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Abstract: The United Nation’s Sustainable Development Goal Life Below Water (SDG-14) aims to 

“conserve and sustainably use the oceans, seas, and marine resources for sustainable development”. 

Within SDG-14, targets 14.1 and 14.2 deal with marine pollution and the adverse impacts of human 

activities on aquatic systems. Here, we present a remote-sensing-based analysis of short-term 

changes in the Vembanad-Kol wetland system in the southwest of India. The region has experienced 

high levels of anthropogenic pressures, including from agriculture, industry, and tourism, leading 

to adverse ecological and socioeconomic impacts with consequences not only for achieving the tar-

gets set out in SDG-14, but also those related to water quality (SDG-6) and health (SDG-3). To move 

towards the sustainable management of coastal and aquatic ecosystems such as Lake Vembanad, it 

is important to understand how both natural and anthropogenic processes affect water quality. In 

2020, a unique opportunity arose to study water quality in Lake Vembanad during a period when 

anthropogenic pressures were reduced due to a nationwide lockdown in response to the global 

pandemic caused by SARS-CoV-2 (25 March–31 May 2020). Using Sentinel-2 and Landsat-8 multi-

spectral remote sensing and in situ observations to analyse changes in five different water quality 

indicators, we show that water quality improved in large areas of Lake Vembanad during the lock-

down in 2020, especially in the more central and southern regions, as evidenced by a decrease in 

total suspended matter, turbidity, and the absorption by coloured dissolved organic matter, all lead-

ing to clearer waters as indicated by the Forel-Ule classification of water colour. Further analysis of 

longer term trends (2013–2020) showed that water quality has been improving over time in the more 

northern regions of Lake Vembanad independent of the lockdown. The improvement in water qual-

ity during the lockdown in April–May 2020 illustrates the importance of addressing anthropogenic 

activities for the sustainable management of coastal ecosystems and water resources. 
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1. Introduction 

Despite considerable efforts to protect vulnerable marine, coastal, and freshwater 

ecosystems, anthropogenic activities remain one of the main causes of poor water quality 

in rivers, lakes, and wetland systems worldwide [1–3]. It has been shown that a combina-

tion of industrial and urban pollution, overexploitation of natural resources, and climate 

change has negative impacts on not only marine and freshwater organisms, but also on 

human populations that are dependent on the aquatic environment for their livelihood 

[1,3,4]. Here, we show that water quality can improve considerably when anthropogenic 

activities are reduced at the study site of Lake Vembanad. The Vembanad-Kol wetland 

system is situated along the southwest coast of India (09°20′–10°25′ N, 76°00′–76°35′ E) 

and has been designated as a UNESCO protected wetland region under the Ramsar Con-

vention of 1971 since 2002. Stretching approximately 100 km and covering over 241 km2, 

Lake Vembanad is the second largest lake in India. This semi-enclosed lake supports an 

exceptionally large biodiversity and is rich in water birds, fish, and aquatic plants [5–7]. 

Lake Vembanad forms an important resource for local communities and is used for coastal 

and freshwater aquaculture, capture fisheries, pokkali rice (a unique variety of rice with 

a high tolerance for saline water) cultivation, and tourism, among other activities [8]. De-

spite its protected status and its importance to the livelihood of local communities, the 

Lake Vembanad ecosystem is under pressure from domestic waste and sewage, industrial 

pollution including heavy metal contaminations, eutrophication, and aquatic weed infes-

tation [6,9–12]. Over 5000 instances of “land modifications” have taken place in the past 

with the majority deemed to violate the Coastal Regulation Zone guidelines of the Indian 

Environment Protection Act of 1986 [13,14]. As a consequence, water quality has degraded 

over the past decades and Lake Vembanad is considered one of the most polluted estuar-

ies in India with the continued observation of high levels of suspended and dissolved 

matter, turbidity, and nutrients, and the persistence of pathogenic bacteria [6,7,15]. 

The Sustainable Development Goals (SDGs) of the United Nations (UN) 

(https://sdgs.un.org/; accessed on 15 February 2021) address the need for sustainable de-

velopment of vulnerable coastal regions such as the Vembanad-Kol wetland system. SDG-

14 deals with the conservation and sustainable use of the oceans, seas, and marine re-

sources, while SDG-6 recognises the need for clean water and sanitation. Meeting SDG 

target 14.1 (“by 2025, prevent and significantly reduce marine pollution of all kinds, in 

particular from land-based activities, including marine debris and nutrient pollution”) 

and SDG target 6.3 (“by 2030, improve water quality by reducing pollution, eliminating 

dumping and minimising release of hazardous chemicals and materials, halving the pro-

portion of untreated wastewater and substantially increasing recycling and safe reuse 

globally”) will require, as a first step, that the quality of water in aquatic bodies is assessed 

in a routine manner and changes therein are recorded over time. Similarly, SDG targets 

14.2 (“by 2020, sustainably manage and protect marine and coastal ecosystems to avoid 

significant adverse impacts, by strengthening their resilience, and take action for their res-

toration in order to achieve a healthy and productive ocean”) and 6.6 (“by 2020, protect 

and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aq-

uifers, and lakes”) require an assessment of the impact of human activities on water qual-

ity. However, it is often not straightforward to demonstrate the direct effect of various 

anthropogenic activities on water quality. 

During 2020, a unique opportunity arose to study water quality in Lake Vembanad 

under reduced anthropogenic activities. In response to the global pandemic caused by 

SARS-CoV-2, the government of India imposed a nationwide lockdown on 25 March 2020 

that lasted until 31 May 2020. During this period, people were required to stay at home 

and most services, including transport, education, industry, fish and vegetable markets, 

and hospitality were suspended with the exemption of essential services. The easing of 

lockdown regulations after May 2020 occurred in several phases, with restrictions to ser-

vices remaining in place in containment zones where infection rates and the number of 

COVID-19 (caused by SARS-CoV-2) cases were high. At the global scale, the lockdown 

measures led to a decrease in greenhouse gas emissions [16] and in concentrations of 
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atmospheric nitrogen dioxide and fine particulate matter [17,18], as well as to lower levels 

of environmental noise [19,20]. Similar reductions in greenhouse gasses and atmospheric 

particulate matter were observed at the regional scale both across India and near Lake 

Vembanad [16,21,22]. Yet these positive effects of reduced anthropogenic activities on the 

environment may locally have been countered by increased organic and inorganic domes-

tic and medical waste and less sustainable waste management [20,23,24]. The potential 

effect of lockdown restrictions on marine and aquatic ecosystems in the southwest of India 

has recently received considerable attention [21,22,25]. Yunus et al. [21] showed that total 

suspended matter, a key indicator of water quality, decreased during the initial phase of 

the lockdown (April 2020) in various zones in Lake Vembanad, yet concentrations were 

not necessarily the lowest recorded in April between 2013–2020. Avtar et al. [25] showed 

that chlorophyll-a concentrations increased in enclosed lakes in Wuhan, China, due to 

lower disturbance and increased hydrological residence time, but this was not evident in 

Lake Vembanad. Mishra et al. [22] also showed a lack of change in chlorophyll-a concen-

trations in the coastal waters of southwest India, in contrast to other regions along the 

coast of India where a decrease in chlorophyll-a was linked to lower atmospheric deposi-

tion of nitrogen during the lockdown. 

To study whether the reduction in anthropogenic activities during the nationwide 

lockdown led to improved water quality in Lake Vembanad, we used multi-spectral re-

mote sensing observations to analyse changes in five different water quality indicators. 

Sentinel-2 and Landsat-8 images were used to calculate chlorophyll-a, total suspended 

matter, absorption by coloured dissolved organic matter, turbidity, and the Forel-Ule clas-

sification of water colour between 2013 and 2020. Trends between the month preceding 

lockdown and the first month of lockdown were analysed on a pixel-by-pixel basis and 

for 13 different locations in Lake Vembanad. In May 2020, in situ observations were col-

lected, which provided us with the chance to fill gaps in the data during a later phase of 

the lockdown when remote sensing observations were obstructed by cloud cover. The in 

situ observations in May 2020 were compared with those collected in May 2019 as part of 

an ongoing study on the water quality of Lake Vembanad [14,26,27] and analysed in rela-

tion to seasonal and inter-annual variations in these properties. The results are discussed 

in the context of the longer term trends of water quality of Lake Vembanad and the im-

portance of addressing anthropogenic activities in the sustainable management of aquatic 

ecosystems and water resources. 

2. Materials and Methods 

In this study, multi-spectral remote sensing observations were used to analyse trends 

in water quality parameters in Lake Vembanad, India, before, during, and after a nation-

ally imposed lockdown (25 March–31 May 2020) associated with the global pandemic 

caused by the SARS-CoV-2. In situ samples were collected during the lockdown in May 

2020 and were compared with samples collected in May 2019 as part of an ongoing study 

[14,26,27]. Long-term trends in water quality, as observed in the satellite record (2013–

2020), were also addressed. 

2.1. Study Area 

Lake Vembanad is part of the Vembanad-Kol wetland system situated along the 

southwest coast of India (09°25′30”–10°10′30” N, 76°21′00”–76°31′30” E) and extends ap-

proximately 100 km. The lake is semi-enclosed with connections to the Arabian Sea at 

Kochi (VL01, Figure 1) and further north at Ahzeekode, and is partitioned into a northern 

and a southern region by a man-made barrier (Thanneermukkom Bund; between VL09 

and VL10, Figure 1). Lake Vembanad is characterised by brackish waters in the north and 

fresh waters in the south, except during the south-west monsoon (June–September) when 

the entire lake becomes a freshwater basin [28]. The depth of the lake ranges from 1.5 to 6 

m at most locations, except for the main shipping channels near Kochi, which are main-

tained at depths of 10 to 13 m through dredging [6]. Six rivers drain into Lake Vembanad 

with a total drainage area of ~12,000 km2 [8]. The annual cycle in Lake Vembanad is 
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characterised by a dry season in winter (December–February), a spring inter-monsoon 

(March–May), and wet seasons during the south-west monsoon (June–September) and the 

north-east monsoon (October–November). 

 

Figure 1. Map of Lake Vembanad with the locations of the 13 in situ sampling stations. Note that 

station VL07 is situated in a tributary. Locations of major cities near Lake Vembanad and the Than-

neermukkom Bund are also given. The inset map shows the location of Lake Vembanad on the 

southwest coast of India. 

2.2. Multi-Spectral Remote Sensing Observations 

Sentinel-2A and -2B Multispectral Imager (MSI) images for Lake Vembanad were 

downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu, ac-

cessed on 6 January 2021; level-1C, baseline numbers N0204–N0209, relative orbit number 

R019, 2016–2020) and Landsat-8 Data Continuity Mission (LDCM) images for the same 

region were downloaded from the Google Earth Engine Data Catalog (https://develop-

ers.google.com/earth-engine/datasets/catalog/landsat, accessed on 6 January 2021; level-

1TP, Worldwide Reference System path and row 144053, 2013–2020). Level-1 products 

were processed at a 10–20 m spatial resolution for Sentinel-2A and -2B and at a 60 m spa-

tial resolution for Landsat-8 using ACOLITE, a processor developed for the analysis of 

coastal and inland-water data from Sentinel-2 and Landsat imagery (ACOLITE version 

20190326, Remote Sensing and Ecosystem Modelling, Royal Belgian Institute of Natu-

ral Sciences, Brussels, Belgium; https://odnature.naturalsciences.be/remsem/software-

and-data/acolite, accessed on 4 April 2019). ACOLITE was applied with the dark spectrum 

fitting approach to perform the atmospheric correction [29,30], and surface reflectances 

were obtained for further analysis. Following standard procedures in ACOLITE, non-wa-

ter pixels, pixels with negative reflectances, and cirrus clouds were masked. In total, 245 

images for Sentinel-2 and 165 images for Landsat-8 were processed between 2013 and 

2020. Data coverage was typically lower from May to September due to dense cloud cover 

associated with the monsoon season. 

In this study, we used five indicators amenable to multi-spectral remote sensing to 

study the water quality of Lake Vembanad: (1) chlorophyll-a (Chl-a), a measure of phyto-

plankton biomass; (2) total suspended matter (TSM), operationally defined as all organic 

and inorganic suspended particles larger than 0.7 µm; (3) absorption by coloured 
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dissolved organic matter (aCDOM), the light-absorbing fraction of organic particles smaller 

than 0.45 µm (i.e., dissolved organic matter); (4) turbidity, a measure of water clarity that 

is related to Chl-a, TSM, and aCDOM; and (5) the Forel-Ule (FU) classification of water colour 

ranging from blue to green to brown waters, with blue waters termed as clear waters low 

in suspended and dissolved materials [31–34]. Region-specific satellite retrieval algo-

rithms for Lake Vembanad were not available and existing algorithms were used to esti-

mate the five different indicators of water quality. The selected algorithms have been pa-

rameterised for Sentinel-2 and Landsat-8 [16,35–37] and have previously been used to 

study water quality in Lake Vembanad [21,25,38]. We provide further information on the 

comparison between the satellite and in situ observations in Section 2.4. Concentrations 

of Chl-a (in mg m−3) were calculated using the Ocean Chlorophyll 2-band algorithm 

(OC2v2 [39]) based on the blue and green spectral reflectances (Table 1) and coefficients 

specific to the Sentinel-2 and Landsat-8 sensors (a0 = 0.1977, a1 = −1.8117, a2 = 1.9743, a3 = 

−2.5635, a4 = −0.7218 [35,36]). Concentrations of TSM (in g m−3) were calculated using the 

bio-optical algorithm for turbid waters described by Nechad et al. [40] using red spectral 

reflectances (Table 1). Absorption coefficients by CDOM at 440 nm (aCDOM(440) in m−1) 

were calculated using an exponential model based on green and red spectral reflectances 

(Table 1) with coefficients for Sentinel-2 (a = 40.75, b = −2.463) and Landsat-8 (a = 28.97, b = 

−2.015) sensors that were developed for Lake Huran, Canada [41–43]. Turbidity (in neph-

elometric turbidity units (NTU)) was calculated according to Nechad et al. [44] using a 

bio-optical model that relates turbidity to water-leaving reflectances using the red spectral 

reflectance (Table 1) and coefficients published for the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (a = 228.1 and c = 0.1641 [36]). The FU classification of water 

colour was calculated according to Wernand et al. [45] using all spectral reflectances avail-

able for each sensor and with coefficients for Sentinel-2 (a = −751.59, a2 = 1524.96, a3 = 

−1279.99, a4 = 477.16, a5 = −65.74, c = 116.56) and Landsat-8 (a = −533.61, a2 = 1134.19, a3 = 

−981.83, a4 = 373.81, a5 = −52.16, c = 76.72) sensors as reported by Van der Woerd and Wer-

nand [37] to estimate the colour-matching functions and chromaticity coordinates for 

comparison with the unique chromaticity coordinates of the 21 values on the FU scale. 

Table 1. Central wavelengths (in nm) for each band used in the calculation of chlorophyll-a, total 

suspended matter, absorption by coloured dissolved organic matter, and turbidity (as described in 

section 2.2). 

Band Sentinel-2a Sentinel-2b Landsat-8 

Blue 443 442 443 

Green 560 559 561 

Red 665 665 655 

2.3. In Situ Observations 

Samples for the measurement of Chl-a, TSM, aCDOM, turbidity, and FU classification 

of water colour were collected on 14–15 May 2019 and 11–12 May 2020 at 13 different 

locations in Lake Vembanad (Figure 1; n = 13 for May 2019 and May 2020 each) as part of 

an ongoing study [26]. CTD (SBE19 plus V2 SeaCAT profiler, Sea-Bird) measurements 

(temperature, salinity, and turbidity) were performed throughout the water column and 

water samples at the surface were collected using a 5 l Niskin bottle. For Chl-a, water 

samples were filtered through GF/F and filters were subsequently extracted in 90% ace-

tone for 24 h at 4 ºC and the concentration of Chl-a (mg m−3) was measured using a spec-

trophotometer (UV-Visible Spectrophotometer UV-2600/2700, Shimadzu, Kyoto, Japan). 

For TSM, water samples were filtered through pre-weighted GF/F and filters were dried 

for 4 h at 60 ºC and weighted again to obtain the concentration of TSM (g m−3). Samples 

for the analysis of aCDOM were filtered through 0.2 µm polycarbonate filters and absorption 

was measured between 400–700 nm using a spectrophotometer with integrated sphere 

(UV-Visible Spectrophotometer UV-2600/2700, Shimadzu, Kyoto, Japan). The FU classifi-

cation of water colour was estimated using a 3D-printed mini Secchi disk [34]. Additional 
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samples between May 2018 and May 2019 were used to validate remote sensing observa-

tions (see Section 2.4). Further details of sampling procedures are described in [26]. 

2.4. Comparison of Remote Sensing and In Situ Observations 

Earlier studies validating the used satellite retrieval algorithms against the field-de-

rived measurements have suggested good performance of these algorithms in various 

aquatic systems [35–37,39–45]. For this study, the algorithms were compared to in situ 

samples collected between May 2018 and May 2019 at 13 different locations in Lake Vem-

banad (Figure 1; in total 13 cruises were completed during this time period). The following 

criteria [46] were used to select remote sensing observations for the comparison: (1) The 

mean of a 3 × 3 pixel matrix at the in situ sampling coordinates were used; (2) Data for at 

least half of the 3 × 3 pixel matrix were available; (3) The coefficient of variation of the 3 × 

3 pixel matrix was ≤0.15; and (4) The time difference between the satellite overpass and 

the in situ sampling time was ≤2 d. Spatiotemporal matching of the in situ sampling days 

with satellite overpasses was low with 22 data points for Sentinel-2 and 8 data points for 

Landsat-8. We considered the low number of match-up data points too limited for a vali-

dation exercise and therefore compared monthly mean values of the water quality indica-

tors for each observation method (Figure 2). The comparison of monthly means showed 

similar seasonality in the water quality indicators based on remote sensing and in situ 

observations. Further analyses showed that: higher Chl-a concentrations (>10 mg m−3) 

were not captured by the satellite retrieval algorithm (Figure 2A); satellite-derived values 

of TSM and turbidity compared relatively well with in situ observations (Figure 2B,D); 

the absorption by CDOM was overestimated by ~4 times (Figure 2C); and the FU classes 

were lower in the satellite-derived observations compared with the in situ observations 

(Figure 2D). Although some satellite retrieval algorithms performed differently in Lake 

Vembanad compared with reports in the literature from other regions, the relatively low 

number of match-up data points limits efforts to develop locally tuned satellite algorithms 

at this time. Other published satellite retrieval algorithms were assessed, but these did not 

yield a better comparison with the in situ observations of the water quality indicators. We 

therefore chose to use the selected satellite algorithms, considering that these algorithms 

have previously been used for Lake Vembanad [21,25,38] and considering that the results 

are presented as a relative change and separately for each observation method (remote 

sensing and in situ) in this study. 
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Figure 2. The comparison between remote-sensing and in situ observations of the water quality 

indicators at 13 locations in Lake Vembanad. Mean monthly values (± standard deviation) are given 

for (A) chlorophyll-a (Chl-a); (B) total suspended matter (TSM); (C) absorption by coloured dis-

solved organic matter at 440 nm (aCDOM(440)); (D) turbidity; and (E) the Forel-Ule classification of 

water colour (FU class) based on Sentinel-2 (S2), Landsat-8 (L8), and in situ observations between 

May 2018 and May 2019. 

Radiometric characterisation and cross-calibration have shown that the Sentinel-2 

and Landsat-8 bands generally compared well, with the exception of the near infrared 

bands [47]. For Lake Vembanad, the Sentinel-2 and Landsat-8 data for each water quality 

indicator were compared on days when both sensors passed the study region (n = 8). The 

analyses of the coefficient of determination and the root-mean-square error and bias 

showed that Sentinel-2 and Landsat-8 data generally compared well (r2 = 0.80–92, p < 0.001 

for Chl-a, TSM, aCDOM(440), and turbidity, and r2 = 0.60, p < 0.001 for the FU classes) with 

differences between the two sensors ranging from 6–25%. For further analysis, Landsat-8 

data was referenced to Sentinel-2 data by linear regression on a pixel-by-pixel basis as the 

latter sensor showed a better comparison with the in situ observations in Lake Vembanad. 

For mapping (Figure 3), Sentinel-2 data was re-gridded to the Landsat-8 data (60 m spatial 

resolution). 
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Figure 3. Mean (n = 4–5) concentrations of (A) chlorophyll a (Chl-a); (B) total suspended matter (TSM); (C) absorption by 

coloured dissolved organic matter at 440nm (aCDOM(440)); (D) turbidity; and (E) the Forel-Ule classification of water colour 

(FU class) in the month preceding lockdown (pre-lockdown) and the first month during lockdown on 25 March 2020 

(lockdown) and the percentage change on a pixel-per-pixel basis between pre-lockdown and lockdown concentrations. 

Data was obtained from Sentinel-2 (S2a, S2b) and Landsat-8 (L8) multi-spectral remote sensing observations with images 

for the pre-lockdown period retrieved on 28 February 2020 (L8), 09 March 2020 (S2a), 14 March 2020 (S2b), and 15 March 

2020 (L8), and for the lockdown period on 29 March 2020 (S2a), 31 March 2020 (L8), 03 April 2020 (S2b), 13 April 2020 

(S2b), and 16 April 2020 (L8). 

2.5. Data Analyses 

To study the effect of the local lockdown measures, the percentage change in the sat-

ellite-derived water quality indictors between the month preceding lockdown (PLD, 28 
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February–24 March, n = 4 images available) and the first month of lockdown (LD, 25 

March–24 April, n = 5 images available) was calculated for 2020 for the entire basin and 

for the locations of the 13 in situ sampling sites (i.e., ([PLD−LD]/LD)×100)). For compari-

son, similar calculations were performed for the same period in previous years (2013–

2019). Calculations were also performed for a post-lockdown period (25 October–24 No-

vember, n = 4 images available) after cloud cover (associated with the monsoon season) 

no longer obstructed remote sensing observations. The probability of the effect of the dif-

ferent lockdown periods on water quality was tested using a Wilcoxon signed-rank test 

and differences were considered significant when p < 0.05. To estimate inter-annual trends 

in the water quality indicators between 2013 and 2020, monthly means were corrected for 

seasonality by subtracting monthly climatologies. The rate of change over time (percent-

age per year in respect to the mean values of 2013–2020) and its significance (p < 0.05) were 

calculated using linear regression and Student’s t-tests following [48]. 

2.6. Ancillary Data 

Lake surface water temperature (LSWT) data for Lake Vembanad were downloaded 

from the Copernicus Global Land Service (https://land.copernicus.eu/global/prod-

ucts/lswt/, accessed on 6 January 2021; 2002–2012 and 2016–2020). The service provides a 

near real time level-3 dataset of 1 km, 10-day averaged LSWT from the SLSTR instrument 

on Sentinel-3A (see [49,50] for detailed methods and validation). The data were converted 

from Kelvin to degrees Celsius, and the mean temperature for Lake Vembanad for each 

10-day period was calculated for the period when data were available. The daily photo-

synthetically active radiation (PAR, 400–700 nm) at the lake surface was downloaded from 

the National Aeronautics and Space Administration (NASA) Earthdata portal 

(https://earthdata.nasa.gov/, accessed on 6 January 2021; Aqua-MODIS level 3 global 

mapped data, 2013–2020) at a 4km spatial resolution. Mean monthly PAR at the surface 

of Lake Vembanad was calculated for all years between 2013 and 2020. Daily rainfall data 

were obtained from the Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS) (https://data.chc.ucsb.edu/products/CHIRPS-2.0/, accessed on 6 January 2021; 

2013–2020) at a 0.05º spatial resolution. CHIRPS has provided near real time, quasi-global 

satellite and observation-based precipitation estimates over land since 1981 [51]. The data 

were used to calculate the mean monthly rainfall in the Lake Vembanad region for each 

year between 2013–2020. 

3. Results 

The comparison of remote sensing observations in the month preceding national 

lockdown measures and during the first month of lockdown showed that water quality 

improved significantly in large areas of Lake Vembanad, as indicated by a decrease in 

TSM, turbidity, and aCDOM(440) (p < 0.05; Figure 3B,C,D, year 2020 in Figure 4B–D). The 

observed changes were strongest in the central and southern regions of Lake Vembanad 

(up to −54.9% for TSM, −46.3% for turbidity, and −31.3% aCDOM(440)) with values as low as 

4.9 mg m−3 for TSM, 3.9 NTU for turbidity, and 0.29 m−1 for aCDOM(440) by mid-April 2020. 

However, increased TSM and turbidity during lockdown were also observed in the north-

ern region of Lake Vembanad (near Kochi at station VL01-VL03, Figure 3B,D, year 2020 in 

Figure 4B,D). The direction of change in Chl-a concentrations during lockdown was vari-

able (Figure 3A), with generally similar or lower Chl-a concentrations observed during 

lockdown at the locations of the in situ sampling stations (year 2020 in Figure 4A). The 

water colour remained similar or decreased in number (changing towards clearer water) 

on the FU scale in large areas of Lake Vembanad during lockdown (Figure 3E, year 2020 

in Figure 4E). 
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Figure 4. Percentage change in (A) chlorophyll a (Chl-a); (B) total suspended matter (TSM); (C) 

absorption by coloured dissolved organic matter at 440nm (aCDOM(440)); (D) turbidity; and (E) 

the Forel-Ule classification of water colour (FU class) during the lockdown after March 25 com-

pared with values one month before the lockdown for 2020, and for the same period in 2013–2019 

(based on Sentinel-2 and Landsat-8 multi-spectral remote sensing data). 

The observed changes in water quality indicators during the lockdown period in 2020 

were compared with the same period in 2013–2019 at 13 locations in Lake Vembanad (Fig-

ure 4). Chl-a concentrations typically decreased during this time of the year between 2013–

2019 (Figure 4A). A similar direction of change in Chl-a was observed for some stations in 

the central and southern regions of Lake Vembanad during 2020 (VL05–VL07, VL11–

VL13), while at other stations Chl-a concentrations remained similar or increased during 

lockdown in 2020 (VL04, VL08–VL10). Both TSM and turbidity typically increased be-

tween late-February and April during 2013–2019 (except at stations VL01, VL07; Figure 

4B,D), while a strong decrease in TSM and turbidity was observed during lockdown in 

2020 at locations in the central and southern regions of the lake (p < 0.05; VL04–VL06, 

VL08–VL12; Figure 4B,D). The aCDOM(440) decreased at most stations during 2013–2019 

and the direction of change was similar during the lockdown in 2020, although higher 

decreases in aCDOM(440) were observed at some stations (p < 0.05; VL03–VL05, VL08–VL09, 

VL11–VL12; Figure 4C). The FU class of water colour decreased between late-February 

and April in 2013–2019 and in 2020, with smaller changes observed in the southern regions 

of Lake Vembanad during lockdown in 2020 relative to the same period in 2013–2019 

(VL08–VL13; Figure 4E). 

During lockdown in May 2020, the opportunity arose to collect in situ samples for 

the water quality indicators. This provided us with the chance to study these water quality 

indicators later during the lockdown when remote sensing observations were obstructed 

by cloud cover. Although seasonal and inter-annual variations exist, the in situ observa-

tions from May 2020 were compared with those collected in May 2019 as part of an ongo-

ing study in Lake Vembanad (Figure 5). Chl-a concentrations during the lockdown in May 

2020 were considerably lower at some of the northern and central locations in the lake 

(VL03–VL05) compared with May 2019, while at other stations similar concentrations 

were found in both years (Figure 5A). TSM was higher in the northern stations (VL01–

VL04) and at locations VL07, VL08, and VL11 during the lockdown in May 2020 compared 

with May 2019, while lower TSM was observed in some of the central and southern loca-

tions in Lake Vembanad (VL05–VL06, VL09–VL10, VL12–VL13; Figure 5B). The aCDOM(440) 

values were higher at most in situ sampling stations during the lockdown in May 2020 

compared with May 2019 (except for VL05, VL08, and VL10–VL11) (Figure 5C). Turbidity 

was higher at the northern and central locations in the lake during the lockdown in May 

2020 compared with May 2019 (VL02–VL08), while lower turbidity was observed at the 

southern locations during May 2020 (VL09–VL13; Figure 5D). 
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Figure 5. In situ observations of (A) chlorophyll a (Chl-a); (B) total suspended matter (TSM); (C) 

absorption by coloured dissolved organic matter at 440nm (aCDOM(440)); (D) turbidity; and (E) 

Table 2019. and during the lockdown in May 2020. Note that Secchi disk and FU classification 

measurements were not collected in May 2020. 

Multi-spectral remote sensing observations were obstructed by cloud cover until Oc-

tober 2020, limiting the analysis of water quality directly after the national lockdown 

measures were lifted at the end of May. The comparison of the remote sensing observa-

tions preceding the national lockdown measures and during the period after lockdown in 

October–November 2020 (once cloud cover had lifted) at the 13 in situ sampling stations 

showed that the observed improvement in water quality during lockdown was no longer 

evident (Figure 6). Instead, changes in water quality indicators were more variable in this 

post-monsoon period, likely related to the influence of rainfall (see below) and associated 

changes in the hydrology of Lake Vembanad (the basin became entirely freshwater) (Fig-

ures 6). 

 

Figure 6. Percentage change in (A) chlorophyll a (Chl-a); (B) total suspended matter (TSM); (C) 

absorption by coloured dissolved organic matter at 440nm (aCDOM(440)); (D) turbidity; and (E) 

the Forel-Ule classification of water colour (FU class) after lockdown in October–November com-

pared with values one month before lockdown for 2020, and for the same period for 2013–2019 

(based on Sentinel-2 and Landsat-8 multi-spectral remote sensing data). 

To place the observed differences in water quality indicators in 2020 in the context 

of inter-annual variations and longer term changes, we analysed inter-annual trends in 

the five satellite-derived water quality indicators at each location of the in situ sampling 

sites in Lake Vembanad between 2013 and 2020 (Figure 7). Results showed that Chl-a con-

centrations decreased in the northern locations (VL01, VL03) and increased in the central 

and southern locations (VL06–VL13) of the lake during this time period (2013–2020). TSM 

and turbidity showed similar trends, almost the opposite of those seen for Chl-a, with 

decreasing values in the northern and central locations (VL01–VL09) and increasing 
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values in the southern locations (VL10–VL12). Values of aCDOM(440) showed relatively 

lower rates of change with mostly decreasing trends throughout Lake Vembanad (except 

for location VL11). The direction of change in FU classes was similar to those observed in 

Chl-a, with decreasing trends in the northern regions (VL03–VL05) and increasing trends 

in the central and southern regions (VL08–VL12) of Lake Vembanad. In the central region 

of Lake Vembanad (VL06–VL09), the lowest values of TSM and turbidity were observed 

during 2020, whereas for the other locations and water quality indicators, the lowest val-

ues were recorded between 2013–2019. 

 

Figure 7. Linear trends in chlorophyll a (Chl-a), total suspended matter (TSM), absorption by col-

oured dissolved organic matter at 440nm (aCDOM(440)), turbidity, and Forel-Ule classification of 

water colour (FU class) between 2013–2020 given as a percentage change per year. Non-significant 

trends are denoted as n.s., all other trends are significant (p < 0.05). Analyses are based on Sentinel-

2 and Landsat-8 multi-spectral remote sensing data. 

In addition to the water quality indicators, we analysed ancillary data that may help 

to explain the observed differences in water quality in Lake Vembanad during 2020. Sur-

face water temperatures in Lake Vembanad were significantly higher in March–May 2020 

compared with the same period in preceding years (2002–2019 for remote sensing obser-

vations and with 2018–2019 for in situ observations) (Figure 8A,B). In situ observations in 

May 2020 compared with 2018–2019 showed that the increase in surface water tempera-

tures was highest in the more central and southern stations (VL06, VL08–VL11; Figure 

8B). The observed higher temperatures between March–May 2020 may be related to in-

creased warming due to the relatively low cloud cover and reduced atmospheric aerosols 

[21,22] during this period and subsequent higher incident irradiance at the water surface 

(as observed in the remote sensing images and ancillary data). The daily photosyntheti-

cally active radiation (PAR) at the surface of Lake Vembanad was somewhat higher dur-

ing March and April 2020 and considerably lower during August 2020 compared with the 

same periods in 2013–2019 (Figure 8C). Rainfall was similar in 2013–2019 and 2020 during 

most months, with higher levels of rainfall observed in July and September 2020 and 

somewhat lower levels of rainfall during October 2020 (Figure 8D). 
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Figure 8. Environmental conditions in the Lake Vembanad region with (A) satellite-derived mean 

monthly lake surface water temperature (LSWT) between 2002–2019 and for 2020 (in blue) and the 

mean in situ surface water temperature for the 13 sample locations in May 2020 (in red); (B) per-

centage change in in situ surface water temperatures between May 2019 and May 2020 at each 

sampling location; (C) satellite-derived mean monthly photosynthetically active radiation (PAR) 

between 2013–2019 and for 2020; and (D) mean monthly rainfall between 2013–2019 and for 2020. 

4. Discussion 

In the past decades, the Vembanad-Kol wetland system has experienced high levels 

of anthropogenic pressures, leading to adverse ecological and socioeconomic impacts 

[6,7,52]. The monitoring of water quality is essential for the protection and sustainable use 

of coastal and freshwater ecosystems such as Lake Vembanad if the ambitious targets set 

out by the UN as SDGs pertaining to water and sanitation are to be reached. Various in-

dicators and standards are used for monitoring water quality, depending on the applica-

tion envisaged, ranging from monitoring ecosystem functioning to assessing impacts on 

human health [31,53]. Dissolved and suspended matter, turbidity, and Chl-a, all amenda-

ble to multi-spectral remote sensing, are key indicators of water quality that are often used 

in regional and global environmental monitoring programmes [2,54,55]. Both dissolved 

and suspended materials are common pollutants in coastal and aquatic ecosystems 

[32,56]. High concentrations of these materials can lead to increased turbidity and reduce 

the light available for photosynthesis by phytoplankton [32]. A reduction of phytoplank-

ton biomass may have a cascading effect on higher trophic levels, while direct effects of 

suspended matter on zooplankton and fish survival have also been reported (for a review 

see [32]). Moreover, dissolved and suspended particles can be hazardous and can act as a 

substrate for bacteria responsible for water-borne diseases, thereby affecting human 

health [57]. To move towards the sustainable management of freshwater, estuarine, and 

coastal aquatic ecosystems, it is important to understand how both natural and anthropo-

genic processes affect water quality. In 2020, the opportunity arose to study the water 

quality of Lake Vembanad during a period when anthropogenic pressures were reduced 
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due to a nationwide lockdown in response to the global pandemic caused by SARS-CoV-

2. 

We showed that water quality improved in large areas of Lake Vembanad during 

April 2020 as evidenced by a decrease in TSM, aCDOM, and turbidity, all leading to clearer 

waters as indicated by the FU classification of water colour. Similar changes in TSM have 

also been reported during this first phase of the lockdown in Lake Vembanad [21] and in 

other freshwater systems in India [58,59]. The observed changes in water quality indica-

tors were strongest in the central and southern regions of Lake Vembanad. In situ obser-

vations supported the remotely observed changes in water quality in the southern regions 

of Lake Vembanad later in the lockdown during May 2020. We observed lower in situ 

TSM and turbidity during 2020 compared with 2019, while we might have expected a 

year-to-year increase in these water quality indicators in the southern regions of Lake 

Vembanad based on longer term trends (this study, [38]). A decrease in TSM, aCDOM, and 

turbidity was not observed during the same period in preceding years, suggesting that 

the reduction in anthropogenic activities associated with the nationwide lockdown in 2020 

had a positive effect on the water quality in Lake Vembanad. Over longer time scales, 

improved water quality was observed in the northern and central regions of Lake Vem-

banad, with decreasing trends in Chl-a, TSM, aCDOM, and turbidity observed between 2013 

and 2020. While we cannot distinguish between the influence of natural variations and 

anthropogenic activities on these trends, the observed differences between the northern 

and southern regions may be related to differences in hydrological features associated 

with the salt water barrier in the south of Lake Vembanad (Thanneermukkum Bund, be-

tween stations VL09 and VL10, Figure 1) [6,26]. 

High concentrations of TSM and CDOM in Lake Vembanad have been related to 

urban, agricultural, and industrial sources [6,7,52]. For example, Kochi city generates 2550 

million litres of largely untreated urban sewage per day in which the total dissolved mat-

ter can be as high as 54 g m−3 during the summer [6,7], while major industries on the banks 

of the Periyar River (10 km north of Kochi harbour) discharge 250 million litres of un-

treated or partially treated effluents containing nutrients, heavy metals, and pesticides 

into the local estuary [60]. In the central and southern regions of Lake Vembanad, agricul-

tural activities lead to high concentrations of (biodegradable) organic matter [6,15]. The 

restriction on some of these anthropogenic activities during lockdown in 2020 may explain 

why the observed improvement in water quality was strongest in the central and southern 

regions of Lake Vembanad. A halt to transport, industry, and hospitality services could 

also have had a positive effect on water quality in the entire region by reducing water 

movement and the resuspension of particles, while the confinement of people to their 

homes during lockdown may have led to increased domestic waste and sewage discharge 

in highly populated areas such as in the north of Lake Vembanad near Kochi [20,23]. 

Moreover, a local shipyard company in Kochi performed dredging activities during the 

lockdown [61], which together with high siltation in the main shipping channel during 

this time of the year could have led to high turbidity in the north of Lake Vembanad 

[62,63]. 

The hydrological features of Lake Vembanad also played a part in determining the 

distribution of dissolved and suspended matter in Lake Vembanad during and after the 

lockdown in 2020. Rivers play a key role in the transportation of dissolved and suspended 

matter into the lake during the dry season (December–May), while rainfall and enhanced 

flushing rates can dilute the negative effects of anthropogenic activities on water quality 

during the wet season (June–November) [6,38,62]. During April and May, rainfall is typi-

cally low in the Lake Vembanad region and we observed similar patterns in rainfall be-

tween 2020 and earlier years, suggesting that rainfall played a limited role in the improve-

ment in water quality during the lockdown compared with the changes in anthropogenic 

activities in the region. However, it is more difficult to discern any prolonged effects of 

reduced anthropogenic activities on water quality after the lockdown restrictions were 

lifted, as increased rainfall is likely to have altered the water quality of Lake Vembanad 

during the monsoon season (June–November, [6,38]). In the northern and central regions 
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of Lake Vembanad, tidal movement may have played an additional role in the resuspen-

sion and outward flux of suspended matter during the dry season [62]. Other processes, 

such as the atmospheric and wind-induced deposition of fine particles, may have further 

contributed to an improvement in water quality in Lake Vembanad, as lower levels of 

nitrogen dioxide and fine particulate matter were observed during lockdown [18,21]. 

The observed decrease in TSM and aCDOM could have had a positive impact on the 

aquatic ecosystem in Lake Vembanad by reducing turbidity and increasing light penetra-

tion and hence potentially increasing photosynthesis by phytoplankton [32]. However, 

Mishra et al. [22] argued that a reduction in atmospheric nitrogen deposition during the 

lockdown may have altered the trophic status of coastal ecosystems, thereby reducing 

phytoplankton growth. In Lake Vembanad, phytoplankton growth is generally not nutri-

ent limited due to high levels of eutrophication [7,64]. Consistent with earlier reports on 

Lake Vembanad and along the southwest coast of India [22,25] we did not observe clear 

trends in Chl-a during lockdown, indicating that other factors were more important in 

controlling phytoplankton growth in Lake Vembanad during this time period. We note 

that during 2020, surface temperatures in Lake Vembanad were considerably higher than 

in previous years and this may have affected phytoplankton growth during the main 

bloom period from February to March [26,65]. Over longer time periods, we did observe 

a positive trend in phytoplankton biomass as the suspended and dissolved matter de-

creased in the central region of Lake Vembanad, but this was not observed for the more 

northern and southern regions of the lake, further suggesting that both anthropogenic as 

well as natural conditions affect phytoplankton growth in Lake Vembanad [32]. 

5. Conclusions 

Although we were not able to pinpoint specific sources of pollution, our study 

showed that water quality can improve substantially when anthropogenic activities are 

reduced. This provides important insights into the future management of Lake Vembanad 

and other coastal and aquatic ecosystems. The Vembanad-Kol wetland system is a criti-

cally vulnerable coastal area protected under various international, national, and state-

wide regulations (most notably the Ramsar Convention and the Coastal Regulation Zone 

guidelines of the Indian Environment Protection Act), committing the national and local 

governments to safeguard the livelihood of the local population while protecting the eco-

logical values of Lake Vembanad and the surrounding wetlands [7,52]. Many anthropo-

genic activities that affect water quality in Lake Vembanad are regulated and/or prohib-

ited under these regulations, including new industrial development and the discharge of 

untreated waste waters and hazardous substances [7,66]. Here, we showed that a coordi-

nated response in reducing anthropogenic activities that may violate the regulations in 

place (as seen during the lockdown in April–May 2020) can improve water quality, with 

the potential to sustain and/or restore the ecological values of Lake Vembanad in the fu-

ture [7,32,52]. Continuing such a coordinated response could help achieve the targets set 

out in SDG-6 and SDG-14 and significantly reduce aquatic pollution and improve water 

quality by 2030. While we did not observe a prolonged positive effect on water quality 

after lockdown restrictions were lifted, water quality seems to be improving in some re-

gions when considering inter-annual trends. This shows that both continued scientific re-

search and the monitoring of water quality on short and longer time scales can aid in the 

knowledge-based decision making required for the sustainable management of Lake 

Vembanad [52,53] with a view to achieving the SDGs set out by the UN. This is especially 

important in meeting the targets set out in SDG-6 and SDG-14 which focus on the resto-

ration, protection, and sustainable management of aquatic and marine ecosystems. Re-

mote sensing observations can aid in this, with free and open data available at high tem-

poral and spatial resolutions [31,67]. The limited comparison between remote sensing and 

in situ observations presented in this study showed some similarities as well as discrep-

ancies in the magnitudes of the water quality indicators studied, such that we were 

obliged to treat them as independent pieces of information, and confine the analyses of 

remote sensing data to infer relative changes over time. However, it is worth noting that 
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the relative changes observed through remote sensing and in situ observations were gen-

erally consistent with each other. Our results highlight the importance of continued and 

sustained in situ observations of water quality in Lake Vembanad, to permit more precise 

match-up data analyses of remote sensing and in situ observations, with a view to devel-

oping better satellite retrieval algorithms that are tuned for these regional conditions. 
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