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Abstract19

Oceanography has entered an era of new observing platforms, such as biogeochemical20

Argo floats and gliders, some of which will provide three-dimensional maps of essential21

ecosystem variables on the North-West European (NWE) Shelf. In a foreseeable future22

operational centres will use multi-platform assimilation to integrate those valuable data23

into ecosystem reanalyses and forecast systems. Here we address some important ques-24

tions related to glider biogeochemical data assimilation and introduce multi-platform data25

assimilation in a (pre)operational model of the NWE Shelf-sea ecosystem. We test the26

impact of the different multi-platform system components (glider vs satellite, physical vs27

biogeochemical) on the simulated biogeochemical variables. To characterize the model28

performance we focus on the period around the phytoplankton spring bloom, since the29

bloom is a major ecosystem driver on the NWE Shelf. We found that the timing and mag-30

nitude of the phytoplankton bloom is insensitive to the physical data assimilation, which is31

explained in the study. To correct the simulated phytoplankton bloom one needs to assim-32

ilate chlorophyll observations from glider or satellite Ocean Color (OC) into the model.33

Although outperformed by the glider chlorophyll assimilation, we show that OC assimila-34

tion has mostly desirable impact on the sub-surface chlorophyll. Since the OC assimilation35

updates chlorophyll only in the mixed layer, the impact on the sub-surface chlorophyll is36

the result of the model dynamical response to the assimilation. We demonstrate that the37

multi-platform assimilation combines the advantages of its components and always per-38

forms comparably to its best performing component.39

Plain Language Summary40

North-West European (NWE) Shelf is a region of major importance for both Eu-41

ropean economy and climate. Observational oceanography has entered an important era42

of new observing biogeochemical platforms, such as Biogeochemical Argos and gliders.43

Gliders are being currently deployed to measure three-dimensional distributions of some44

essential biogeochemical variables on the NWE Shelf. This work establishes a multi-45

platform assimilative system on the NWE Shelf which will be used to combine multiple46

different types of observing platforms (e.g. satellite, gliders) with our up-to-date models in47

order to optimize our estimate and forecast of the NWE Shelf ecosystem state. We provide48

an understanding for how the different components of the system interact. We demonstrate49

that the assimilative system is skilled to combine physical data with satellite and glider50

data for chlorophyll, as well as the glider data for oxygen. The work establishes the foun-51

dations of a system that is planned to be used in the future operational oceanography on52

the NWE Shelf.53

1 Introduction54

Understanding the state and the future of shelf-sea ecosystems is essential from the55

point of view of economy, conservation and the global carbon cycle (Pauly et al. [2002];56

Borges et al. [2006]; Friedlingstein et al. [2006]; Jahnke [2010]). Reanalyses provide our57

best estimate of the ocean state by optimally combining the state-of-the-art knowledge58

from models with the most up-to-date observations. In marine biogeochemistry the pre-59

vailing approach is to assimilate satellite products into models, either for Ocean Color60

(OC) derived total chlorophyll (e.g Ishizaka [1990]; Carmillet et al. [2001]; Natvik and61

Evensen [2003]; Hoteit et al. [2005]; Triantafyllou et al. [2007]; Nerger and Gregg [2007,62

2008]; Gregg [2008]; Fontana et al. [2010]; Ford et al. [2012]; Ciavatta et al. [2011, 2016];63

Kalaroni et al. [2016]; Ford and Barciela [2017]; Pradhan et al. [2019]), Phytoplankton64

Functional Type (PFT)-specific chlorophyll (Ciavatta et al. [2018, 2019]; Skákala et al.65

[2018, 2020]), or surface radiances (Shulman et al. [2013]; Ciavatta et al. [2014]; Jones66

et al. [2016]; Gregg and Rousseaux [2017]; Skákala et al. [2020]). Additionally a number67

of studies have assimilated biogeochemical data from in situ measurements, either using68
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single-location profiles (e.g. Allen et al. [2003]; Hoteit et al. [2003]; Torres et al. [2006];69

Lenartz et al. [2007]), or using surface data from ships, floats and buoys (e.g Anderson70

et al. [2000]; Cossarini et al. [2009]; Song et al. [2016]). The typical disadvantage of the71

traditionally assimilated biogeochemical data-sets is that they are either constrained to the72

ocean surface (e.g. in the case of satellite data), or they are typically limited to a single73

location (in the case of vertically-measured data). Assimilating such data into the model74

has either only local impact, or its impact on biogeochemical fields is typically constrained75

to the upper oceanic layer, with uncertain impact on the vertical profiles of biomass, or76

nutrients.77

However, the situation on the data-front is rapidly changing, with new programmes78

(e.g. AtlantOS, Visbeck et al. [2015]) aiming at revolutionizing biogeochemical oceanog-79

raphy with novel observing platforms covering large parts of the ocean both horizontally80

and vertically, such as floats deployed in the Biogeochemical-Argo programme (e.g. John-81

son and Claustre [2016]; Johnson [2016]; Germineaud et al. [2019]), and gliders with82

optical and biogeochemical sensors (Telszewski et al. [2018]). Some of the Argo float83

oxygen data were already assimilated to constrain the biogeochemistry in the Southern84

Ocean (Verdy and Mazloff [2017]) and Argo-measured chlorophyll was assimilated to im-85

prove phytoplankton dynamics in the Mediterranean Sea (Cossarini et al. [2019]). This86

new observational activity quite understandably focuses on regions of high importance87

for fisheries, economy and climate, such as the North-West European (NWE) Shelf (e.g.88

Legge et al. [2020]), where a number of gliders have been deployed as a part of the Al-89

ternative Framework to Assess Marine Ecosystem Functioning in Shelf Seas (AlterECO)90

programme (http://projects.noc.ac.uk/altereco/ ). The rapid development of these new au-91

tonomous observation systems opens up an entirely new range of possibilities on how to92

optimally integrate multi-platform observing networks with our present oceanographic93

models (Lellouche et al. [2013]; Bell et al. [2015]). The observational work on the NWE94

Shelf from the AlterECO project is coupled to a sister programme, the CAMPUS (Com-95

bining Autonomous observations and Models for Predicting and Understanding Shelf seas,96

https://www.campus-marine.org/ ) project, aiming to consistently combine the different97

sources of information, such as gliders, satellite OC data and models, in order to improve98

our capability to understand, represent and forecast the NWE Shelf biogeochemistry (e.g99

spring bloom, carbon and nutrient cycle, oxygen depletion events). Future plans, based100

on CAMPUS and in line with the European Copernicus Marine Environment Monitoring101

Service (CMEMS), are to have a multi-platform assimilative system on the NWE Shelf,102

where the autonomous vehicles will navigate to specific locations using a combination of103

Artificial Intelligence (AI) and model forecast, to observe important processes such as the104

onset of the phytoplankton bloom, or hypoxic events.105

Trying to establish glider data assimilation as part of such a multi-platform assim-106

ilative system often leads to two non-trivial problems: a) how to consistently combine107

high resolution glider data with much coarser model resolution, b) how to achieve rea-108

sonable consistency between the assimilation-corrected variables and the coupled physical-109

biogeochemical model dynamics. The problem of dynamical consistency needs special110

mention, since both physical and biogeochemical fields have typically much larger gradi-111

ents in the vertical than in the horizontal dimension. The vertical correlation length scales112

have large spatio-temporal variability and model dynamics can be quite sensitive to spu-113

rious vertical gradients (Doney [1999]; Oschlies and Garçon [1999]; Doney et al. [2004]).114

Such model sensitivity is often noticed when physical data (such as sea surface height, or115

temperature and salinity) are assimilated into the model, as the spurious vertical mixing116

introduced by such assimilation is known to often degrade the skill of the biogeochemi-117

cal model (e.g Berline et al. [2007]; While et al. [2010]; El Moussaoui et al. [2011]; Holt118

et al. [2014]; Raghukumar et al. [2015]; Park et al. [2018]). However, similar issues can be119

easily overlooked when we assimilate surface biogeochemical data (except extreme regions120

with substantial small-scale horizontal variability, such as the Gulf Stream, Anderson et al.121

[2000]), since the biogeochemical fields have smaller gradients in the horizontal direction122
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than in the vertical, which means they are more dynamically stable in the horizontal than123

in the vertical direction. For the gliders, it is of vital interest to understand the potentially124

complex interaction between the physical and the biogeochemical data assimilation, or the125

interplay between the different biogeochemical variables updated by the assimilative sys-126

tem.127

In this study we extend the operational assimilative system on the NWE Shelf to128

successfully produce a multi-platform reanalysis including both physical (satellite sea sur-129

face temperature, temperature and salinity from in situ platforms and an AlterEco glider)130

and biogeochemical (total chlorophyll a and oxygen from an AlterECO glider, and chloro-131

phyll a from a satellite OC product) variables. The main focus of the paper is to assess132

the impact of the different multi-platform assimilative system components (satellite vs133

glider, physical vs biogeochemical) on the simulated ecosystem processes in relation to134

the phytoplankton spring bloom. Being able to estimate the impact of the different sys-135

tem components is important, since it indicates what the assimilation impact will be on136

the simulated biogeochemistry in regions where only a specific type of data (e.g. satellite137

OC, physical variables) is available. The focus on the processes around the spring bloom138

is a natural choice due to a) the availability of high quality chlorophyll glider data, and b)139

because the spring bloom is a key driver of the ecosystem dynamics on the NWE Shelf140

(Lutz et al. [2007]; Henson et al. [2009]). The results of this study should form a basis for141

an integrated multi-platform assimilative system, that will optimize the available informa-142

tion from observations and models in order to improve our understanding of the NWE143

Shelf biogeochemistry. The assimilated biogeochemical glider variables were selected144

based on the data availability, but both chlorophyll and oxygen are expected to play an145

important role in the future multi-platform operational assimilation: chlorophyll is a proxy146

for phytoplankton biomass, which forms the base of the marine food web, while oxygen147

needs to be monitored and forecast in order to identify oxygen depletion events (i.e. hy-148

poxia, Vaquer-Sunyer and Duarte [2008]), which can have disastrous impacts on marine149

life.150

2 Methods151

The paper uses a hindcast version of the operational modelling system for the NWE152

Shelf run by the Met Office in the framework of the CMEMS, i.e. the physical model Nu-153

cleus for European Modelling of the Ocean (NEMO, Madec et al. [2015]) coupled through154

the Framework for Aquatic Biogeochemical Models (FABM, Bruggeman and Bolding155

[2014]) with the biogeochemical model European Regional Seas Ecosystem Model (ERSEM,156

Baretta et al. [1995]; Blackford [1997]; Butenschön et al. [2016]). We used measurements157

from an AlterEco glider that operated in the central North Sea between May-August 2018158

providing data for temperature, salinity, chlorophyll (derived from fluorescence) and oxy-159

gen concentrations. In multi-platform assimilation the glider data were complemented with160

the Ocean Colour-Climate Change Initiative (OC-CCI) satellite product of the European161

Space Agency (ESA) for total chlorophyll (version 3.1, Sathyendranath et al. [2019]),162

Sea Surface Temperature (SST) data from the GCOM-W1/AMSR-2, NOAA/AVHRR,163

MetOp/AVHRR, MSG/SEVIRI, Sentinal-3/SLSTR, and Suomi-NPP/VIIRS satellite prod-164

ucts, and the temperature and salinity in situ data from the EN4 dataset (Good et al. [2013]),165

which includes profiles from Argo floats, fixed moored arrays, XBTs, CTDs, gliders, and166

marine mammals. The physical and biogeochemical data were assimilated on a daily basis167

into NEMO-FABM-ERSEM using NEMOVAR (the assimilative system used operationally168

by the Met Office, Mogensen et al. [2009, 2012]; Waters et al. [2015]; King et al. [2018]).169

The model free simulation was run from 01/09/2017 until the end of the year 2018170

and was initialized from a 2016-2018 run of a very similar model configuration presented171

in Skákala et al. [2020]. The free run outputs have been analysed for the period of the172

glider data availability (08/05-15/08, 2018). The assimilative runs used identical model173

settings as the free run, only with the added assimilation components. The different as-174
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similative runs compared in this study are (see also Table 1): a) physical data assimila-175

tion (satellite SST, temperature and salinity from EN4 data and the AlterEco glider), b)176

satellite OC total chlorophyll a assimilation, c) AlterEco glider chlorophyll a assimilation,177

d) AlterEco glider oxygen assimilation and e) multi-platform assimilation combining all178

the data from a)-d). Note that wherever we mention the assimilation of specific data (e.g.179

glider chlorophyll) we mean a simulation where only those data have been assimilated (as180

opposed to multi-platform assimilation, which assimilates all the available data). All the181

assimilative runs were started from the initial value conditions produced by the free simu-182

lation for 08/05/2018.183

Table 1. The observations assimilated in the different data assimilation (DA) experiments. The table uses
some of the following abbreviations: temperature (T), salinity (S) and ‘EN4” means the EN4 in situ data-set.

184

185

Experiment satellite SST EN4 T&S glider T&S satellite OC glider chl a glider O2

physical DA Yes Yes Yes No No No

satellite OC DA No No No Yes No No

glider chl a DA No No No No Yes No

glider O2 DA No No No No No Yes

Multi-platform DA Yes Yes Yes Yes Yes Yes

2.1 The physical component: NEMO186

The NEMO ocean physics component (OPA) is a finite difference, hydrostatic, prim-187

itive equation ocean general circulation model (Madec et al. [2015]). The NEMO config-188

uration used in this study is similar to the one used by Ford et al. [2017]; Skákala et al.189

[2018], and almost identical to Skákala et al. [2020]: we use the CO6 NEMO version,190

based on NEMOv3.6, a development of the CO5 configuration explained in detail by191

O’Dea et al. [2017]. The model has 7 km spatial resolution on the Atlantic Margin Model192

(AMM7) domain using a terrain-following z∗ − σ coordinate system with 51 vertical levels193

(Siddorn and Furner [2013]). The lateral boundary conditions for physical variables at the194

Atlantic boundary were taken from the outputs of the Met Office operational 1/12° North195

Atlantic model (NATL12, Storkey et al. [2010]); the Baltic boundary values were derived196

from a reanalysis produced by the Danish Meteorological Institute for CMEMS. We use197

annually varying river discharge based on data from Lenhart et al. [2010]. The model was198

forced at the surface by atmospheric fluxes provided by an hourly and 31 km resolution199

realisation (HRES) of the ERA5 data-set (https://www.ecmwf.int/ ).200

2.2 The biogeochemical component: ERSEM201

ERSEM (Baretta et al. [1995]; Butenschön et al. [2016]) is a lower trophic level202

ecosystem model for marine biogeochemistry, pelagic plankton, and benthic fauna (Black-203

ford [1997]). The model splits phytoplankton into four functional types largely based on204

their size (Baretta et al. [1995]): picophytoplankton, nanophytoplankton, diatoms and di-205

noflagellates. ERSEM uses variable stoichiometry for the simulated plankton groups (Gei-206

der et al. [1997]; Baretta-Bekker et al. [1997]) and each Phytoplankton Functional Type207

(PFT) biomass is represented in terms of chlorophyll, carbon, nitrogen and phosphorus,208

with diatoms also represented by silicon. ERSEM predators are composed of three zoo-209

plankton types (mesozooplankton, microzooplankton and heterotrophic nanoflagellates),210

with organic material being decomposed by one functional type of heterotrophic bacteria211

(Butenschön et al. [2016]). The ERSEM inorganic component consists of nutrients (nitrate,212
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phosphate, silicate, ammonium and carbon) and dissolved oxygen. The carbonate system is213

also included in the model (Artioli et al. [2012]).214

We used in this study a similar ERSEM configuration to Skákala et al. [2020], but215

unlike Skákala et al. [2020] we implemented an updated ERSEM version (v20.10), with216

a notable upgrade to the benthic code. The ERSEM parametrization is identical to the217

one described in Butenschön et al. [2016]. The Atlantic boundary values for nitrate, phos-218

phate, silicate and oxygen were taken from World Ocean Atlas (Garcia et al. [2013]) and219

dissolved inorganic carbon from the GLODAP gridded dataset (Key et al. [2015]; Lauvset220

et al. [2016]), while plankton and detritus variables were set to have zero fluxes at the At-221

lantic boundary. The ERSEM irradiance was calculated using a new bio-optical module222

implemented in the NEMO-FABM-ERSEM AMM7 configuration by Skákala et al. [2020].223

The bio-optical module resolves light spectrally and distinguishes between downwelling224

direct and diffuse streams. The module is forced by ERA5 atmospheric inputs (https://-225

www.ecmwf.int/ ) for total vertically integrated ozone, water vapour, cloud cover, cloud226

liquid water and sea-level air pressure, as well as by a satellite product for aerosol opti-227

cal thickness (MODerate resolution Imaging Spectroradiometer, MODIS, https://modis.-228

gsfc.nasa.gov/data/dataprod).229

2.3 The assimilative system: NEMOVAR230

NEMOVAR is a variational Data Assimilation (DA) system (Mogensen et al. [2009,231

2012]; Waters et al. [2015]) used for operational ocean DA at the Met Office. Via the as-232

similation of satellite OC derived (total, or PFT) chlorophyll concentrations, NEMOVAR233

has been demonstrated as being highly successful in improving the phytoplankton com-234

munity structure (PFT chlorophyll assimilation), phytoplankton seasonal cycle and the235

timing and magnitude of the spring bloom (Skákala et al. [2018, 2020]). There are also236

indications that satellite OC assimilation can improve the carbon cycle (Skákala et al.237

[2018, 2020]). When it comes to the non-assimilated variables, satellite OC reanalysis238

typically has a comparable skill to the free run (Skákala et al. [2018, 2020]). The satel-239

lite OC chlorophyll assimilation using NEMOVAR on the NWE Shelf has been thoroughly240

validated on bi-decadal time-scales (Kay et al. [2019]), showing a good overall skill and241

no spurious trends in biogeochemical tracer concentrations.242

In this study the observations are assimilated on a daily basis. The model is first243

run for the day and background values are calculated in observation space by interpolating244

the model fields to the observation locations at the nearest model time step (300 seconds)245

to the observation time, an approach known as First Guess at Appropriate Time (FGAT).246

NEMOVAR is then run, calculating a set of increments for each updated variable on the247

model grid. After the assimilation step the model is re-run with the increments applied248

to the model variables gradually at each model time-step using incremental analysis up-249

dates (IAU, Bloom et al. [1996]). For the physical variables the increments are calculated250

for temperature, salinity, sea surface height and the horizontal velocity components, by251

accounting for their correlations by transforming those variables through a set of linear252

balancing equations into an independent set of variables that is assimilated separately. For253

biogeochemical variables, the increments are initially calculated for the observed variable.254

For total chlorophyll the assimilation is applied in log-space, since chlorophyll is typically255

log-normally distributed (Campbell [1995]). After calculating the total chlorophyll incre-256

ments, we use a balancing module to split those increments into the model state variables.257

The applied scheme (Skákala et al. [2018, 2020]) redistributes total chlorophyll increments258

into the 4 ERSEM PFTs based on background PFT-to-total chlorophyll ratios. The PFT259

chlorophyll is used to update the remaining PFT components (carbon, phosphorus, nitro-260

gen for all PFTs, silicon for diatoms) following the background stoichiometric ratios. In261

the case of oxygen assimilation the only updated variable is the simulated oxygen con-262

centration. There were attempts to extend the currently applied balancing scheme to other263

ERSEM variables (e.g nutrients), but so-far this produced sub-optimal results degrading264
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the biogeochemical model skill (see discussion in Skákala et al. [2018]). Any combined265

physical-biogeochemical assimilation in NEMOVAR is weakly coupled, which means that266

the physical and the biogeochemical variables are assimilated separately, with physical as-267

similation impacting biogeochemistry only through the model dynamics, and no feedback268

from biogeochemistry to physics.269

The multi-platform assimilation is based on the development from Waters et al.270

[2015] extended to biogeochemical variables by Ford [2020], i.e. the combined assimi-271

lation of satellite OC and glider chlorophyll data is performed by following a scheme pre-272

viously applied to temperature by Waters et al. [2015]. The satellite and in situ glider data273

are combined to calculate a single set of 3D increments, while allowing for different ob-274

servation errors to be specified for the different data sources (for the details see Waters275

et al. [2015]; Ford [2020]). Since each of the physical data, chlorophyll and oxygen assim-276

ilation provides increments for different variables, the multi-platform assimilation simply277

aggregates the increments from the physical, chlorophyll and oxygen assimilative compo-278

nents.279

The background covariances are represented as a product of background variances280

and a diffusion operator (Mirouze and Weaver [2010]; King et al. [2018]. Within the dif-281

fusion operator, the same length-scales are set for all the assimilated (physical, biogeo-282

chemical) variables. The horizontal correlation length-scales are specified a-priori, and283

are based on two different length scales, a longer 100 km correlation scale and a shorter284

length-scale based on the first baroclinic Rossby radius of deformation (King et al. [2018]).285

The vertical length-scales use the scheme from Waters et al. [2015]; King et al. [2018];286

Ford [2020], where NEMOVAR calculates directly the set of 3D increments (we call this287

scheme a “3D variant”) using flow-dependent vertical length-scales (`), which are the fol-288

lowing function of depth (d):289

`(d) =
dml
2
−

(
1
2
−

2G(dml)

dml

)
· d, 0 ≤ d ≤ dml, (1)

`(d) = 2G(d), d > dml,

where dml is the mixed layer depth (MLD) and G(d) is the vertical grid spacing as a func-290

tion of depth. Equation 1 means the surface length-scale is equal to half of the MLD, the291

length scale decreases linearly with depth until the MLD, while beneath MLD the length-292

scales are two times the local vertical grid resolution. Such vertical correlation length-293

scales are designed to minimise any spurious mixing of surface increments beneath the294

mixed layer (King et al. [2018]). It should be noted that satellite OC data assimilation in295

some previous studies (e.g. Skákala et al. [2018, 2020]) used a "2D variant", where sur-296

face chlorophyll increments were applied throughout the mixed layer. Both 2D and 3D297

variants were tested in this study and we have found that they produced almost identical298

results (not shown here). In this study we will present the outputs of the 3D variant, but299

these are representative of both methods.300

NEMOVAR has two important drawbacks: (i) the background errors (square-root of301

background variances) have to be specified mostly a priori and those do not always cap-302

ture how the reanalysis approximates the true state, (ii) it does not account for the ob-303

servational error correlations. Both (i) and (ii) tend to artificially increase the impact of304

the assimilated observations (especially when there is high density of observations) and305

likely contribute to the fact that biogeochemical reanalyses on the NWE Shelf are rela-306

tively insensitive to the precise value of the background-to-observational error ratio (e.g.307

Skákala et al. [2018]). Then, provided that the reanalysis state is sufficiently internally308

consistent, NEMOVAR reanalyses on the NWE Shelf tend to converge for a wide interval309

of background-to-observational error ratios towards the assimilated observations (Skákala310

et al. [2018, 2020]). Improvements could be achieved by using hybrid methods (e.g. back-311

ground errors calculated as a weighted combination of the parameterised component and312

a flow-dependent component calculated from an ensemble), or flow-dependent iterative313
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methods based on error diagnostics, such as the scheme of Hollingsworth and Lönnberg314

[1986]; Andersson [2003]; Desroziers et al. [2005] (e.g. Mattern et al. [2018]; Cossarini315

et al. [2019]). For physical assimilation (King et al. [2018]) the background errors were316

estimated using the innovation method of Hollingsworth and Lönnberg [1986] applied to317

innovations from an existing reanalysis by O’Dea et al. [2017], with background errors318

between 1-3.5 times larger than the observational errors (Table 2). For biogeochemical as-319

similation the background errors, Σ{Qbkg}, were estimated from the observational-to-free320

run differences and observational errors, Σ{Qo}, (Qbkg, Qm and Qo stand subsequently321

for the background, model free run and observed concentrations), along the scheme of322

Skákala et al. [2020]:323

Σ{Qbkg} =
√
〈[Qm −Qo]2〉 − Σ{Qo}2, (2)

which assumes that for a suitable spatio-temporal binning the model and observational er-324

rors are uncorrelated (Skákala et al. [2020]). In the case of the glider data the total obser-325

vational errors (including representation error) were estimated from the difference between326

variances of the observations, V{Qo}, and the variances of the true state, V{Qt}:327

Σ{Qo} =
√

V{Qo} − V{Qt}, (3)

where the variances of the true state were estimated from the model outputs. This scheme332

assumes that the observations have zero bias and that (for the limited spatio-temporal333

range of glider data) the observational errors and the true state deviations from the mean334

are uncorrelated. After estimating the observational errors for gliders, one proceeds with335

the equation 2 to estimate the corresponding background errors. The methods based on336

equation 2 and equation 3 produced background and observational errors with compara-337

ble values, with background-to-observational error ratios on average between 0.77-2.3 (see338

Table 2). For the two different chlorophyll observational products, the estimate of glider

Table 2. The Table shows parts of the multi-platform assimilative system with the list of the updated
physical-biogeochemical variables and the mean values of the background-to-observational error ratio (B-O
error ratio, with error understood as standard deviation). The physical variables are abbreviated as temper-
auture (T), salinity (S), sea surface height (SSH) and horizontal velocity components (U,V).

328

329

330

331

component updated variables B-O error ratio

satellite OC chl a PFT components 2.3

glider chl a PFT components 1.4

glider O2 oxygen 0.77

satellite T T,S,SSH,U,V 1.55

in situ T T,S,SSH,U,V 1.04

in situ S T,S,SSH,U,V 3.42

339

chlorophyll error (using equation 3) turned out to be on average 22% lower than the satel-340

lite OC chlorophyll error.341

2.4 Glider data342

The study used data from a Slocum glider (Teledyne Webb Research, Falmouth,343

USA) named Cabot (Unit 345, National Oceanography Centre, Southampton) deployed344

during the AlterEco mission (deployment 454). The glider sampling transect was situated345

in the Central North Sea (see Figure 1), between May-August 2018, collecting data for346
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temperature and salinity (Seabird SBE42 CTD), colored dissolved organic matter, particu-347

late backscattering, chlorophyll a fluorescence (Wetlabs ECOpuck), and oxygen (Aanderaa348

AA4831 optode). After Quality Control (QC) the quenching-corrected chlorophyll (de-349

rived from fluorescence) and oxygen concentrations were available for slightly different350

periods: chlorophyll for 08/05 - 15/08, 2018 and oxygen for a shorter period of 08/05 -351

30/06, 2018. The Cabot glider was chosen because it provided high-quality data, but the352

period of the glider mission was also of special interest for assimilation, since it marks353

a known discrepancy between the timing of the spring bloom in the model and observa-354

tions, with the model biased towards a late bloom (see Skákala et al. [2020]). The QC355

glider outputs contained a substantial number of data-points (2 · 106 for chlorophyll and356

3 · 105 for oxygen) which were mapped to the model AMM7 grid (each observation to357

the nearest model grid point). The observations that were mapped on the same day into358

the same model grid point were then averaged into a single value. The grid-averaging of359

glider observations is a practice adopted in the physical DA to avoid assimilating many360

observations at higher resolution than the model can represent. However, our tests have361

shown that the impact of grid-averaging on the biogeochemical reanalysis was negligible.362

During each day the glider typically covered 3 model horizontal grid-cells and for each363

model horizontal location the glider scanned nearly the full vertical water column.364

The glider data (publicly available from www.bodc.ac.uk) were processed by the Na-373

tional Oceanography Centre (NOC) AlterECO team using the GEOMAR glider toolbox374

for salinity and oxygen lag corrections (following Bittig et al. [2014]). The glider was375

fitted with a standard non-pumped SBE CT sensor, a WETLabs ECOpuck to measure376

chlorophyll fluorescence, and an Aanderaa 4330 oxygen optode. Oxygen data were cor-377

rected based on comparisons between Winkler samples and local crossings with the rest of378

the AlterEco glider fleet.379

The fluorescence sensor on Cabot (454) was calibrated prior to deployment, and380

recovered data were converted to chlorophyll concentration from raw voltages using the381

manufacturer supplied calibration routine. The derived chlorophyll record was filtered382

such that negative values were set to zero. Multiple quenching corrections were tested, in-383

cluding: Hemsley et al. [2015]; Swart et al. [2015]; Biermann et al. [2015] and Xing et al.384

[2012]. The former three methods rely on the use of algal particle scattering to correct385

for quenching. However, these approaches proved unsatisfactory for use in case-2 waters386

(e.g. the North Sea). Consequently, the Xing et al. [2012] method was adopted. Under this387

approach the maximum value of chlorophyll concentration above the mixed layer depth388

(MLD) is extrapolated to the surface for daytime profiles. Night-time chlorophyll profiles389

are not corrected. MLD is calculated from glider CTD profiles according to the method of390

Holte and Talley [2009].391

2.5 Used metrics (definitions)392

The paper uses two metrics: a) model-to-observation bias (∆Qmo) defined as393

∆Qmo = 〈Qm −Qo〉, (4)

where, as before, Qm are the model free run and Qo the observed concentrations (by the394

observations we will automatically mean the glider data), and b) Bias-Corrected Root395

Mean Square Difference (BC RMSD, ∆RDQmo) defined as396

∆RDQmo =
√
〈[Qm −Qo − ∆Qmo]2〉 . (5)

The BC RMSD metric is applied in two different contexts: as a “spatial BC RMSD” and397

a “temporal BC RMSD”.398

In the case of spatial BC RMSD, we calculate for each day (td) the difference be-399

tween the model and the observed daily mean, which we call model-to-observation daily400

bias:401

∆Qmo(td) = 〈Qm(td) −Qo(td)〉, (6)
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Figure 1. The panels show the NEMO-FABM-ERSEM (AMM7) domain with the Cabot glider data loca-
tions (chlorophyll data locations for the full 08/05-15/08, 2018 mission, oxygen data for a shorter period of
08/05-29/06, 2018) marked by yellow dots, as well as glider horizontal area of impact on the reanalysis. The
color scale in the two panels shows the weekly (23-29-th June 2018) mean percentage (%) difference between
reanalysis and free run in the surface chlorophyll (upper panel) and surface oxygen (bottom panel) concentra-
tions, and reveals the horizontal extent of the glider’s impact on the assimilation. The percentage difference is
calculated by dividing the absolute value of the difference between reanalysis and the free run, with the free
run. The black lines show the boundary of the NWE Shelf (< 200 m bathymetry).
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370
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where Qm(td) and Qo(td) are the model free run and the observation data from the day td,402

and the model free run is taken only from the spatial locations visited by the glider (about403

150 model grid points per day). Then we calculate “daily BC RMSD”, ∆RDQmo(td), by404

applying equation 5 on each day using the model and the observation daily data, as well405

as their daily biases:406

∆RDQmo(td) =
√
〈[Qm(td) −Qo(td) − ∆Qmo(td)]2〉 . (7)

The spatial BC RMSD, ∆SRDQmo, is then obtained as a time-average of the daily BC RMSD,407

i.e. averaging ∆RDQmo(td) through the glider data availability period (100 days for chloro-408

phyll and 53 days for oxygen):409

∆
S
RDQmo = 〈∆RDQmo(td)〉td, (8)

where 〈〉td means averaging through the interval of td values. Since the glider moves on410

the model grid dominantly in the vertical dimension, the spatial BC RMSD mostly mea-411

sures how well the model simulation represents the vertical profile of the glider observa-412

tions.413

The temporal BC RMSD, ∆TRDQmo, is based on calculating a time-series, δ, of the414

daily mean values (for both model, δm, and the observations, δo), averaged through the415

spatial locations visited by the glider:416

δm(td) = 〈Q(td)〉, δo(td) = 〈Qo(td)〉, (9)

then applying equation 5 to those time-series, with bias understood as the model-to-observation417

difference in the temporal mean of the time-series data:418

∆
T
RDQmo =

√
〈[δm(td) − δo(td) − 〈δm(td) − δo(td)〉]2〉td . (10)

The temporal BC RMSD is designed to capture how the model represents the observed419

phytoplankton phenology.420

It should be noted that the metrics discussed in this section are used to measure421

“the skill” of the assimilative runs by comparing the simulation outputs to the assimi-422

lated glider data, rather than to an independent validation data-set. There are two reasons423

for this: firstly, to get sufficient validation data for the limited spatio-temporal region of424

this study is nearly impossible, however, most importantly, this study has no ambition to425

produce a skill-assessed reanalysis, its ambition is to test the impact of the assimilative426

system components on the simulated variables. Since the NEMOVAR reanalyses tend to427

converge under optimal conditions to the assimilated observations (Skákala et al. [2018,428

2020]), the performance of the assimilative system can be measured by comparing the429

model to the assimilated data.430

3 Results and Discussion431

The model free run shows a late and intense spring bloom, with a timing about 1432

month later than the bloom observed in the satellite OC and in situ data (Figure 2 and433

Skákala et al. [2020]). The late timing of the model bloom is most likely influenced by the434

interplay between the model vertical mixing scheme and the simulated irradiance (see the435

discussion in Skákala et al. [2020]). The results from the study of Skákala et al. [2020] are436

confirmed by Figure 3, which shows the chlorophyll concentrations in the region measured437

by the glider between May and August 2018. When the assimilation starts in early May438

(Figure 3), the glider is in the post-bloom period showing some deep chlorophyll max-439

ima, whereas the model free run has yet to see the onset of the bloom with chlorophyll440

concentrations predominantly in the mixed layer. Since the North Atlantic sees substantial441

seasonal patterns in primary productivity (e.g. Henson et al. [2009]), the late and intense442

model bloom has a large impact on the biogeochemical model skill (Skákala et al. [2020]).443

–11–



Confidential manuscript submitted to JGR - Oceans

Figure 2. The mean daily surface chlorophyll concentrations averaged across the NWE Shelf for the year
2018. We compare a model free run used in this study with the physical data assimilation (the physical data
assimilation started on 01/09 2017 from the model free run initial values), the satellite OC and the North Sea
Biogeochemical Climatology (NSBC) in situ data set (Hinrichs et al. [2017]). The satellite OC chlorophyll
values are masked for the October-February period when there is sparsity of data due to the extensive cloud
cover and the low solar zenith angle. The model is shown to have an intense and late spring bloom: the ob-
served bloom is much less pronounced than the bloom in the model and the timing of the observed bloom is
around the early April, as opposed to the early-mid May bloom simulated by the model.

444
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450

451

Figure 3. Hovmöller diagrams for the model free run and the observations. The left panel (A) shows the
model free run outputs for total chlorophyll a (mg m−3) horizontally averaged through the area covered by
the glider during each day (the plot is depth vs time). The middle panel (B) shows the same for the glider-
observed chlorophyll concentrations and the right panel (C) shows the satellite OC chlorophyll observations at
the glider locations. The yellow lines mark the mixed layer depth of the model free run (left-hand panel) and
of the physics-assimilative run (the middle and right-hand panels). The satellite observations are plotted in the
mixed layer, with the dotted black line broadly corresponding to the average satellite optical depth (Skákala
et al. [2020]). The several missing data in the right hand plot are due to the cloud cover. The missing data at
the bottom of panels A-B are due to the varying bathymetry along the horizontal glider trajectory.
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The simulated surface chlorophyll on the NWE Shelf is typically corrected by the461

assimilation of OC satellite data (Skákala et al. [2018, 2020]) and the positive impact of462

satellite OC assimilation on the simulated NWE Shelf surface chlorophyll is shown in463

Figure 4:A-B. Around the glider locations, it is shown that both satellite OC and glider464

chlorophyll assimilation remove the late simulated bloom and improve the surface phyto-465

plankton phenology (Figure 5:D,F, Figure 6:A-B). However, unlike the satellite OC com-466

ponent, the glider chlorophyll assimilation has a limited impact on the model domain (Fig-467

ure 4:D). The horizontal spatial impact of glider assimilation varies with time (Figure 7A-468

B), but any substantial impact of glider assimilation on the simulated chlorophyll (on the469

level of >10%) is typically constrained to a 50 km radius around the glider location (Fig-470

ure 7:A).471

Since glider chlorophyll a data were assimilated across the whole water column, the472

glider chlorophyll assimilation is also able to substantially improve the sub-surface chloro-473

phyll concentrations (Figure 5:F). The three skill metrics (bias, spatial and temporal BC474

RMSD) capturing how the simulated chlorophyll a matches with the glider observations475

were all substantially improved by the glider chlorophyll assimilation: the model bias was476

reduced by almost 50% (Table 3 and Figure 6:D), the spatial BC RMSD by 60% (Table477

3) and the temporal BC RMSD by 70% (Table 3). Unlike glider chlorophyll assimila-478

tion, satellite OC assimilation updates chlorophyll concentrations only in the mixed layer,479

but the model dynamics propagates the updates to chlorophyll beneath the mixed layer480

and gradually spreads the impact of assimilation across the whole water column (Figure481

5:C). It is encouraging to see that the model dynamics acting on the satellite OC assim-482

ilation increments produces a qualitatively similar change to the sub-surface chlorophyll483

as the glider assimilation (Figure 5:C and Figure 5:E). We propose a simple explana-484

tion based on chlorophyll dynamics: The satellite-only assimilative run removes the in-485

tense late model bloom in May, removing chlorophyll from the mixed layer and increas-486

ing the light penetrating into the water column. The increased irradiance combined with487

nutrient availability produces deep chlorophyll maxima around the pycnocline (Figure488

5:C). Furthermore, the removal of the late (mid-May) bloom in the satellite OC reanal-489

ysis means the assimilation also removes the gradually deepening chlorophyll maxima490

(the July-August period in Figure 3:B and Figure 4:C), as the nutrients become confined491

deeper in the water column. The satellite OC assimilation improves both temporal BC492

RMSD (by 55%, Table 3) and spatial BC RMSD (by 15%, Table 3). Although the im-493

provement of BC RMSD is in both cases outperformed by the glider chlorophyll assim-494

ilation, the substantial reduction of temporal BC RMSD by 55% in the satellite OC re-495

analysis is non-trivial, and it is only possible due to (i) a relative consistency between the496

satellite OC data and the glider surface measurements (Figure 3, Figure 6:A-B), and (ii) a497

realistic update to sub-surface chlorophyll driven by the model dynamics.498

Whilst the physical data assimilation improves the model representation of both tem-545

perature and salinity (Figure 6), it is unable to correct the late model spring bloom (Figure546

2) and has a relatively modest impact on chlorophyll concentrations (Figure 3:C, Figure547

5:C,E, Figure 8:E). This can be understood as follows: As the pycnocline is primarily con-548

trolled by temperature and salinity, we expect that assimilating the physical variables may549

improve vertical gradients in water density and consequently vertical mixing. However,550

in the well-mixed nutrient-rich waters the onset of the spring bloom depends on the inter-551

play between vertical mixing in the upper oceanic layer and the irradiance (e.g. Huisman552

et al. [1999]; Waniek [2003]; Smyth et al. [2014]). Such interplay is closely related to the553

model atmospheric forcing product for the wind stress and the net incoming short-wave554

radiation, but an even greater issue is the model response to the used atmospheric forc-555

ing product, which consists here mostly of the ERSEM underwater light attenuation, the556

phytoplankton response to specific light conditions and the model vertical mixing scheme.557

The ERSEM response to the atmospheric forcing is known to be sensitive to the forcing558

temporal resolution, leading to shifts of up to one week in the timing of the phytoplankton559

bloom (Powley et al. [2020]). Since the assimilation does not alter the atmospheric forc-560
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Figure 4. Comparison of the time median surface chlorophyll a distributions (mg m−3) for the simulation
period (08/05 - 15/08, 2018) and the AMM7 domain. The upper two panels show differences in the mean
concentrations between the free run (panel A), the multi-platform reanalysis (panel B) and the assimilated
satellite OC product (the differences are simulated minus observed chlorophyll). The bottom two panels dis-
play the impact of the physical (panel C) and the glider chlorophyll (panel D) assimilation on the simulated
surface chlorophyll a concentrations by showing the differences between the two reanalyses and the free run
(reanalysis minus free run). The NWE Shelf-wide impact of the multi-platform assimilation on the surface
chlorophyll a concentrations is dominated by the satellite OC assimilation component (not shown here). The
multi-platform reanalysis (panel B) is therefore almost identical to satellite OC reanalysis.
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Figure 5. The left hand panels (A,C,E,G) demonstrate the spatio-temporal impact of the multi-platform
system components on the simulated chlorophyll a concentrations (mg m−3) by comparing different sim-
ulations to the free run. One major advantage of the left-hand side panels is that they demonstrate how the
changes introduced by the assimilation propagate vertically with the model dynamics, e.g. for the satellite OC
assimilation (panel C) that updates the model only in the mixed layer (the MLD is marked in panels C-D by a
yellow line). The right hand panels (B,D,F,H) show the skill of each component by comparing the simulations
to the glider observations. The first row shows the skill of the free run (panel B) and the required changes to
the free run in order to better match the glider observations (panel A). The rows beneath the first row compare
the chosen reference (free run or glider) with a range of system components: i) the reanalysis assimilating
satellite OC chlorophyll (panels C and D), ii) the reanalysis assimilating glider chlorophyll (panels E and
F) and iii) the multi-platform assimilation (joint physical data, glider chlorophyll and oxygen, and satellite
chlorophyll assimilation, panels G and H).
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Figure 6. The impact of different multi-platform system components on the model chlorophyll concen-
trations. The panels A-B compare the daily chlorophyll values spatially averaged throughout the upper 10
meters of the water column, within the part of the model domain visited by the glider. The panels C-D show
the daily values spatially averaged throughout the whole water column, within the part of the model domain
visited by the glider (the daily time series from equation 9), and the remaining panels E-F show the daily BC
RMSD (equation 7) for the same part of the model domain as the panels C-D. The panels display the skill of
the following system components: physical data assimilation (grey color), satellite OC chlorophyll assimi-
lation (orange) and oxygen assimilation (brown). These components are compared with the multi-platform
assimilative run (joint physical data, glider chlorophyll and oxygen, and satellite OC chlorophyll assimilation,
green color), the free run (blue), the glider observations (red) and the satellite OC data (pink).
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Figure 7. The horizontal scales for the impact of the glider chlorophyll (panels A-B) and the glider oxygen
(panels C-D) assimilation. The impact of glider assimilation is shown for a range of days (between 08/05-
17/06, 2018). The impact is calculated by comparing the mean absolute value of the difference in chlorophyll
(A-B panels), or oxygen (panels C-D) concentration between the reanalysis and the model free run. The mean
absolute difference is shown relative to the free run values (in %, panels A,C), or in the absolute values (pan-
els B,D). The absolute difference was averaged on the circles with 7-200 km radii (the spatial scales shown
on the x-axis). The circles were centered around the glider daily mean location. The mean absolute differ-
ences (y-axis) are shown on a log-scale, a straight-line therefore represents an exponential decrease of the
assimilation impact as a function of spatial scale.
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Table 3. The Table demonstrates the skill measured by bias (equation 4), spatial BC RMSD (equation 8)
and temporal BC RMSD (equation 10) of the free run and the relative (%) changes to the skill carried by the
different assimilative system components. The skill compares the model simulations with the glider data. The
percentage changes in the columns for the assimilative runs are calculated relative to the free run skill. The
negative percentage means that the bias, or (spatial, temporal) BC RMSD is reduced by the specific system
component, whilst the positive percentages mean that bias, or (spatial, temporal) BC RMSD, increases.

539

540

541

542

543

544

variable free run phys DA sat Chl a DA glid Chl a DA O2 DA multi DA

Chl a bias 0.31 mg m−3 +6.8% -80% -46.4% 0% -56.7%

Chl a temporal BC RMSD 0.77 mg m−3 +5.2% -54.6% -70.3% 0% -65.4%

Chl a spatial BC RMSD 1.14 mg m−3 -5.5% -15.3% -61.9% 0% -59%

O2 bias 25 mmol m−3 -3.8% +10.6% +0.7% -97% -98%

O2 temporal BC RMSD 13.5 mmol m−3 -4.3% +10.8% -5.4% -83.8% -83.7%

O2 spatial BC RMSD 29.8 mmol m−3 -7% -5.7% -14.6% -44.5% -47.4%

ing, the model mixing scheme, or the phytoplankton response to light, assimilating phys-561

ical data was found to have relatively modest impact on chlorophyll bias, as well as spa-562

tial and temporal BC RMSD (between 5-7%, Table 3). However, the impact of physical563

data assimilation on the simulated phytoplankton could become more substantial within564

a strongly coupled system (Goodliff et al. [2019]). In such system we would mutually up-565

date the biogeochemical and the physical increments within a balancing scheme, which566

could be ideally defined using a two-way coupled physical-biogeochemical model (e.g.567

Lengaigne et al. [2007]). Such development is planned in the foreseeable future.568

Finally, we have observed that assimilating glider oxygen into the model has a neg-577

ligible impact on the simulated chlorophyll concentrations, with a change to the skill met-578

rics of the order O(10−2) percent (Table 3, see also Figure 5:C,E). This is expected, as579

within ERSEM the oxygen variable influences phytoplankton concentrations only indi-580

rectly through a complex chain of marine chemical and biological processes (e.g. through581

influencing remineralization, or nitrification rates, and through the impact of hypoxia on582

zooplankton).583

There is a clear discrepancy between the oxygen time series of the glider and the584

model free run (Figure 9, Figure 10:A-B), with glider oxygen concentrations steadily de-585

creasing, while the simulated oxygen peaks in late May (Figure 10:A-B). Furthermore,586

simulated oxygen concentrations have a substantial positive bias (25 mmol m−3, Table 3,587

Figure 10:A-B) relative to the glider observations. Figure 9:A clearly shows that photo-588

synthesis is an important driver of the simulated oxygen, producing a large oxygen surge589

in the mixed layer during the simulated late spring bloom. Some connection between oxy-590

gen and chlorophyll concentrations (a proxy for primary productivity) appears also in the591

glider observations (Figure 9:B), with the peak in oxygen concentrations located in the592

neighborhood of the glider deep chlorophyll maxima (Figure 3:B). As for chlorophyll, a593

simple way to improve simulated oxygen is to assimilate the glider oxygen data into the594

model (Figure 10:D, Figure 11:H). Assimilating glider oxygen into the model reduces the595

oxygen bias by 97%, temporal BC RMSD by 84% and spatial BC RMSD by 45% (Table596

3). However, as in the case of chlorophyll, such assimilation has a limited spatial impact597

on the NWE Shelf (Figure 7:C-D and Figure 12:C). Unlike chlorophyll, the glider oxygen598

assimilation horizontal impact reduces with spatial scale at a rate largely independent of599
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Figure 8. Hovmöller diagrams to demonstrate the impact of physical (SST, in situ temperature and salinity,
including Cabot glider data) assimilation on the model variables. The upper row (A and B) shows the dif-
ference between glider ("G" in the title) and free run ("F") outputs for temperature (A) and salinity (B). The
middle row (C and D) shows differences for the same variables between physical reanalysis ("R") and the free
run. The bottom row (E and F) shows the same differences between physical reanalysis and the free run, but
for the two biogeochemical variables addressed by this study: total chlorophyll and oxygen. The two lines in
the panel C compare the mixed layer depth of the free run (yellow) and of the physical reanalysis (black). The
mixed layer depth has been obtained in both cases from the model outputs.
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time (Figure 7:C-D). Beyond the 50 km scale the assimilation horizontal impact decays600

approximately exponentially (a straight line in Figure 7:C-D), with a halving scale of ap-601

proximately 40 km, which means the impact is reduced by an order of magnitude at a 130602

km scale.603

Since the modeled oxygen concentrations are largely driven by the phytoplankton604

seasonal cycle, it is not surprising that assimilation of either satellite OC, or glider chloro-605

phyll, has a major influence on the simulated oxygen (Figure 11:C,E, Figure 12:B). The606

assimilated chlorophyll modifies the simulated oxygen after a necessary time-lag, remov-607

ing the excess oxygen from the model spring bloom and generating some deep oxygen608

maxima in early-to-mid June (Figure 11:C-F). The chlorophyll assimilation consistently609

improves oxygen in the period up to the start of June, but typically degrades oxygen in610

early-to-mid June (Figure 10:B,D,F), mostly due to the surge in oxygen concentrations611

around the deep oxygen maxima (Figure 11:C,E). The oxygen surge is likely to be partly612

driven by the deep chlorophyll maxima, e.g. by the overestimated chlorophyll concentra-613

tions around the deep maxima in the satellite OC assimilation (Figure 5:D). However,614

other drivers such as zooplankton and bacteria respiration are likely to contribute to the615

deep oxygen maxima. The mechanism for this is suggested by Figure 13:C-F: the chloro-616

phyll assimilation removes phytoplankton biomass from the mixed layer, limiting the re-617

sources for the simulated zooplankton and bacteria, and reducing their concentrations. The618

reduced phytoplankton concentrations seem to have much larger and more consistent im-619

pact on the zooplankton concentrations than on bacteria (Figure 13:C-F) and the reduced620

zooplankton concentration means less oxygen is removed through respiration, which likely621

produces excess oxygen concentrations.622

Compared to chlorophyll assimilation, the physical data assimilation has a rela-623

tively modest impact on the simulated oxygen (Figure 8:F, Figure 12:A-B), but it tends624

to consistently improve both the oxygen bias, and the spatial and temporal BC RMSD (by625

3 − 7%, Table 3). The impact of physical data assimilation on the oxygen concentrations626

can be explained by the lowered oxygen saturation concentrations under the increase in627

temperature within the reanalysis (Figure 8:C).628

Finally, we have combined all the assimilative system components (physical data629

assimilation, satellite OC, glider chlorophyll and oxygen) into a multi-platform assimilative630

run and we have shown that multi-platform assimilation has the capability to optimally631

combine the skill of all its components (Figure 4:B, Figure 6:D,F, Figure 9:D-E, Table 3).632

The multi-platform chlorophyll re-analysis is dominated in the vicinity of the glider by the633

glider chlorophyll assimilative component (Figure 5:E,G), whilst further away from the634

glider it is dominated by the satellite OC assimilation (Figure 4:D). The multi-platform635

oxygen re-analysis is dominated near the glider locations by the glider oxygen assimilation636

(Figure 10:D), whilst further away from the glider locations it is dominantly shaped by the637

satellite OC assimilation (Figure 12:B,D).638

4 Summary673

Present and future glider missions on the NWE Shelf will provide us with three-674

dimensional (3D) data on some specific biogeochemical variables (presently mostly for675

chlorophyll and oxygen) combined with physical measurements (e.g. temperature and676

salinity). These data will be, together with satellite missions, integrated into our ecosys-677

tem models by means of a multi-platform assimilative system. It is of crucial importance678

to understand what observed variables need to be assimilated in order to represent well a679

target ecosystem indicator, and what assimilation may need to be avoided because it can680

paradoxically degrade the model skill for the target indicator. Furthermore, different data681

will be available for different spatial and temporal regions on the NWE Shelf and it is es-682

sential to understand how the limitations imposed by the availability of the observational683

data impact on the quality of the multi-platform reanalyses. To address these questions we684
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Figure 9. Hovmöller diagrams for the model free run and the glider observations. The left-hand panel (A)
shows the model free run outputs for oxygen (mmol m−3) horizontally averaged through the area covered
by the glider during each day (the plot is depth vs time). The right-hand panel (B) shows the same for the
glider-observed oxygen.
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641

642

explored the impact of different system components (physical data, satellite OC chloro-685

phyll, glider chlorophyll and oxygen assimilation) on the simulated ecosystem state, using686

the operational set-up currently assimilating physical variables and satellite OC chloro-687

phyll. This study has taught us several important lessons:688

a) Assimilating physical data (SST, in situ temperature and salinity) has a negligible689

impact on the simulated phytoplankton bloom. This is because the modeled phytoplankton690

bloom depends in the North Sea mostly on the model response to the atmospheric forcing691

(wind stress and solar radiance), which remains unchanged by the temperature and salin-692

ity assimilation. Since the phytoplankton bloom is an essential driver of the ecosystem693

dynamics on the NWE Shelf (Henson et al. [2009]), it is quite likely that physical glider694

data assimilation has a relatively minor importance for the simulated ecosystem dynamics695

on the NWE Shelf. This is quite different from some other global regions where physical696

assimilation is either desirable (Anderson et al. [2000]; Yu et al. [2018]), or can degrade697

the biogeochemical model skill (Berline et al. [2007]; Holt et al. [2014]; Raghukumar et al.698

[2015]; Park et al. [2018]). Based on this study we would suggest that, at least around the699

spring bloom in the North Sea, physical assimilation can be used to improve the physi-700

cal model skill, whilst its impact on the coupled biogeochemical model can be relatively701

ignored.702

b) In terms of chlorophyll, the glider chlorophyll assimilation is the dominant and703

best performing component of the multi-platform assimilative system within the 50 km704

horizontal proximity of the glider. Further away from the glider locations, assimilating705

satellite OC data substantially improves the surface chlorophyll concentrations, but it can706

also produce realistic updates to the sub-surface chlorophyll. Since satellite OC assim-707

ilation updates chlorophyll only within the mixed layer, the updates to the sub-surface708

chlorophyll are explained by the model dynamical response to the assimilation. The skill709

of satellite OC assimilation in sub-surface chlorophyll is important, as glider technology710

will be able to cover only limited parts of the NWE Shelf and future multi-platform as-711

similative system will have to rely heavily on satellite data.712

c) The modelled phytoplankton dynamics is impacted by the oxygen concentrations713

only indirectly, e.g. through remineralization, or nitrification rates and the impact of hy-714
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Figure 10. The impact of different multi-platform system components on the model oxygen. The panels
A-D compare the daily oxygen values spatially averaged throughout the whole water column, within the part
of the model domain visited by the glider (the daily time series from equation 9), and the panels E-F show the
daily BC RMSD (equation 7). The panels display the skill of the following system components: physical data
assimilation (grey color), satellite OC chlorophyll assimilation (orange), glider chlorophyll assimilation (light
blue) and oxygen assimilation (brown). These components are compared with the multi-platform assimilative
run (joint physical data, glider chlorophyll and oxygen, and satellite chlorophyll assimilation, green color), the
free run (blue) and the glider observations (red).
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Figure 11. The left hand panels (A,C,E,G) demonstrate the impact of the multi-platform system compo-
nents on the simulated oxygen concentrations (mmol m−3) by comparing different simulations to the free
run. These panels are particularly well suited to see how chlorophyll assimilation dynamically influences
the simulated oxygen. The right hand panels (B,D,F,H) show the skill of each component by comparing the
simulations to the glider observations. The first row shows the skill of the free run (panel B) and the required
changes to the free run in order to better match the glider observations (panel A). The rows beneath the first
row compare the chosen reference (free run or glider) with a range of system components: i) the reanalysis
assimilating satellite OC chlorophyll (panels C and D), ii) the reanalysis assimilating glider chlorophyll (pan-
els E and F) and iii) the multi-platform assimilation (joint physical data, glider chlorophyll and oxygen, and
satellite chlorophyll assimilation, panels G and H).
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Figure 12. Comparison of the time median surface oxygen distributions (mmol m−3) for the oxygen glider
data period (08/05/2018 - 29/06, 2018). The panels show the impact of the different multi-platform system
components on the modelled oxygen by comparing the differences between four reanalyses and the free run.
The reanalyses presented in the panels are the physical data assimilation (panel A), the OC satellite chloro-
phyll assimilation (panel B), the glider oxygen assimilation (panel C) and the multi-platform assimilation
(panel D).
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Figure 13. The different panels help to interpret the impact of the simulated primary production and
respiration on the modeled oxygen concentrations. We show the difference between the glider chlorophyll
assimilation (left-hand side panels, A,C,E), or OC chlorophyll assimilation (right-hand side panels, B,D,F)
and the model free run (always assimilative run minus free run). The difference is shown for (i) the total net
primary production (mg C m−3day−1, panels A-B), (ii) total zooplankton carbon concentrations (mg C m−3,
panels C-D) and (iii) heterotrophic bacteria carbon concentrations (mg C m−3, panels E-F).
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poxia on zooplankton (Butenschön et al. [2016]). It is therefore hardly surprising that715

univariate assimilation of oxygen has a negligible impact on the simulated phytoplankton716

chlorophyll concentrations. This also means that one can assimilate oxygen into ERSEM717

without worrying about its consequences for the modelled phytoplankton. Such an oxygen718

assimilation has an obvious advantage in that it outperforms any other run in the model719

simulation of oxygen.720

d) Two important drivers of the simulated oxygen concentrations are the primary721

production and respiration. Consequently, assimilating (satellite OC, or glider) chlorophyll722

was found to have a major impact on the modeled oxygen. The removal of the late model723

bloom in the reanalysis improves the modeled oxygen, however it produces spurious deep724

oxygen maxima, partly due to the productivity at the deep chlorophyll maxima and partly725

due to the reduced respiration by the ERSEM zooplankton. Physical data assimilation has726

a stronger impact on the oxygen than on chlorophyll (oxygen saturation levels depend sub-727

stantially on temperature), but it had substantially less impact on the simulated oxygen728

than the chlorophyll assimilation.729

e) The multi-platform assimilation (joint physical data, glider chlorophyll and oxy-730

gen, satellite OC chlorophyll assimilation) combines optimally the skill of its components731

and always performs comparably to, or better than its best performing component.732

f) Based on the results of this study we expect that the multi-platform system will733

provide us with improved-quality operational products on the NWE Shelf.734
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