraints ensuring model identifiability.

There are numerous ways of specifying the temporal

structure in the STRE model, e.g. VAR process, PDEs

describing a physical process (Xu and Wikle 2007).

Whereas the spatial covariance structure in the STRE is

typically modelled using a spatial covariance function, the

SS-FPCA model uses a functional PCA to describe the

spatial covariance structure.

The STRE model can be implemented using the

empirical hierarchical modelling (EHM) based on the

maximum likelihood method (Katzfuss and Cressie 2011)

or the Bayesian hierarchical modelling (BHM) exploiting a

fully Bayesian approach (Katzfuss and Cressie 2012). This

paper follows the EHM approach and develops 2-cycle

alternating expectation–conditional maximisation (AECM)

algorithm (Meng and Van Dyk 1997) to estimate the SS-

FPCA model. The AECM algorithm is an extension of the

EM algorithm. Its flexibility enables the computation to be

carried out with fewer numerical optimization procedures

than a standard EM algorithm would require.

To further investigate the performance of the estimation

algorithm and the model’s ability in extracting spatial and

temporal patterns, a simulation study is carried out on a

1-dimensional space. The simulated data, though not in the

same dimension as the remote-sensing Chl data, are

appropriate in assessing the model because the model

specification and estimation algorithm do not change with

the dimension. To obtain the standard errors of the esti-

mated model parameters, this paper adopted a spatiotem-

poral bootstrap procedure proposed by Fassò and Cameletti

(2009). This may be computationally intensive for large

models, but it is straightforward to implement.

The rest of the paper consists of four sections. Section 2

provides the preliminaries of the SS-FPCA model, fol-

lowed by the formal introduction of the SS-FPCA. Sec-

tion 2.1 proposes the 2-cycle AECM algorithm, along with

the bootstrap method of parameter standard errors. The

simulation study is presented in Sect. 3 and the application

of the model to the remotely sensed Chl is given in Sect. 4.

Section 5 concludes the paper with a discussion of some

potential future extensions.

2 The state space functional PCA (SS-FPCA)
model

The SS-FPCA model is a 3-level hierarchical model built

under the state space model framework. It consists of an

observation equation describing the temporal mean and the

spatial covariance structure through functional PCA, a state

Fig. 1 Examples of the remote sensing Chl of Taruo Lake from four different months. These images are based on the ‘trimmed lake’, where the

lake border and the narrow parts towards the edge of the lake have been removed. The detail of the trimming procedure is given in Sect. 4
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transition equation categorizing the temporal dynamic of

the process and the corresponding distributional assump-

tions ensuring the identifiability of the model. The SS-

FPCA model can be written using the following two

equations,

Zt;s ¼ YtðsÞ þ �tðsÞ

¼ ltðsÞ þ UðsÞ>bt þ
XP

p¼1

UðsÞ>hpapt þ �tðsÞ

¼ ltðsÞ þ UðsÞ>bt þ UðsÞ>Hat þ �tðsÞ

ð1Þ

bt ¼ Mbt�1 þ ut; ð2Þ

where Zt;s is the observed process at location s, YtðsÞ is the

underlying spatial process and �tðsÞ is the measurement

error. The level 1 data model (1) consists of the compo-

nents of the underlying process. Specifically, ltðsÞ is an

optional fixed mean component. The term UðsÞ>bt is the

dynamic mean function constructed using spatial basis

functions UðsÞ ¼ ð/1ðs; . . .;/KðsÞÞ> and time varying

basis coefficient vector bt (referred to as the dynamic

component), modelling the temporal evolution of the spa-

tial process. bt are assumed to be temporally dependent to

capture the temporal dependence in the data, and they do

not need to be stationary. The term UðsÞ>Hat is an infinite

Karhunen–Loève expansion truncated at the Pth order1

using P eigenfunctions UðsÞ>hp, p ¼ 1; . . .;P, and the

corresponding random coefficient vectors at (referred to as

the FPCA component), describing the non-dynamic spatial

variation in the data. The order P is typically chosen so that

the truncated expansion accounts for an appropriate

amount of variation in the data. More information on the

selection of order P is given in Sect. 2.3.1. The random

coefficients at, though indexed by t, are assumed to be

temporally independent. The level 2 process model (2)

specifies the temporal dynamic in the data. Here the

dynamic is characterized by a 1st order vector autore-

gressive model, VAR(1), with coefficient matrix M. This is

motivated by the exploratory analysis of the remote sensing

Chl data. As the deterministic part of the temporal structure

(e.g. seasonality) is accounted for by the mean component

ltðsÞ, a first order dependence is appropriate for this

application. In particular, the autocorrelation functions of

the Chl time series from individual pixels consisting of

Taruo Lake were computed in the exploratory analysis, and

it appears that majority of the time series follow an AR(1)

process. Higher order dependence is plausible. The space-

time AR(p) model in Lagos-Álvarez et al. (2019) and

Padilla et al. (2020) provides a potential route. Although it

may complicate the model estimation, partly due to the

difficulty in deciding on the optimal order, and partly due

to the increased computational cost as high dimensional

optimization procedures will be inevitable.

The following distributional assumptions are made. The

measurement errors �tðsÞ are assumed to be independently

and identically distributed (i.i.d) as Nð0; r2Þ. The residuals

of the process model ut are assumed to be normally dis-

tributed as Nð0;HÞ, where H is symmetric and positive

definite. The basis matrix U ¼ ð/1ðsÞ>; . . .;/KðsÞ>Þ> and

the coefficient matrix H ¼ ðh1; . . .; hPÞ are assumed to be

orthonormal, so that their product would be orthogonal

eigenfunctions. The random coefficient vector at is

required to satisfy the assumptions of PC scores as in

James et al. (2000), with covariance matrix

K ¼ diagfk1; . . .; kPg, and kp, p ¼ 1; . . .;P, arranged in

decreasing order. In other words,

U>U ¼ I; H>H ¼ I

at �Nð0;KÞ; K ¼ diagfk1; . . .; kPg
�t �Nð0; r2IÞ; ut �Nð0;HÞ:

Some remarks on the SS-FPCA model are made here.

1. The SS-FPCA model has a structure that resembles the

STRE model in Cressie et al. (2010) and Katzfuss and

Cressie (2011). However, the two models are built for

different purses. Hence the specification of the spatial

and temporal components differs. Whilst the STRE

model aims at spatiotemporal prediction, the SS-FPCA

model focuses more on identifying the spatiotemporal

patterns in the form of functional PCs. Instead of using

a spatial correlation function to describe the spatial

variation as in the STRE, the SS-FPCA interprets the

spatial variation through the functional PCs.

2. The VAR(1) coefficient matrix M may be parame-

terised according to the properties of the data. For

example, M ¼ diagfm1; . . .;mKg assumes that each

element in bt evolves separately and M ¼ I corre-

sponds to a local level model for the system transition

equation (2). According to Shumway and Stoffer

(2006), estimation of an unconstrained M is straight-

forward. The estimation of a diagonal M can also be

made using only analytic solutions, following the

method in Xu and Wikle (2007). The estimation of a

coefficient matrix M of more complicated structure

would require more effort. However, it could be

beneficial if the data suggest such a dynamic structure.

3. It is possible to parameterise the H matrix using, e.g. a

covariogram model and a conditional autoregressive

model (Cressie and Wikle 2011; Xu and Wikle 2007),

1 The Karhunen–Loève expansion is an infinite expansion of a

stochastic process, whose covariance function can be defined through

a Hilber–Schmit kernel. The connection between the K–L expansion

and functional PCA is explained in James et al. (2000) and Zhou and

Pan (2014).
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to reflect the spatiotemporal dynamic of the real

process. Since the state transition equation (2) is to

do with the spatial basis coefficients, the structure of its

residuals is not straightforward to see. Therefore, in

this paper, H is left unstructured to avoid many

impractical assumptions.

4. To ensure identifiability, it is assumed that fbtgTt¼1 and

fatgTt¼1 are independent; fbtgTt¼1 is independent of

f�tgTt¼1; fatgTt¼1 is independent of futgTt¼1 and f�tgTt¼1.

In addition, it is assumed that the estimation of the

dynamic coefficient bt at time point t relies on

information from all the observed data fZtgTt¼1. On

the other hand, the estimation of the PC scores at at

time point t requires only the information from Zt as in

a FPCA.

2.1 Model estimation

In theory, both the EHM (likelihood method) and the BHM

(Bayesian method) are applicable to the estimation of the

SS-FPCA model (in a similar way to the STRE model).

However, when it comes to the large volume of the remote

sensing data, the EHM becomes a natural choice as a fully

Bayesian approach would be computationally intensive.

Implementation using the BHM could encounter difficul-

ties, e.g. sampling from high-dimensional distributions and

monitoring convergence of a large number of parameters.

On the contrary, the EHM implementation requires only

analytical solutions or low-dimensional numerical opti-

mizations. In this section, a 2-cycle AECM algorithm is

developed to estimate the SS-FPCA model.

2.2 The alternating expectation–conditional
maximisation (AECM) method

The AECM algorithm was first proposed by Meng and Van

Dyk (1997) and was developed based on various extensions

of the classic EM algorithm. It makes use of data aug-

mentation and model reduction to create an efficient

algorithm for models with complex structures. Particularly,

data augmentation refers to the ‘methods for constructing

iterative optimization or sampling algorithms via the

introduction of unobserved data or latent variables’ (van

Dyk and Meng 2001) and model reduction refers to ‘using

a set of conditional distributions in a computation method

designed to learn about the corresponding joint distribu-

tion’ (van Dyk and Meng 2010). Both techniques, when

appropriately applied, lead to an improved algorithm.

An AECM algorithm typically consists of C (C� 1)

cycles within each iteration. Each cycle corresponds to one

type of data augmentation and is paired with Sc ðSc � 1Þ

conditional maximisation (CM)2 steps. The subscript c of S

indicates that the number of CM-steps is allowed to vary

with cycles (Meng and Van Dyk 1997), giving more flex-

ibility to the design of the algorithm. Omitting the iteration

index (it), the target function in the E-step of the ðcþ 1Þth
cycle of the AECM algorithm can be written as (Meng and

Van Dyk 1997)

Q½cþ1	 W;W½c	
� �

¼ E L W;Z½cþ1	
aug

� �
Zobs;W

½c	��
h i

;

where W is the complete parameter set, W½c	 is the

parameter set corresponding to the data augmentation of

cycle c, Zobs is the observed data set, Z½cþ1	
aug is the aug-

mented data set in cycle cþ 1 and Lð�Þ represents the log-

likelihood function. Then the sth CM-step in cycle cþ 1

finds W½cþ s
Scþ1

	
such that

Q½cþ1	 W½cþ s
Scþ1

	
;W½c	

� �
�Q½cþ1	 W;W½c	

� �

8 W 2 W½cþ1	
s 
 W 2 W : g½cþ1	

s ðWÞ
n

¼ g½cþ1	
s W½cþ s

Scþ1
	

� �o
;

where W½cþ1	
s is the parameter space and g

½cþ1	
s ðWÞ is the

corresponding constraint function. Due to its flexibility, the

AECM algorithm has seen wide applications. Examples

include the estimation of mixture models (McLachlan et al.

2003; McNicholas and Murphy 2008), fitting mixed mod-

els with non-exponential family distributions (Ho and Lin

2010).

2.3 The 2-cycle AECM for the SS-FPCA model

The AECM algorithm for the SS-FPCA model consists of

two cycles. Specifically, the first cycle estimates the

parameters H, M and random coefficient bt associated with

the dynamic component; the second cycle estimates the

parameters and random effects associated with the FPCA

component, H, K, at, and the error variance r2. Using this

partition of parameter space and the corresponding data

augmentation, all parameters have closed form expressions

for their MLEs. A flow chart of this algorithm is given in

Fig. 2.

To introduce the algorithm in full, the following nota-

tions are used. The subscripts obs, mis and aug indicate the

observed, missing and augmented data respectively. The

superscript [1], [2] are the cycle indices and superscript (it)

is the iteration index. The subscript 1: t refers to the time

2 In a generalised EM algorithm, instead of maximise the likelihood

over all parameters simultaneously, ‘conditional maximisation’ is

sometimes used where the computation of the maximum likelihood

estimation of some of the parameters is conditioned on the current

optimal values of the other parameters. Details on generalised EM

algorithm can be found in McLachlan and Krishnan (1997).

Stochastic Environmental Research and Risk Assessment

123



series from time point 1 to t, e.g.

Z1: T ¼ fZ1; . . .;ZTg ¼ fZtgTt¼1, where Zt ¼
ðZt;s1

; . . .; Zt;snÞ
>

is the vector of all observations at time t.

To emphasize the impact of missing observations, the basis

matrix corresponding to the observed locations at time t is

denoted as Ut, which is matrix U with rows corresponding

to missing locations removed.

Specifically, the observed data of cycle 1 are

Zobs ¼ fZ1; . . .;ZTg; the missing data are

Zmis ¼ fb0; . . .; bTg. The random component at is treated

as part of the residuals in this cycle. The complete data

distribution is

Fig. 2 The flow chart of the

2-cycle AECM algorithm for

the SS-FPCA model
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f ðZ1: T ; b0:TÞ

¼
YT

t¼1

f Ztjbt; Wð Þf btjbt�1; Wð Þf b0; Wð Þ:
ð3Þ

This gives the likelihood function and hence the target

function Q½1	 W½1	; Wðit�1Þ
� �

for maximisation as

E �2L W½1	;Z½1	; eW
½1	� ����Z1: T ;W

ðit�1Þ
h i

: In the (it)th itera-

tion, the E-step estimates the sequence of fbtgTt¼1 using the

Kalman filter/smoother. Then the CM-steps of cycle 1 are

run to obtain the estimation of parameters in

W½1	 ¼ fH;Mg, which maximizes Q½1	 W½1	; Wðit�1Þ
� �

.

They both have closed form solutions for their MLEs,

MðitÞ ¼ V10V
�1
00 ð4Þ

HðitÞ ¼ 1

T
V11 � V10 MðitÞ

� �>
�

�MðitÞV>
10 þMðitÞV00 MðitÞ

� �>
�
;

ð5Þ

where the matrices are V11 ¼
PT

t¼1 BtjT þ btjTb
>
tjT

� �
,

V00 ¼
PT

t¼1 Bt�1jT þ bt�1jTb
>
t�1jT

� �
and

V10 ¼
PT

t¼1 Bt;t�1jT þ btjTb
>
t�1jT

� �
, following Shumway

and Stoffer (2006). Note that btjT and BtjT are the Kalman

smoothed version of bt and its corresponding variance

matrix Bt. In addition, for a diagonal structured VAR

coefficient matrix M ¼ diagfm1; . . .;mKg, the MLE can be

derived as ðmðitÞ
1 ; . . .;m

ðitÞ
K Þ> ¼ L�1b, where L ¼ ðlijÞ ¼

ðtrfH�1 oM
omj

V00
oM
omi

>gÞ, b ¼ ðbiÞ ¼ ðtrfH�1 oM
omi

V>
10gÞ, fol-

lowing the approach in Xu and Wikle (2007).

The algorithm then moves on to cycle 2, where the

observed data are Zobs ¼ fZ1; . . .;ZTg and the missing data

are Zmis ¼ fb0; . . .; bT ; a1; . . .; aTg. Assuming indepen-

dence between fatgTt¼1 and fbtgTt¼1, the complete data

distribution in this cycle is

f ðZ1:T ;b0:T ;a1:T ;WÞ ¼
YT

t¼1

f Ztjbt;at;Wð Þf btjbt�1;Wð Þ

f at;Wð Þf b0;Wð Þ
ð6Þ

This gives the likelihood function and hence the target

function Q½2	 W½2	;Wðit;it�1Þ
� �

for maximisation. Note that

the superscript of the parameter set is ðit;it�1Þ, empha-

sizing that part of its elements have already been updated

in cycle 1. The E-step of cycle 2 estimates the sequence of

fbtgTt¼1 with the up-to-date HðitÞ and MðitÞ and the sequence

of fatgTt¼1 using the estimation algorithm of the FPC

model. The CM-step computes the MLEs of the elements

in parameter set W½2	 ¼fH;K;r2g. In particular, the coef-

ficient matrix H¼ðh1;...;hPÞ is estimated column by col-

umn and the covariance matrix K¼diagfk1;...;kPg is

estimated element by element.

r2ðitÞ ¼ 1

N

XT

t¼1

tr UtBtjTU
>
t

��

þ Zt �UtbtjT

� �
Zt �UtbtjT

� �>
	

þ tr UtH data>t H
>U>

t

n o

� 2 tr UtHâtZ
>
t �UtH

datb>t U>
t

n oi

ð7Þ

where N ¼
PT

t¼1 nt is the sum of the number of observa-

tions at each time point t, and for p ¼ 1; . . .;P,

kðitÞp ¼ 1

T

XT

t¼1

data>t ðp;pÞ ; ð8Þ

hðitÞp ¼
XT

t¼1

data>t ðp;pÞU
>
t Ut

" #�1XT

t¼1

U>
t

âtðpÞZt �Ut
datb>t ðp;�Þ

� �>
�

X

j 6¼p

data>t ðp;jÞUtĥj

" #
;

ð9Þ

where âtðpÞ is the pth element of vector

E at Z1:T ;W
ðit;it�1Þ��

h i
, data>t ðp;jÞ is the (p, j)th element of

E ata
>
t Z1:T ;W

ðit;it�1Þ��
h i

and datb>t ðp;�Þ represents the pth row

of E atb
>
t Z1:T ;W

ðit;it�1Þ��
h i

. Note that hðitÞp is updated

sequentially with ĥj ¼ h
ðitÞ
j for j\p and ĥj ¼ h

ðit�1Þ
j for

j[ p. Full details of the algorithm are provided in sec-

tion 2 of the supplement.

After running through cycle 1 and cycle 2, the parameter

set is updated to WðitÞ, completing one iteration of the

AECM algorithm. The iteration stops when the relative

change of the log-likelihood is smaller than a threshold.

The convergence of some crucial parameters can be used to

evaluate the convergence of the algorithm.

Last but not least, the design of the 2-cycle AECM

algorithm, including partition of the parameter space and the

data augmentation, also considers the asymptotic properties

of the algorithm. It is widely acknowledged that a general-

ized EM algorithm will converge to a stationary point (even

if not the maximum) (McLachlan and Krishnan 1997). To

ensure the convergence of the conditional M-steps in an

ECM algorithm, an additional condition called the ‘space-

filling’ condition is required. It was introduced in Meng and

Rubin (1993) and its extension to the AECM algorithm was

made in Meng and Van Dyk (1997). The algorithm
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described above uses a partition of the parameter space that

satisfies the ‘space-filling’ condition. Note that such partition

is not unique. The advantage of this particular design is that

all parameters have analytical solutions of their MLEs, i.e.

no (high-dimensional) numerical optimization is required.

2.3.1 Initialization

The initialization of the algorithm follows the common

approaches used in the initialization of the state space

model and the FPC model.

1. The initial state b0 follows a normal distribution,

b0 �N 0; s2Ið Þ, where s2 is set to a relatively large

number to reflect the lack of knowledge of the initial

situation, e.g. s2 ¼ 100. The initial value of b is

computed through fitting the linear regression model

Z ¼ Ub using vectorized data, Z ¼ vecðZ1; . . .;ZTÞ,
and is denoted as bð0Þ.

2. The initial value of M is taken to be M ¼ I. The initial

value of the covariance matrix of the state transition

equation H is initialized as r2
hI, where

r2
h ¼ 1

n

Pn
i¼1 Var½Ztðxi; yiÞ	. Some other values of r2

h

may be used depending on the features of the data.

3. The sum of the residuals and the FPCA component is

then calculated as r̂t ¼ UtHat þ �t ¼ Zt �Utb
ð0Þ.

Rewriting UtHat as Utgt and fitting the model r̂t ¼
Utgt þ �t gives the least square estimate

ĝt ¼ ðU>
t UtÞ�1U>

t r̂t. Apply the eigenvalue decompo-

sition Cov½ĝt	 ¼ URaU
>. The initial value of H can be

obtained as Hð0Þ ¼ U.

4. Finally, set the initial value of K to be Ra and the initial

value of r2 to be 1
N

PT
t¼1 r̂

>
t r̂t.

There are two more parameters to select before imple-

menting the AECM algorithm, the spatial basis dimension

K and the number of the functional PCs P. The following

two stage method is proposed here to avoid selection using

cross validation (which is computationally costly).

1. First choose the basis dimension K. The selection uses

the information criteria, such as AIC and BIC, and can

be based on (1) the functional data representation or (2)

the SS-FPCA model. The advantage of using the

functional data representation is computational effi-

ciency. The advantage of using the SS-FPCA is that it

involves a comprehensive consideration of the

dynamic and the FPCA components. However, the

computation time would be much longer and therefore

might not be practical in some situations.

2. Then the selection of the expansion order P follows.

There are also two possible approaches, (1) fitting a

series of models with increasing expansion orders and

terminating at the expansion order where the variances

of the remaining PCs are negligible as in Zhou and Pan

(2014), (2) fitting a high rank or full rank model, then

choosing the expansion order based on the magnitudes

of the variances of the PCs. It is also possible to use

AIC, BIC to select the expansion order. This might

serve the interpolation purpose better; whereas the

variance proportion criterion may suit the interpreta-

tion purpose better. Note that applying the information

criteria can be computationally more intense as models

with higher P are required in order to make the

selection. A looser convergence criterion may be used

during the selection to reduce computational cost.

The choice of K and P may also be made based on the

background of the application, if relevant information is

available, such as the level of smoothness of the process by

nature.

2.4 Estimate the standard errors of model
parameters

A potential drawback of the EM-type algorithm is that

there is no straightforward solution to the standard errors of

the estimated parameters. To carry out statistical inference,

resampling methods, such as bootstrap, are often used.

Implementations can be found in Rice and Wu (2001),

Zhou and Pan (2014) and Fassò and Cameletti (2009). This

approach, though computationally intensive for a complex

model, is relatively straightforward to apply. Alternatively,

the inverse of the Fisher information matrix IðWÞ�1
can be

used to estimate the standard errors of the parameters W
(McLachlan and Krishnan 1997). However, approximation

of the Fisher information matrix of the (observed) incom-

plete data is required (Louis 1982; McLachlan and Krish-

nan 1997) and it is not easy for dependent data. The

relatively large number of unknown parameters can also

make the inversion of the Fisher information matrix

problematic. Cressie et al. (2010) and Katzfuss and Cressie

(2011) derived the mean squared prediction errors (MSPE)

for their spatio-temporal predictors. In situations where the

predicted values are of interest, the MSPE can provide a

computationally efficient way to quantify the uncertainty.

Unfortunately, this is not easy for the SS-FPCA model.

Due to the unknown parameters in the observation equation

(1), approximations are required to compute the MSPE. For

a predictor of the true process bY tðHÞ ¼ E½Utbt þ
UtHat jZ1: T 	 with known parameter H, the MSPE has a

simple expression,
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mðHÞ ¼ E bY tðHÞ � Yt

� �2

 �

¼ UBtjTU
> þUHAtjTH

>U> ;

where AtjT ¼ Var½at jZ1:T 	 ¼ data>t � âtâ
>
t . The problem

is, H is unknown in practice and plugging the estimated bH
in mðHÞ underestimates the MSPE. To solve this problem,

Zimmerman and Cressie (1992) proposed an adjustment

method, where the MSPE is approximated by

MSPE � mðHÞ þ tracefCðHÞDðHg; ð10Þ

where CðHÞ ¼ Var½obY tðHÞ=oH	 and

DðHÞ ¼ E½ðĤ�HÞðĤ�HÞ>	. For the SS-FPCA model,

however, DðHÞ requires another approximation using the

inverse Fisher information matrix and its performance is

yet to be investigated. Due to this concern, this paper will

not consider the MSPE, but the spatiotemporal bootstrap to

quantify the uncertainty.

There are various methods to bootstrap the temporally or

spatially dependent data, as documented in Lahiri (2003).

Resampling method based on the innovation sequence is

frequently mentioned in literature for state space models

(Stoffer and Wall 1991; Shumway and Stoffer 2006;

Katzfuss and Cressie 2011). For a spatiotemporal process

modelled as a state space model, however, it is important to

ensure that both the spatial and temporal components are

sampled appropriately. This paper follows the approach of

Fassò and Cameletti (2009) and implements a parametric

bootstrap procedure tailored to the SS-FPCA model.

Specifically, the spatial and temporal components are

generated separately, based on their own covariance

structures, giving the bootstrap sample

b�t ¼ Mb�t�1 þ u�t ð11Þ

Z�
t ¼ Ub�t þ n�t þ ��t ; ð12Þ

for t ¼ 1; . . .; T . The distributions associated with the

residual components u�t , �
�
t and the spatial random effects

n�t are u�t �Nð0; bRuÞ, n�t �Nð0; bRnÞ and ��t �Nð0; bR�Þ,
where bRu ¼ bH, bRn ¼ U bH bK bH>U> and bR� ¼ r̂2I, from

the estimated model using the original data. To carry out

the inference, generate a large number of bootstrap samples

using the above distributions and then estimate the standard

errors of the estimated parameters from the estimated

parameters of the bootstrap samples. The corresponding

confidence intervals can be constructed using percentiles or

as normal intervals (i.e. based on the bootstrap variance

estimates). A percentile interval of the interpolatons can be

constructed directly from the bootstrap samples. The

approximated MSPE in formula (10) may be computed by

plugging in the bootstrap variances as the elements in

DðHÞ. Although it still requires much computational effort

to calculate the elements in CðHÞ.

3 Simulation

Before the SS-FPCA model is applied to the remote

sensing Chl data, a simulation study is carried out to

investigate if the model, estimated using the proposed

2-cycle AECM algorithm, can identify the temporal and

spatial structure in the data. For computational efficiency

and better visualisation of the results, the simulation was

conducted on a 1-dimensional space. This, though different

from the data under study, would not result in loss of

generality as the model assumptions and the estimation

method remain the same. A similar study on the STRE

model using 1-dimensional spatial data was conducted in

Katzfuss and Cressie (2011).

3.1 Simulation design

A few key aspects of the simulation design are listed

below.

1. The dimension of the simulated data is 50 � 100,

where n ¼ 50 is the number of observations (indexed

by s) at each time point in the 1-dimensional space

D ¼ ½1:1521; 1:5661	 and T ¼ 100 is the total number

of time points (indexed by t). The function argument s

represents the spatial location in the 1-dimensional

space. This means, the data are Zt;s, s 2 D, for s ¼
1; . . .; 50 and t ¼ 1; . . .; 100.

2. A univariate cubic B-spline basis with 3 equally spaced

interior knots is used. This gives the basis dimension of

K ¼ 3 þ 3 þ 1 ¼ 7. The basis coefficient vector series

bt ¼ ðb1t . . . bKtÞ>, t ¼ 1; . . .; T , are generated using

K ¼ 7 random walk processes fuktgTt¼1, k ¼ 1; . . .; 7,

each with distribution ukt �Nð0; hkÞ, and a random

zero mean starting point. This means M ¼ I for the

state transition equation. Specifically,

fh1; . . .; h7g ¼ f0:33; 0:25; 0:42; 0:25; 0:27; 0:62; 0:28g:

This gives the dynamic component (using matrix

notation) Z
ðdÞ
t ¼ Ubt.

3. Apply functional PCA to a subset of the remote sensing

Chl data of Lake Victoria,3 to extract the eigenfunc-

tions and eigenvalues. A valid covariance matrix Rchl

can be constructed using the leading two eigenfunc-

tions, n1ðsÞ, n2ðsÞ, and the corresponding eigenvalues,

k1 ¼ 9:64, k2 ¼ 1:80. The FPCA component are then

generated as Z
ðsÞ
t ¼ R

1
2

chl Yt, where Yt ¼

3 Lake Victoria is a large lake in Africa. The Lake Victoria Chl data

are part of the MERIS Chlorophyll-a product processed by Plymouth

Marine Laboratory. There are near complete observations in some

areas of the lake, and hence are used here to generate artificial data

that resemble the real data.
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ðYt;1; . . .; Yt;50Þ> is a sequence of random realizations

from the Nð0; IÞ distribution. Finally, multiply the

FPCA component Z
ðsÞ
t with a factor j ðj� 1Þ to control

the strength of the spatial signal. In this simulation

study, j ¼ 1:25 and j ¼ 1:5 are considered.

4. The error component �t is generated from the normal

distribution Nð0; r2IÞ. In this simulation study r2 ¼
0:01 and r2 ¼ 0:25 are considered.

5. The dynamic, FPCA and error components are then

combined to obtain the simulated spatio-temporal data,

as Zt ¼ Z
ðdÞ
t þ jZðsÞ

t þ �t.

6. To create the missing data, first generate a series of 100

missing proportions pt, t ¼ 1; . . .; 100, from the uni-

form Uð0; 1Þ distribution. Then generate 50 binomial

random variables from distribution Bð1; ptÞ for each

t. Regard the observations at the locations correspond-

ing to 0 as missing. This gives a much higher missing

proportion than the Taruo Lake Chl time series, but

such level of missing observations is not uncommon in

the retrieved data of other lakes from MERIS.

The spatial missing patterns are not considered in this

simulation in order not to over-complicate the simulation

design. In the application for this paper, missing pixels/

images in the remotely sensed Chl data are identified to be

due to exogenous causes. Hence, such patterns should not

overly impact parameter estimation. In a simulation study

on the FPC model applied to remote sensing lake surface

water temperature data in Gong (2017), spatial patterns in

missing data were investigated, along with different levels

of missing proportions. The results suggested that the

spatial missing pattern itself did not appear to have a strong

impact on the fitted model. The interaction of high missing

proportions and missing patterns tend to be more

influential.

An additional factor of interest is the initialization

method of the 2-cycle AECM. Two initialization methods

are considered, the standard method as described in Sect.

2.3.1 and a separate method which uses Z
ðdÞ
t þ �t to ini-

tialize the dynamic component and Z
ðsÞ
t þ �t to initialize

the FPCA component. The separate method, though only

plausible in simulation, is supposed to provide initial val-

ues with higher precision. It is interesting to see if there

would be any distinctive difference between the results

using two different initialization methods.

The initialization method and the strength of the spatial

signals are matched to create three combinations, weak ?

standard, weak ? separate and strong ? standard. For each

combination, four different situations based on noise levels

(small or large) and missing conditions (complete or

missing) are created, giving 12 scenarios in total (see

Fig. 3).

3.2 Simulation results

500 replicates were run for each scenario. The computation

times varies, depending on the number of iterations

involved (from less than 10 to 500). On average, one

iteration took 0.25–0.5 s on a standard Windows desktop

computer.

The fitted models are capable of recovering the patterns

of the dynamic and the FPCA components (up to a sign

change of the eigenfunctions). The top three panels in

Fig. 4 represent the estimated first eigenfunction n1ðsÞ from

scenarios S4, S8 and S12, with the true eigenfunction

plotted as the red curve. S4, S8 and S12 represent three

simulation scenarios labeled as weak ? standard, weak ?

separate, strong ? standard, each paired with large noise

and missing observations. Clearly, the pattern in n1ðsÞ is

very well identified. All 500 replicates produced curves

bearing the feature of the true eigenfunction. The situation

with the second eigenfunction is slightly worse, with

occasional miss of the target, especially when the spatial

signal is weak (see bottom left panel of Fig. 4). However,

considering that the magnitude of the variance of the first

PC is more than five times of the variance of the second

PC, it is not surprising that the pattern in n2ðsÞ is harder to

capture.

The patterns in the time series of the coefficient vector

were also captured by the smoothed series fbtjTgTt¼1. Fig-

ure 5 gives an example of the smoothed series of each

component of bt, bkt, k ¼ 1; . . .; 7, taken from scenario S1

(the weak ? standard, paired with small noise and com-

plete data scenario). It is straightforward to see that the

smoothed series (dark grey curves) track the true simulated

series (red curves) in the majority of the cases. The fig-

ure also shows a relatively large difference in the varia-

tions, with the 3rd component having the largest variation

and the 7th component varying the least. This result could

be attributed to the feature of the data, where the variation

Fig. 3 A diagram showing the settings of 12 simulation scenarios.

The abbreviations used in the diagram are S small noise, L large noise,

C complete data and M missing data
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is larger in the range of support of the third basis function

/3ðsÞ in UðsÞ ¼ ð/1ðsÞ; . . .;/7ðsÞÞ>.

The estimation of the variances of three model compo-

nents appears to be more difficult. There is an underesti-

mation of k1, k2 and an overestimation of r2. The

Fig. 4 (Top) The estimated (black curves) and the true (red curve) values of eigenfunction of PC1, from scenario S4, S8 and S12. (Bottom) The

estimated (black curves) and the true (red curve) values of eigenfunction of PC2, from scenarios S4, S8 and S12

Fig. 5 The Kalman smoothed fbtjTgTt¼1 from scenario S1. From left to right, top to bottom are the smoothed bktjT , k ¼ 1; . . .; 7 curves (black) and

the true curves (red)
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estimation of hk, k ¼ 1; . . .; 7, also tends to be biased in

some situations, but the pattern in the scales is captured by

the estimated values. The increase in the strength of the

spatial signal and the more precise separate initialization

method did not have a big influence on the estimation.

However, the separate initialization method appears to

have the potential of avoiding extreme results in the esti-

mation of hk. In addition, introducing sparsity to the data

did not make a big difference in the residual sum of squares

(RSS), and the RSS values are consistent with the true

variance of the model residuals. Figures and tables showing

the estimated variance parameters and the RSS of the

interpolations for all 12 simulation scenarios can be found

in section 3 of the supplement.

In general, this simulation study showed that the SS-

FPCA model was capable of identifying the spatio-tem-

poral patterns in the data. Particularly, the estimated model

captured the temporal evolution of the basis coefficients

and identified the eigenfunction in majority of the repli-

cates. The SS-FPCA model appeared to lack precision in

estimating the variance components. Strengthening spatial

signal and changing initialization method did not improve

the results in this case. This can be attributed to the spatial

confounding between various model components, which is

common to many spatial and spatio-temporal models.

Discussion on this topic can be found in Reich and Hodges

(2008), Hodges and Reich (2010) and Hughes and Haran

(2013). Solutions to the problem of the SS-FPCA model

can be quite challenging. Examining the scales and features

of the variation of the data may be of help. Estimating and

then fixing some parameters before launching the AECM

algorithm may also be sensible, such as in the estimation of

the spatiotemporal fixed rank kriging model in Zammit-

Mangion and Cressie (2020). In addition, running the

algorithm multiple times using different initial values can

be a choice. Although the simulation study and the test

carried out in Gong (2017) suggested that the algorithm

appears to be quite robust to initialization of the algorithm.

4 Application

The monthly Chl (mg=m3) time series from June 2002 to

April 2012 for Taruo Lake were investigated here. A total

of 19 images at the beginning and the end of the observing

period were excluded from the modelling due to limited

data availability. This gives 100 monthly images in the data

set, with 15.03% data missing. The data were first centered

by subtracting a spatial mean at each time point to remove

the seasonal pattern. As satellite retrievals of the lake

border pixels are often associated with higher uncertainty

(Rodgers 1990), the lake was trimmed to retain a

rectangular grid of size 103 � 45, which covers the main

body of the lake. The resulting images were modelled

using SS-FPCA. Specifically, a VAR(1) process was used

in the state transition equation and the coefficient matrix M

was set to be diagonal. This specification is reasonable to

account for temporal correlation in the centered Chl image

time series.

The orthogonal spatial basis U was created based on a

tensor spline basis (Wood 2017) with equally spaced knots.

For a lake of more irregular shape, bivariate basis on tri-

angular mesh might be required (Guillas and Lai 2010;

Ettinger et al. 2012). The basis dimension K and the

number of PCs P were chosen using the two stage method

described in Sect. 2.3.1. The appropriate basis according to

the AIC was of dimension K ¼ 8 � 6 (4 knots along lon-

gitude and 2 knots along latitude). The variance proportion

criterion of � 80% suggested P ¼ 6. The standard proce-

dure in Sect. 2.3.1 was used to initialize the model

parameters. In addition, a Kalman filtering threshold of

90% was applied to avoid the overfitting of a few very

sparse images. That is, any images with less than 10% of

observations available were not filtered, but smoothed

based on the information from their neighbouring images.

The AECM algorithm converged after 6 iterations, under

the criterion of the change of the log-likelihood being


 0:05%.

A total of 6 functional PCs estimated from the model, of

which three have greater than 10% contributions to the

variation explained by the FPCA component. Their corre-

sponding eigenvalues are k̂1 ¼ 356:18, k̂2 ¼ 254:21 and

k̂3 ¼ 170:95. Figure 6 shows the plot of the eigenfunctions

and the corresponding scores of the leading three func-

tional PCs. The 1st PC explains 35.4% of the variations in

the FPCA component. It displays the contrast between the

west and the east parts of the lake (top left of Fig. 6),

specifically, a contour of high values is evident around

84.05–84.10 longitude and 31.08–31.10 latitude, which

could indicate the potential for an algal bloom and is

perhaps the most distinctive spatial pattern in the Chl

anomalies (recall that the data were centered) of Taruo

Lake. The PC scores and the comparison to original data

indicate that this feature mainly occurs in July, August

between 2006 and 2008 (see Fig. 1 for original data) and

February, March in 2008. The proportion of variation

explained by the 2nd PC is 25.2%. It has a distinctive

northeast corner (top middle of Fig. 6) of low values in

contrast to the rest of the lake. The dominant feature in the

scores of the 2nd PC indicates an image in February 2007

when the remote sensing values are very different from the

other images (bottom left of Fig. 1), which highlights the

potential of the method to automatically detect images that

require closer inspection for e.g. unusual event, retrieval
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algorithm problem. The 3rd PC explains 17.0% of the

variation. It shows another contrasting pattern between the

east and west (top right of Fig. 6). Traces of this pattern

can still be seen in original data, but it is less distinctive

than the pattern displayed in the 1st PC. The 3rd PC

appears to have low scores for images in February for

2006, 2007, 2008 and 2011, when there are very few data

initially (bottom right of Fig. 1).

The estimated VAR(1) coefficient matrix cM has the

norm of the determinant less than 1, suggesting that the

temporal evolution of the spatial process is stationary. The

smoothed dynamic component btjT provides additional

information on the system dynamics. However, as they are

spatial basis coefficients, it would be more helpful to look

at the evolution of the product UbtjT , rather than the

coefficient time series alone (see section 4 of supplement

for an example).

Interpolations can be produced using the estimated SS-

FPCA model. Figure 7 presents the observed (left column)

and the interpolated (right column) log transformed

chlorophyll-a data from July and February 2006, which

corresponds to two of the images presented in Fig. 1. In

summary, the mean squared errors (MSE) of the interpo-

lations across space and time is 0.0889, as compared to

0.1054 from the interpolations using the FPC model with

the same expansion order P ¼ 6 (see section 4 of the

supplement for more information of the FPC model applied

to the Taruo Lake Chl data). This indicates another benefit

of accounting for the temporal correlations in the data. The

residual sum of squares (RSS) over time appeared to be

associated with data availability. The values vary from

close to 0 at well observed time points to around 0.7 at time

points with very sparse observations. The RSS over space

are of the similar scale in majority of the pixels, apart from

a few pixels around an island in the lake, where large

residuals are found. This is consistent with the higher

uncertainties in the satellite retrievals in these pixels.

Related figures are given in section 4 of the supplement.

There appear to be a few values outside the range of the

observed data in the interpolations of the very sparse

images, such as the bottom left image in Fig. 7. Similar

issues (very high or low values) were found in the inter-

polations produced using the FPC model. It is hard to tell

whether these values over or under estimate the real situ-

ation, as observations in those pixels are missing. However,

it can be helpful to carry out some investigations, espe-

cially if the interpolations are to be used in further analysis.

Finally, the standard errors of the estimated parameters

were produced using the spatiotemporal bootstrap descri-

bed in Sect. 2.4. 200 bootstrap samples were generated

using the estimated parameters above. The resulting con-

fidence intervals of the VAR(1) coefficients m̂1; . . .; m̂48,

the variance of the PCs k̂1; . . .; k̂6, and the PC coefficient

vectors ĥp, p ¼ 1; . . .; 6, are presented in section 4 of the

supplement.

5 Discussion

The SS-FPCA model proposed in this paper provides a way

of investigating the spatiotemporal patterns in a time series

of spatial images with missing observations. Particularly,

the estimated coefficients of the dynamic component, the

functional principal components and the PC scores can be

used to identify the dominant spatial/temporal patterns in

the data. This information can be crucial to the investiga-

tion of the important driving forces of an environmental

process in space and time, which is of great interest to

Fig. 6 The plots of the leading 3 eigenfunctions (top) and the corresponding scores (bottom). The horizontal and vertical axes of the eigenimages

represent longitude and latitude respectively. The horizontal axis of the score plots represents the index of time points
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environmental science research. In the application to the

Taruo Lake chlorophyll-a data, the SS-FPCA model

enabled the identification of changes in dominant spatial

variation patterns over time and the automatic detection of

more unusual features, which may signal an issue in lake

water quality over corresponding time period. Such infor-

mation from automatic processing of a large amount of

Earth observation data is essential to the management of

lakes where in situ measurements are hard to obtain.

The implementation of the SS-FPCA follows the

empirical hierarchical modelling approach described in

Cressie and Wikle (2011). A 2-cycle AECM algorithm was

developed such that analytical solutions are available for

the MLEs of all model parameters. The simulation study in

Sect. 3 suggested that the estimations from the 2-cycle

AECM algorithm were robust under different simulation

scenarios, e.g. noise levels, sparsity and initial values. It

also showed that the SS-FPCA model was able to capture

the spatiotemporal patterns in the data. However, the esti-

mation of the variances of some model components may be

compromised due to the confounding between different

model components, a common problem in spatiotemporal

modelling. A potential consequence of this can be a low

coverage probability of the bootstrap confidence interval,

as the estimated parameters are used to generate the data in

a parametric bootstrapping procedure. Further

investigations are required to improve the model estimation

method in the future.

An alternative method to investigate spatiotemporal data

in remote sensing is the DINEOF method based on

empirical orthogonal functions (Alvera-Azárate et al.

2005). It is widely used in remote sensing and is known to

be computationally efficient. Compared to DINEOF, the

SS-FPCA model may still be considered as computation-

ally expensive and the AECM algorithm may suffer from

slow convergence if the likelihood function is flat or if the

initial values are badly selected. However, DINEOF does

not account for the temporal correlations and it is not

designed for identifying spatiotemporal patterns in the data.

Hence, it is not an ideal tool for investigating the evolution

of an environmental variable in space and time. Never-

theless, it is important to improve the computation effi-

ciency of the SS-FPCA model, as batch processing of

hundreds of data sets is a common task in remote sensing.

After timing the code developed for the AECM algorithm,

it is found that the majority of the computation time is

consumed by the Kalman filter, where high-dimensional

matrix inversions are sometimes involved. One potential

solution may be to adopt the sparse matrix techniques.

Extensions to the SS-FPCA model can be made by

modifying the specifications of various model components,

e.g. the design of system dynamic and the dependence of

random components. In this paper, the system dynamic is

Fig. 7 Observed (left) and interpolated (right) log transformed chlorophyll-a data from July and February 2006. The horizontal and vertical axes

are longitude and latitude respectively
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supposed to follow a VAR(1) process. Alternatively, PDEs

and physical/chemical models may be used if there are

evidences supporting such a specification (Cressie and

Wikle 2011). The covariance matrix H of the state transi-

tion equation may also be parameterized to reflect a

specific spatial/temporal dependence. Parameterisations

summarised in Xu and Wikle (2007) provide some options.

Another extension could be to use different bases for the

dynamic and the FPCA component, or to go a step further

and use a multi-resolution basis (Katzfuss 2017). This

would offer more flexibility in describing the spatial/tem-

poral variations. For example, the basis for the dynamic

component may be designed to capture the large scale

temporal variation; whereas that of the FPCA component is

intended to explain the smaller scale spatial variation. This

would be a helpful extension whenever the behavior of the

processes on different spatial scales are of interest.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00477-

021-02017-w.
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