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We demonstrate that a simple model based on reaction-diffusion-advection (RDA) equation forced
by realistic surface velocities and nutrients is skilled in reproducing the distributions of the surface
phytoplankton chlorophyll in the tropical Pacific. We use the low-complexity RDA model to in-
vestigate the scale-relationships in the impact of different drivers (turbulent diffusion, mean and
eddy advection, primary productivity) on the phytoplankton chlorophyll concentrations. We find
that in the 1/4◦ (∼25km) model, advection has a substantial impact on the rate of primary pro-
ductivity, whilst the turbulent diffusion term has a fairly negligible impact. Turbulent diffusion has
an impact on the phytoplankton variability, with the impact being scale-propagated and amplified
by the larger scale surface currents. We investigate the impact of a surface nutrient decline and
some changes to mesoscale eddy kinetic energy (climate change projections) on the surface phyto-
plankton concentrations. The RDA model suggests that unless mesoscale eddies radically change,
phytoplankton chlorophyll scales sub-linearly with the nutrients, and it is relatively stable with re-
spect to the nutrient concentrations. Furthermore we explore how a white multiplicative Gaussian
noise introduced into the RDA model on its resolution scale propagates across spatial scales through
the non-linear model dynamics under different sets of phytoplankton drivers. The unifying message
of this work is that the low complexity (e.g. RDA) models can be successfully used to realistically
model some specific aspects of marine ecosystem dynamics and by using those models one can ex-
plore many questions that would be beyond computational affordability of the higher-complexity
ecosystem models.

I. INTRODUCTION

There is no effective scale in ecology [1]. New struc-
tures and processes appear with every new scale down to
the fundamental spatial scale of molecular biology, which
is far beyond the reach of our ecosystem models. Our
models provide merely an effective description for the
ecosystem dynamics (e.g.[2, 3]), so that any impact of the
model sub-grid processes is either parametrized, or can be
represented by a stochastic noise. To be able to correctly
describe the impact of sub-grid processes on the model
grid scale, it is beneficial to have some understanding
of how the ecosystem equations, or ecosystem variables
evolve with the spatial, or temporal scale (`). We will call
an approach that provides such understanding a ”scaling
analysis”. Scaling analysis has been largely advanced
within the framework of renormalization group (e.g.[4–
6]) with many fundamental applications across particle
physics, solid state physics and complex dynamical sys-
tems (e.g.[7–10]). Interestingly, renormalization group
methods were also applied to Navier-Stokes equations
(e.g.[11]) and reaction-diffusion models (for a recent com-
prehensive review see [12]). The renormalization group
turned out to be particularly well suited to describe scale-
invariant properties of the examined system and has been
widely applied to study critical phenomena and univer-
sality (e.g.[13–15]).

With the increased ecosystem model resolution, as
well as the increased model complexity, more phenom-
ena are included into the ecosystem model. However,

a model does not necessarily provide good understand-
ing for all the phenomena it represents. Indeed, un-
derstanding phenomena often requires a specific scale:
for example to understand oceanic gyres it is desirable
to look at a long-time, spatially large-scale oceanic and
atmospheric behavior. Although model that captures
ocean mesoscale, or sub-mesoscale dynamics represents
also ocean gyres, their behavior remains hidden behind
the dominant short-time small-spatial scale eddy signal.
Similarly if we managed to run a model on a molecu-
lar scale, the eddy behavior would remain hidden behind
the thermal fluctuations of the molecules and atoms (and
the same type of situation happens if we switched fur-
ther from the atomic scales to the scales of the current
elementary particle theory). Here lies another benefit of
the scaling analysis: it provides us with a natural tool
to understand diverse phenomena with a wide range of
characteristic spatio-temporal scales (e.g. turbulence, ge-
ologic processes, climate, financial markets, [16–20]), as it
simultaneously compares processes across different scales.

Apart of improving our ecosystem models and under-
standing processes, there is also a third potential bene-
fit of scaling analysis: Fine resolution models represent
broad range of ecosystem phenomena, but they are com-
putationally expensive. Understanding dynamics across
range of scales might also optimize the performance of
high resolution models by converting them into multi-
scale models (e.g.[21]). This means each “separate” part
of the model dynamics could be represented at the max-
imum scale where it occurs, eventually leading to sub-
stantial reduction in the model computational cost.
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The main point of this work is to develop a schematic
multi-scale understanding for some essential aspects
of ecosystem dynamics. This provides different view-
point from the standard ecosystem modelling, where
the ecosystem model is understood at some specific
(fine-resolution) scale, whilst the larger-scale phenom-
ena always “emerge” from the model small-scale com-
plex dynamics (e.g.[22]). We will show that to get a
sufficiently realistic representation of the primary pro-
ductivity in the tropical Pacific, the high complexity
model can be for specific purposes bypassed by a sim-
plified “toy” reaction-diffusion-advection (RDA) model.
The model adds advection term (as in [23]) to the
frequently used reaction-diffusion models based on the
Fisher-Kolmogorov-Petrovski-Piskunov equation [24, 25].

We forced the RDA model by the realistic Coperni-
cus Marine Environment Monitoring Service (CMEMS)
reanalyses for the surface currents and nutrients, and
the model remarkably successfully captures the dynam-
ics of chlorophyll also provided by a CMEMS reanalysis.
This is a surprising result: Although simple (often one-
dimensional) models based on the RDA equation were
often used to address conceptual problems, such as how
species survival depends on diffusion rate, advection rate,
or on the characteristic patch size occupied by the specie
(e.g.[23, 26–34] and for an overview see [35]), one would
assume that a sufficiently realistic marine model must
be much more complex than the RDA-like models. The
relationship between the ecosystem model skill and the
model complexity is non-trivial [36], however certain min-
imum amount of model complexity is always assumed;
the real world marine biogeochemistry is addressed ei-
ther by the medium-complexity models [37–39], or by the
high complexity models [40, 41] that have often tens of
state variables and more than hundred parameters. Such
assumptions are without any doubt founded, but this pa-
per shows that for some suitably chosen problems of high
scientific interest, even the simplest model based on RDA
equation is capable to produce surprisingly good approx-
imation to the selected real world ecosystem data. How-
ever, the words “suitably chosen problems” need to be
emphasized here, as we are not replacing the full higher
complexity model with its lower complexity surrogate,
we are only simulating a specific ecosystem model com-
ponent (surface phytoplankton dynamics) with a low-
complexity model, that is forced by some selected higher

complexity ecosystem model variables. This is analogous
to the typical situation when higher complexity marine
ecosystem models are being forced by a marine physical
model, or to the coupled marine physical-biogeochemical
model being forced by an atmospheric model. By apply-
ing the low-complexity RDA model one gets the best of
both worlds: the advantage of the RDA model is that
it is cheap to run, and it depends only on three free pa-
rameters, whose impact on chlorophyll distributions can
be easily understood, modified and studied across wide
range of spatial and temporal scales. In the same time
the RDA model appears (within its constrained frame of
reference) to be sufficiently realistic for the results of such
analyses to be taken seriously.

The paper is structured as follows: (i) firstly we de-
scribe, justify, calibrate and validate the RDA model,
(ii) we briefly introduce some basic tools and concepts
from the scaling analysis, (iii) we apply the scaling anal-
ysis to a range of RDA model simulations with modified
nutrient and velocity forcing, as well as modified model
parameters, in order to derive the scales of spatial and
temporal impact of different drivers on the phytoplank-
ton dynamics, (iv) we analyse how phytoplankton scales
as a function of the scaled-down nutrients and mesoscale
eddies and (v) we add stochastic perturbations to the
RDA model in order to investigate how the model non-
linear dynamics propagates the impact of the stochastic
noise on phytoplankton concentrations through a range
of spatial scales.

II. METHODS

A. The RDA model

The growth of biomass starts with the photosynthe-
sis in the autotrophic species, and for marine ecosystems
these are the diverse species of phytoplankton. The fre-
quently used proxy quantity for phytoplankton biomass
is chlorophyll a, with a clear advantage of large volume of
ocean-color derived observations available for the ocean
surface concentrations of chlorophyll (e.g.[42]). In this
work we focus on the chlorophyll dynamics, modelled by
a RDA equation expressed as

∂ρ(t, ~x)

∂t
= − ~u(t, ~x) · ∇ρ(t, ~x) + κT · ∇2ρ(t, ~x) + P ·N(t, ~x)ρ(t, ~x) − D · ρ2(t, ~x), (1)

where ρ(t, ~x) represents chlorophyll concentrations,
N(t, ~x) nutrients, ~u(t, ~x) is the current velocity, κT is the
diffusivity parameter, which is at the spatial scales con-
sidered in this study dominated by the turbulent diffusiv-
ity component, P the net primary productivity (growth)

rate and D is the damping (mortality) rate. The turbu-
lent diffusivity parameter (κT ) describes the integrated
effect of sub-grid eddy mixing and determines the rate
of small-scale chlorophyll smoothing. The damping rate
D integrates phytoplankton loss due to the limitation in
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FIG. 1. The CMEMS horizontal 2017-2018 mean surface current velocity in m/s. Left hand panel (a) shows the zonal mean
current velocity component, the middle panel (b) shows the meridional mean current velocity component and the right hand
panel (c) shows the mean surface eddy speed.

resources, mortality, respiration and grazing by higher
trophic-level species. D also impacts the degree to which
chlorophyll and nutrients are correlated: if substantial
phytoplankton concentrations get advected into the low-
nutrient areas they die off quickly if the damping rate D
is high. Conversely, in the nutrient-rich areas the high
rate of damping D will not allow phytoplankton to grow
above certain threshold in concentrations, constraining
the correlation between ρ and N . Finally, the growth
parameter (P ) describes the rate of photosynthesis. The
P parameter determines (for a fixed D) the average levels
of chlorophyll (〈ρ〉) on the domain.

For the purpose of this study the RDA model is con-
strained to a two-dimensional horizontal plane, repre-
senting the ocean surface in the Pacific central tropi-
cal region (155E - 110W, 30S - 30N, see Fig.1). The
selected region spans most of tropical Pacific with
meridional dimension ∼ 6700 km wide and zonal di-
mension ∼ 10600 km long. The RDA model reso-
lution was taken to be 1/4◦ (∼25km). The ocean
surface current velocity (~u(t, ~x), see Eq.1) and nutri-
ents (N(t, ~x)) were provided for the RDA model ex-
ternally; the ocean surface current velocity was taken
from the 2017-2018 daily resolution CMEMS reanal-
ysis (GLOBAL ANALYSIS FORECAST PHY 001 024,
http://marine.copernicus.eu), which is based on as-
similation of satellite sea surface temperature, sea
level anomaly, as well as in situ temperature and
salinity into 1/12◦ ORCA012 model configuration of
the Nucleus for European Modelling of the Ocean
(NEMO, v3.1, [43], for details on the reanalysis,
see http://marine.copernicus.eu/ documents/QUID/ -
CMEMS-GLO-QUID-001-024.pdf ). To represent the
surface currents ~u on the 1/4◦ RDA model grid
we upscaled the CMEMS data from their original
(1/12◦) scale of resolution. In the Fig.1 we show
the 2017-2018 mean values of the surface current ve-
locity vector components and also the mean surface

eddy speed. The nutrients N(t, ~x) have been es-
timated as a sum of nitrate and phosphate using
the outputs of 2017-2018 CMEMS hindcast based on
1/4◦ resolution NEMO coupled with the biogeochemi-
cal model Pelagic Interactions Scheme for Carbon and
Ecosystem Studies (PISCES, GLOBAL REANALYSIS -
BIO 001 029, http://marine.copernicus.eu/ ). No assim-
ilation was used in the biogeochemical run. Phosphate
and nitrate were the only nutrient data available with
the desired resolution, however taking the sum of nitrate
and phosphate is only one of multiple seemingly equiv-
alent choices of how to represent the nutrients. Since
phosphate and nitrate concentrations are shaped by sim-
ilar drivers, the two nutrients have been found to be
reasonably highly Pearson correlated (R = 0.78). The
correlation between nitrate and phosphate suggests that
different choices on how to combine them into a single
nutrient function will yield similar results. We explicitly
tried some other options such as the square root of the
product from nitrate and phosphate and we have found
(not shown here) that the results were indeed qualita-
tively similar to the choice presented in this study. How-
ever, for a specific study on nutrient regulations, at the
same computational cost, it could be possible to investi-
gate other, more realistic physiological formulations for
nutrient co-limitation, e.g. following the Liebig rule.

The RDA model simulated chlorophyll for the 2017-
2018 period, taking the chlorophyll initial value condi-
tions (for 01/01/2017) and open sea boundary conditions
from the same CMEMS product than the nutrients. We
tested the sensitivity of the RDA model to the initial
value and boundary conditions, by replacing the CMEMS
chlorophyll data with a Gaussian white noise (±30% vari-
ance) around the 0.1 mg/m3 mean. The tests (not shown
here) have demonstrated that on the timescale of & 80
days the model is insensitive to the used initial value
data. Furthermore, the tests have shown that the impact
of boundary conditions on the chlorophyll distributions
is negligible.

Tropical Pacific is a region responsible for 20% of world marine productivity [44] and it is an important source
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of CO2 emissions to the atmosphere [44, 45]. Large
parts of the region, such as the eastern equatorial Pa-
cific, are characteristic of high-nutrient (nitrate and phos-
phate) concentrations due to the equatorial upwelling,
but comparably low chlorophyll concentrations (the so-
called “high chlorophyll low-nutrient regions” [46–48]).
The comparably low primary productivity around the
equator is often understood to be caused by the limited
resources of iron [45, 49, 50], although the elevated levels
of grazing also may play a role [47, 51]. In the olig-
otrophic regions further away from the equator (higher
latitude than 10◦) the conditions are very different and
phytoplankton is mostly nutrient-limited [45].

There are several reasons why tropical Pacific is an
optimal choice for our experiment:

i) It is an open ocean region with little impact of
bathymetry on the ecosystem dynamics.

ii) The 1-st baroclinic Rossby radius is in the tropical
Pacific on the scale of 100-s of km [52] and the eddy
scales can get close to ∼ 500 km [53] (see also Fig.2), so
the 1/4◦ model resolution allows us to see a wide range
of interesting scales for the chlorophyll dynamics [54].

iii) Phytoplankton dynamics can be fairly complex and
have strong seasonal signatures (e.g. spring blooms) due
to seasonal variability in the upper ocean mixing and sun-
light that drives photosynthesis. However, the seasonal
cycles in the tropical Pacific are weak, and phytoplank-
ton production is primarily regulated by the available
nutrients (Fig.3), with additional impact of advection by
the surface currents. Fig.3 shows that in the tropical
Pacific nutrients and chlorophyll are strongly correlated
(Pearson correlation, R=0.77), with nutrient spatial ge-
ography playing an essential role for the phytoplankton
distributions. In such case one can represent the bio-
logical productivity as a simple function of the nutrient
concentrations, as is done in the RDA model (Eq.1).

iv) The RDA model used in this study is a single-
equation model with externally supplied nutrients. One
could argue that the RDA model needs adding a similar
dynamical equation for the nutrients, as has been done
many times in the literature (e.g.[35]). In the tropical
Pacific the nutrient sinks and sources depend largely on
the vertical mixing (e.g. equatorial upwelling) and suffi-
ciently near the coastline could reflect other forcing fields,
such as the river discharge. In such case it becomes dif-
ficult to implement a two-equation nutrient-chlorophyll
model without substantially increasing the model com-
plexity. However, we argue that for the purpose of this
study the single equation model (Eq.1) is in the tropical
Pacific a reasonable approximation to the phytoplank-
ton chlorophyll dynamics. There are two issues here that
need to be raised: Firstly, within this study we will ex-
plore the impact of the modified CMEMS data for the
surface currents (~u) and the turbulent diffusion parame-
ter (κT ) on the phytoplankton chlorophyll concentrations
(ρ). The changed surface advection and diffusion can po-
tentially change the nutrient concentrations (N) relative
to their externally supplied CMEMS values. Secondly,

the phytoplankton concentrations change as a function of
the modified advection and the changes to the nutrient
uptake by the changed phytoplankton (ρ) could be an-
other source that modifies the nutrients relative to their
supplied CMEMS values. There are, however, two argu-
ments why we could reasonably neglect those changes to
the supplied nutrients and still use the CMEMS product:
i) The nutrient distributions are much more geographi-
cally stable than the chlorophyll (Fig.3 and Fig.4), by
which we mean that the nutrient anomalies are relatively
small when compared to the nutrient spatial geography
estimated from the 2017-2018 mean values (Fig.3). The
nutrient geographic sinks and sources, which largely cor-
respond to the upwelling and downwelling zones, then
consequently play a key role in the representation of
the nutrient distributions, with other drivers (such as
eddy mixing, or time-fluctuations in the uptake by phy-
toplankton) playing mostly a secondary role. Moreover,
this study will explicitly demonstrate that it makes lit-
tle difference to the simulated chlorophyll, whether we
force the RDA model with a time-changing, or 2017-
2018 time-averaged nutrient distributions. ii) A substan-
tial change to the CMEMS phytoplankton chlorophyll
concentrations might indeed introduce some changes to
the CMEMS nutrients through the uptake. However, the
concern of this study are not the changes to the nutrients,
but the impact of those nutrient changes on the phy-
toplankton distributions. Although the single-equation
RDA model does not represent the changes to the nu-
trients, the quadratic damping term in the RDA model
(theD-term in Eq.1) effectively integrates into the phyto-
plankton dynamics the impact of the resource limitation
due to nutrient uptake.

Although iron is an important limiting factor in some
areas of tropical Pacific [47], the daily products for iron
distributions were unavailable and could not be used
as part of the RDA model forcing. The limitation by
iron was, similarly to the nutrient uptake, included into
the RDA model only implicitly as part of the quadratic
damping term. The RDA model assumes that any damp-
ing effect included in the quadratic term is proportional
to the chlorophyll concentration. This can be easily jus-
tified for the rate of phytoplankton mortality, nutrient
limitation, or for phytoplankton grazers (their density is
expected to be proportional to phytoplankton density),
and to some degree it can be justified also for the iron
limitation, as the chlorophyll concentrations are highest
in the iron-limiting equatorial upwelling region (Fig.3).
However, we acknowledge that representing the iron lim-
itation only implicitly is definitely a shortcoming of the
RDA model.

B. Some analytical results about the RDA model
solutions

In this section we briefly outline some analytical prop-
erties of the RDA model, which will be later used to
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better understand the results of the study. Since advec-
tion and turbulent diffusion do not change the spatially
averaged chlorophyll concentration 〈ρ〉, the RDA model
(Eq.1) has a simple stochastic steady state (∂〈ρ〉/∂t = 0)
solution:

〈N ′(~x)ρ′(~x)〉 = 〈ρ′2(~x)〉, (2)

where N ′ = P.N and ρ′ = D.ρ. (For a region with
boundaries, we assume in Eq.2 also constant Dirichlet
boundary conditions.) Applying

〈N ′.ρ′〉 = 〈N ′〉.〈ρ′〉+ Cov(N ′, ρ′),

where “Cov” is covariance, or consequently

〈ρ′2〉 = 〈ρ′〉2 + V ar(ρ′),

where “Var” stands for variance, one can transform the
stochastic steady state solution (Eq.2) into a quadradic
polynomial equation for 〈ρ〉:

〈ρ′〉2 − 〈N ′〉〈ρ′〉+ V ar(ρ′)− Cov(N ′, ρ′) = 0. (3)

By solving Eq.3 we obtain a relationship between the
average chlorophyll and the nutrient concentrations as:

〈ρ′〉 =
〈N ′〉

2
±

√√√√( 〈N ′〉
2

)2

+ V ar(ρ′)

(√
V ar(N ′)

V ar(ρ′)
·R(ρ′, N ′)− 1

)
, (4)

with R being the Pearson correlation coefficient. A sim-
pler relationship between 〈ρ′〉 and 〈N ′〉 can be derived,
if we assume that the standard deviation of both ρ′

and N ′ is directly proportional to their mean values:√
V ar(ρ′) = cρ′ .〈ρ′〉 and

√
V ar(N ′) = cN ′ .〈N ′〉, which

is reminiscent of Taylor’s law [55] and it is to some de-
gree supported by ecological data [56]. Then Eq.3 leads
directly to a linear relationship:

〈ρ′〉 =
1 +R(ρ′, N ′).cρ′ .cN ′

1 + c2ρ′
· 〈N ′〉. (5)

If we lower advection, chlorophyll becomes highly cor-
related with nutrients and the Pearson correlation
R(ρ′, N ′) in Eq.5 approaches R(ρ′, N ′) = 1, whereas
with the high levels of mixing ρ′ and N ′ decorrelate
(R(ρ′, N ′)→ 0). Eq.5 then implies that increasing advec-
tion, whilst maintaining the same 〈N ′〉, lowers the mean
chlorophyll concentrations.

If there is neither advection, nor turbulent diffusion
(~u = κT = 0), and N ′ does not depend on time, Eq.1 has
the following exact solutions:

ρ′(t, ~x) =
N ′(~x)

1 + ρo · exp{−N ′(~x) · t}
, (6)

which converge for ρ′ > 0 to a steady state attractor:

ρ′(~x) = N ′(~x), (7)

whilst for ρ′ < 0 the solutions runaway to −∞. The
solutions from Eq.7 approach the steady state attractor
(Eq.6) as:

∆(t, ~x) ' exp{−N ′(~x) · t}, (8)

where ∆ is the distance measured on the real line be-
tween the approaching solution and the attractor. Eq.8

means that the higher nutrient concentration, the faster
the chlorophyll distributions converge to the steady state
solution from Eq.7.

For the exact steady state solution (Eq.7) chlorophyll
is maximally correlated with nutrients, R(ρ′, N ′) = 1. A
simple consistency check shows that for R(ρ′, N ′) = 1,
Eq.4 is solved by the averaged form of the linear rela-
tionship in Eq.7:

〈ρ′〉 = 〈N ′〉. (9)

together with

V ar(ρ′) = V ar(N ′). (10)

Eq.7 and Eq.9-10 imply that if the first two statistical
moments of ρ′ and N ′ are equal, then the steady state ρ′

and N ′ are maximally correlated (R(ρ′, N ′) = 1). With
the increased advection N ′ and ρ′ decorrelate, and in the
limit of R(ρ′, N ′) = 0, one obtains

〈ρ′〉 =
〈N ′〉

2
±

√(
〈N ′〉

2

)2

− V ar(ρ′). (11)

C. The scaling analysis

In this work, we borrow insights from the long his-
tory of the studies on turbulence and multifractals
([16, 20, 57–63]), and use a simple measure for the scale
dependence of the system variables (∆`ρ) as:

∆`ρ = 〈|ρ(x+ `)− ρ(x)|〉. (12)

Here ∆`ρ represents a (scale-dependent) magnitude of
spatial and temporal variability of ρ, x is the spatial, or
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FIG. 2. The spatial and temporal eddy scales. The left hand side panels (a,c) show the Pearson correlation (R, y-axis) in
the eddy surface velocity as a function of spatial (a) and temporal (c) scale (x-axis), the right hand side panels (b,d) show the
chlorophyll magnitude of log-spatial (b) and temporal (d) variability (∆`ρ, Eq.12, y-axis) as a function of temporal scale ` (d),
or spatial log-scale log(`) (b, x-axis). The chlorophyll from the panels b and d was a RDA model output with κT =N=0 and
with ~u represented only by the eddy field (the eddy ~u was estimated by subtracting the 2017-2018 mean CMEMS currents from
the CMEMS daily output). Since the panels b and d focus only on the scaling slope of ∆`ρ, the values of ∆`ρ are not shown.
The panel b shows both spatial ∆`ρ and ` on a log-scale, and it is expected that extending the plot beneath the 25 km scale
would yield a power law relationship (straight line on a log-log scale) with an exponent of a passive turbulent tracer. Both
analyses (a,c and b,d) point consistently to the maximum eddy spatial scale of 500 km and the maximum time scale of 50 days
(this can however be much shorter than eddy life-time, as eddies move). The spatial large-scale correlation (R ∼ 0.1) that can
be seen in the panel a has been found (not shown here) to be caused by a meridional cross-correlation across the equator due
to seasonal variations in the currents. Similarly, the ∆`ρ scaling slope within the intermediate time scale between 50-150 days
in the panel d has been found (not shown here) to correspond to the seasonal variability in the currents.

temporal variable (spatial vector for spatial variability,
or time for temporal variability), ` is the scale of interest
and the averaging in Eq.12 runs through the relevant
spatial domain, or the time interval. ∆`ρ corresponds to
the first statistical moment of what is in the multifractal
literature often called “increments” (e.g.[63]).

∆`ρ has the advantage of being methodologically sim-
ple and has been many times proven fruitful in the lit-
erature (e.g.[20, 62, 64–70]): For the scale-invariant sys-
tems the scaling of ∆`ρ follows a power law and it has
been found that its power law exponent (H) is often an
important indicator of the system dynamics, e.g. much
research has been carried out to identify the power law
exponent for tracers passively advected by a turbulent
flow [59, 65, 71, 72]. For the intermittent turbulence,
the exact value of the tracer power law exponent H
depends on some non-trivial assumptions [70], but the
tracers scale sub-linearly, with the phytoplankton power
law exponents often in the H=0.33-0.45 range [66, 70]

(H = 0.33 is the value for the passive tracer in the 3D
homogeneous turbulence [59, 71]).

In the recent work of [73] it has been shown that
the scaling described by Eq.12 is frequently a piece-wise
power law with the scaling transition between different
power laws corresponding to a transition between differ-
ent dynamical regimes (see also [66, 68]). The power law
exponents correspond to the scaling slope of ∆`ρ (we use

∆̃`ρ notation), which can be analysed by normalizing the
∆`ρ value as

∆̃`ρ = ∆`ρ/∆Lρ, (13)

where L is some maximum spatial, or temporal scale of
interest [73]. ∆̃`ρ can be then used as a simple “probe”
to test the impact of dynamical drivers (e.g. eddy and
mean advection, turbulent diffusion, biological produc-
tivity) on the variable of interest (e.g. chlorophyll) across
a wide range of spatio-temporal scales.

III. VALIDATION OF THE RDA MODEL

An ensemble of RDA model simulations was run un-
til the optimal set of P , D, κT (Eq.1) values was de-

termined to be: κT = 300m2s−1 (which agrees very
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FIG. 3. The CMEMS 2017-2018 mean surface concentrations for the chlorophyll a (panel a) and nutrients (panel c), displayed
in percentage (%) deviation from the 2017-2018 mean of the whole spatial domain. The panels b and d show the 2017-2018
time series for the spatial mean of surface chlorophyll (b) and nutrients (d), displayed in percentage (%) deviation from the
2017-2018 mean of the whole spatial domain. It is shown that chlorophyll has a modest bi-annual periodicity (panel b), which
is driven by the seasonal solar cycle (since the region is meridionally symmetric across the equator, the solar seasonal cycle
here is bi-annual).

well with the values published in the literature [74–78]),
P = 7.10−8m3mmol−1s−1, D = 1.2.10−7m3mg−1s−1.
The set of optimal parameter values was chosen based on
the match-ups between the RDA model and the CMEMS
data using three metrics shown in Fig.5: i) the 2-year
mean spatial distribution of chlorophyll, ii) the mag-
nitude of spatial and temporal variability ∆`ρ (Eq.12)
across 25-2500 km and 1 day - 1 year range of scales. The
first metric (i, Fig.5:a,c) measures the RDA model skill
to estimate the average chlorophyll concentrations and
to represent the dominant chlorophyll patterns. Since
the spatial chlorophyll patterns dominate over the tem-
poral chlorophyll patterns (Fig.3:a-b) the metric entirely
focuses on the chlorophyll spatial distributions. The
two remaining metrics (ii, Fig.5:b,d) measure how well
the RDA model reproduces the CMEMS magnitude of
chlorophyll spatial and temporal variability. The magni-
tude of chlorophyll spatial and temporal variability will
be used to identify the impact of drivers on the chloro-
phyll concentrations across a wide range of spatial and
temporal scales. Since the impact analysis for the chloro-
phyll drivers relies fully on the RDA model, it is essential
that the RDA model reproduces realistically the scaling
of the magnitude of chlorophyll spatial and temporal vari-
ability.

All the three metrics in Fig.5 show that the RDA
model is skilled in representing the CMEMS chlorophyll

data, i.e. the magnitude of spatial and temporal vari-
ablity match on most scales within 10% and on all scales
within 20%, with the exception of the magnitude of tem-
poral variability on the annual scale. The sudden drop
in CMEMS data temporal variability on the annual scale
is due to the bi-annual periodicity in the chlorophyll dis-
tributions (see Fig.3) driven by the bi-annual seasonality
pattern in the solar radiation (at the equator the seasonal
pattern has bi-annual periodicity, because the seasons in
the Southern and Northern Hemisphere have identical
impact on the equator). Since the RDA model does not
represent the solar cycle, it is understandable that it fails
to capture the bi-annual, or annual periodicity in the ∆`ρ
of the CMEMS data.

The RDA model parameters can be characterized by
the relative magnitude of three types of drivers: tur-
bulent diffusion, advection and biological activity. The
Damköhler number Da (see [23]) gives the scale (`) de-
pendent ratio between the biological rate of the process
and the advection rate: Da = biological rate / advec-
tion rate = `.P.〈N〉/〈|~u|〉. We can then easily calculate
the scale `da where biological rate ≈ advection rate as
`da ≈ 3600km. At the scales ` << `da advection domi-
nates biological processes and vice versa. If we interpret
“the much smaller” as a separation by two orders of mag-
nitude, we conclude that advection is expected to dom-
inate biological processes at the O(10) km scales. Simi-
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FIG. 4. The distributions expressed by the Probability Density Function (PDF) for the chlorophyll (panels a-b) and the nutrient
(panels c-d) anomalies calculated relative to the 2017-2018 mean concentrations. The values on the x-axis are scaled (in %)
relative to the 2017-2018 spatio-temporal mean. The right hand panels (b,d) show the PDF on a log-scale to emphasize the
structure of the tails. The plots show that the relative spread of chlorophyll distribution is substantially larger than the relative
spread of nutrients.

larly to the Damköhler number, we can introduce Péclet
number [23], but in the context of turbulent, rather than
molecular diffusivity, as Pe = advection rate / turbu-
lent diffusivity rate = `〈|~u|〉/κT . Then for the scale `pe
where advection rate ≈ turbulent diffusivity rate, we ob-
tain `pe ≈ 700m. At the scales ` >> `pe advection dom-
inates over turbulent diffusion and vice versa. The `pe

scale suggests that advection should be dominant over
turbulent diffusion on the scales of O(100) km. The esti-
mates using Damköhler and Peclet numbers are broadly
consistent with the results of this study, however we will
show that advection can propagate the impact of tur-
bulent diffusion (at 1/4◦ resolution) to remarkably large
scales.

IV. IMPACT OF PRIMARY PRODUCTIVITY
DRIVERS ACROSS DIFFERENT SCALES

A. Spatial analysis

What will be the impact on the chlorophyll concentra-
tions if we switch off horizontal advection or turbulent
diffusion in the RDA model? We have done multiple
experiments with: i) switched off mesoscale eddies, in
which case ~u (Eq.1) was taken as mean currents only, es-
timated from a 2017-2018 average of the CMEMS data
(see Fig.1), ii) switched off mean currents, in which case
the 2017-2018 means were subtracted from the CMEMS
data for ~u to estimate the eddy field, iii) no advection
at all (~u = 0). In each of these cases (i-iii) and also in

the case forced by CMEMS data for ~u we ran two sep-
arate simulations, with and without turbulent diffusion
(turbulent diffusion was removed by setting κT = 0). For
the simulation with switched off mesoscale eddies (i), it is
desirable to remove the eddy signatures also from the nu-
trient (N) data. We have compared two simulations with
the eddy advection ~u: a) one that used the CMEMS prod-
uct for nutrients (N) and b) another simulation, which
used for N the 2017-2018 mean CMEMS nutrient con-
centrations. The two simulations produced very similar
results for the chlorophyll (not shown here), e.g. the dif-
ferences in the magnitude of spatial variability were on
all scales < 5%. In this paper we show the results for the
latter simulation (b), but we will keep in mind that those
results are representative of both those simulations.
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FIG. 5. The panels compare the CMEMS 2018 mean surface chlorophyll (panel a) with the RDA model 2018 mean surface
chlorophyll (panel c), as well as the chlorophyll magnitude of spatial (panel b) and temporal (panel d) variability (all in mg/m3)
across a range of spatial and temporal scales (∆`ρ calculated as an appropriate average of the 2018 daily data). The panels
show that the RDA model is skilled in reproducing both CMEMS chlorophyll spatial distributions (panels a and c) and the
magnitude of variability (panels b and d), except for the magnitude of temporal variability around the half year-to-annual
scale. This can be easily explained: the RDA model does not include the time variability in the solar input and hence does not
reproduce adequately the bi-annual periodicity of the CMEMS data. The chlorophyll magnitude of spatial variability over 2500
km starts decreasing (panel b), since the chlorophyll distributions have a meridional symmetry across the equator. Similarly, as
mentioned before, the local minimum of the CMEMS chlorophyll magnitude of temporal variability at the annual scale (panel
d) is due to the annual cycle (annual cycle seems more pronounced than the bi-annual cycle).

We have observed that advection has substantial im-
pact on the mean chlorophyll values. The levels of
chlorophyll increased more than two-fold when mesoscale
eddies and diffusion (mostly sub-grid eddy mixing)
were removed (Fig.6). Furthermore, removing also the
mean currents increased chlorophyll concentrations more
than three-fold with respect to their original value (not
shown). The mean chlorophyll concentration for the zero
advection calculated from the RDA model numerical sim-
ulation has been found to match remarkably well (on the
level of 3%) with the prediction of the stochastic steady
state solution from Eq.9-10. The limiting impact of the
advection (or diffusion) term on the primary productivity
is well known in the literature on the RDA-like models
([30, 35, 79–85]) and can be understood through a simple
argument: Take nL, nS and chN , chS where nL, chL are
“large” nutrient and chlorophyll concentrations, whilst
nS , chS are “small” nutrient and chlorophyll concentra-
tions. Since “large” is larger than “small” we have:

(nL − nS) · (chL − chS) > 0 (14)

implying that

nLchL + nSchS > nLchS + nSchL. (15)

Advection (e.g. eddy mixing) brings large chlorophyll
concentrations chL to areas with worse growth condi-
tions (small nutrient concentrations nS) and vice versa,
the growth term then corresponds to the right side of
Eq.15, whereas if there was no advection the growth term
is described by the left side of Eq.15. This means when
there is advection (eddy or mean) the growth term is
smaller than if there is no advection. However, focus-
ing purely on eddies, their size matters: the eddies that
impact primary productivity have to act on a scale with
substantial nutrient variability. Otherwise the inequality
between the two growth terms in Eq.15 has small im-
pact since chL and chS (nL and nS) are of comparable
size. For example the turbulent diffusion term represent-
ing eddy mixing beneath the 25 km scale has been found
to have very little impact (∼ 10%) on the mean chloro-
phyll concentration.
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FIG. 6. The impact of nutrient concentrations on the mean chlorophyll. The values shown in the Figure are the averages
through the RDA model spatial domain and the year 2018. It is shown that eddies stabilize the chlorophyll concentration:
without eddies the 50% decrease in nutrients leads to almost 50% decrease in chlorophyll, whilst in the presence of CMEMS
eddies the 50% decrease in nutrients lowers chlorophyll only by ∼ 20%.

By removing (mesoscale & sub-grid) eddies the magni-
tude of chlorophyll spatial variability (∆`ρ) increases on
all scales roughly fourfold (Fig.7:b and Tab.I). This is not
hugely surprising, since the removal of mesoscale eddies
increased primary productivity and doubled the mean
chlorophyll concentrations. The increased chlorophyll
concentrations then usually imply a higher chlorophyll
variability. However, the different scales of eddy impact
on the chlorophyll distributions can be estimated from
the chlorophyll scaling slopes ∆̃`ρ (Eq.13 and see also
[73]), rather than directly from the magnitude of chloro-
phyll spatial variability (∆`ρ, Eq.12). Eddies should
lower variability (steepen the scaling slope) above the
characteristic eddy scale (they mix, therefore smooth)
and increase variability (flatten the scaling slope) at the
range of scales with eddies (due to characteristic eddy
patchiness). Assuming that any smoothing effect above
the eddy scale goes away at a sufficiently large scale, one
can determine the range of scales where the ∆̃`ρ differs
between the case with and without eddies. Given that
above & 500 km ∆̃`ρ scales with similar slope in both
cases (the case with eddies vs the case without eddies),
it is natural to assume that the only important impact of
eddy patchiness, or eddy mixing, on the chlorophyll vari-
ability happens at . 500 km where the removal of eddies
steepens the ∆`ρ scaling slope (10% increase in variabil-
ity under∼ 250 km, due to eddy patchiness, see Fig.7 and
also Tab.I). Using the chlorophyll ∆̃`ρ from Fig.7 and
approximating it on the 100-500 km range with a power
law, one can estimate the chlorophyll scaling exponent
as H ≈ 0.6, which is somewhat above the previously es-

timated passive turbulent tracer range at mesoscale [70]
and may indicate a mixed active tracer - eddy advection
regime.

It is interesting to analyze the interaction between
explicit advection terms and the sub-grid eddy mix-
ing captured by the turbulent diffusion term (Fig.8,
Tab.II). Due to mesoscale eddies and large scale cur-
rents (“mean” flows) the smoothing impact of turbulent
diffusion spreads to the large spatial scales, i.e. at the
resolution ∼ 25 km scale removing turbulent diffusion
more than triples the chlorophyll variability (Tab.II) and
it increases variability by at least 10% up to 2000 km
scale (see Fig.8:d). We can then separate out the rela-
tive impact of the mesoscale eddies and the mean cur-
rents on the large scale smoothing (see Fig.8). With the
model advection completely turned off, removing turbu-
lent diffusion increased the magnitude of chlorophyll spa-
tial variability by a maximum 10% at the resolution scale
(Fig.8:a, Tab.II), with a detectable impact on the chloro-
phyll variability constrained to the . 70 km scales. By
switching on mean currents, but no mesoscale eddies, re-
moving the turbulent diffusion increased the chlorophyll
variability by about 100% at the resolution scale, and
the impact of turbulent diffusion on chlorophyll variabil-
ity lasted up to ∼ 4000 km (but beneath 10% from 700
km scale, Fig.8:c, Tab.II). Switching on mesoscale ed-
dies but not the mean currents, turbulent diffusion term
impacted the chlorophyll variability approximately up to
the 600-800 km scale (Fig.8:b). Overall the impact of the
turbulent diffusion term seemed to be equally amplified
by the mesoscale eddies and the mean currents (Fig.8:b-c,
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FIG. 7. The panel a shows the percentage reduction in the magnitude of chlorophyll spatial variability (∆`ρ) when compared
to the magnitude of its spatial variability at the scale L=2500km (∆Lρ), or equivalently it compares the spatial scaling slopes

(∆̃`ρ) for the different simulations. The panel b shows the absolute values for the magnitude of spatial variability ∆`ρ (in

mg/m3). The ∆`ρ (panel b) and ∆̃`ρ (panel a) curves represent the 2018 annual averages of the spatial scaling of the daily
data. Both x and y axes are on a log-scale. We show the relative (panel a) and absolute (panel b) chlorophyll magnitude of
spatial variability for the different dynamical scenarios of the RDA model: i) model forced by both mean and eddy surface
currents (“RDA, adv”), ii) model forced only by the mean currents (“RDA, only mean adv”) and iii) model with all the (eddy
and mean) advection removed (“RDA, no adv”). In addition to the chlorophyll variability, the cyan line marked with diamonds
in the panel a shows the magnitude of spatial variability for the 2017-2018 averaged nutrient concentrations (“CMEMS, nutrient
clim”). The dashed lines parallel to the variability curves mark a 100% and 300% increase in the magnitude of spatial variability
with respect to the RDA model forced by both eddy and mean advection. The vertical lines show the scales from which the
relative scaling remains within 10% from the fully (eddy & mean advection) forced RDA model.

Tab.II).

B. Temporal analysis

Fig.9 shows an exact analogue of Fig.8 with the tem-
poral scaling replacing the spatial scaling. It is shown

that with no advection, the turbulent diffusion term has
a negligible effect on the magnitude of chlorophyll tem-
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FIG. 8. The impact of the turbulent diffusion term in the RDA model on the chlorophyll magnitude of spatial variability
(2018 averages from daily ∆`ρ, all in mg/m3) depending on the advection input: no advection (panel a), only mesoscale eddy
advection (panel b), only mean advection (panel c), both mean and mesoscale eddy advection (panel d). The dashed lines
parallel to the ∆`ρ curves mark a 10% and 100% increase in the magnitude of spatial variability with respect to the RDA
model with the turbulent diffusion. The vertical lines show the scale from which ∆`ρ matches the fully forced model within 10%.
When there is no advection the turbulent diffusion term has a spatially limited impact up to ∼ 70 km scale. With mesoscale
eddies and/or mean currents the impact of turbulent diffusion on the chlorophyll magnitude of spatial variability increases 2-4
times at the resolution scale and becomes substantial up to 600-700 km scale with mean currents having non-negligible impact
up to the largest scale (∼ 4000 km). The overall impact of mesoscale eddies and mean currents on the turbulent diffusion term
is comparable.

TABLE I. We show the impact of different drivers on the chlorophyll magnitude of spatial variability (∆`ρ). The Table shows
the values displayed in Fig.7 and Fig.8. The first column shows the percentage change in the magnitude of spatial variability
at 2500 km after we removed a specific driver (turbulent diffusion, eddy and mean advection) from the fully forced RDA run.
The numbers in the first column amount to the comparison of the different curves from Fig.7:b at 2500 km, and the purpose
of those numbers is to show the overall change to the spatial variability at the regional scale. The second-to-fourth column
display the percentage change to the spatial scaling slopes ∆̃`ρ (the scaling slopes are understood as a ratio ∆`ρ/∆Lρ with L =
2500 km, see Fig.7:a) in the situation without a specific driver when compared to the fully forced RDA model. The percentage
change is shown for a range of values within three intervals of spatial scales: 25-100 km, 100-500 km and 500-2500 km. The ↑↓
symbols before the numbers indicate whether the RDA value increases (↑), or decreases (↓) when the specific driver is removed.

removed driver ∆`ρ at 2500 km 25-100 km 100-500 km 500-2500 km
diffusion ↑ 10% ↑ 108-238% ↑ 30-108% ↑ 0-30%

diffusion & eddy ↑ 340% ↓ 13-16% ↓ 6-16% ↓ 0-6%
mean advection ↑ 580% ↓ 25-30% ↓ 6-25% ↓ 0-6%

diffusion & eddy & mean ↑ 600% ↓ 44-54% ↓ 14-44% ↓ 0-14%
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TABLE II. We show how the different drivers (eddy and mean advection) propagate the impact of turbulent diffusion on the
chlorophyll magnitude of spatial variability (∆`ρ), as displayed in the Fig.8. The first column shows the percentage change
in the magnitude of spatial variability at 2500 km between the runs with and without turbulent diffusion, after we removed a
specific driver (turbulent diffusion, eddy and mean advection) from the fully forced RDA run. The numbers in the first column
amount to the comparison of the pairs of curves from Fig.8:a-d at 2500 km, and the purpose of those numbers is to show the
overall change to the spatial variability at the regional scale. The second-to-fourth column display the percentage change to the
spatial scaling slopes ∆̃`ρ (the scaling slopes are understood as a ratio ∆`ρ/∆Lρ with L = 2500 km, see Fig.7:a) in the situation
with and without turbulent diffusion after a specific driver was removed from the fully forced RDA model. The percentage
change is shown for a range of values within three intervals of spatial scales: 25-100 km, 100-500 km and 500-2500 km. The ↑↓
symbols before the numbers indicate whether the RDA value increases (↑), or decreases (↓) when the specific driver is removed.

removed driver ∆`ρ at 2500 km 25-100 km 100-500 km 500-2500 km
none ↑ 10% ↑ 108-238% ↑ 30-108% ↑ 0-30%
eddy ↑ 10% ↑ 26-75% ↑ 3-26% ↑ 0-3%

mean advection 0% ↑ 83-196% ↑ 18-83% ↑ 0-18%
eddy & mean 0% ↑ 7-15% ↑ 1-7% ↑ 0-1%

poral variability above the daily scale (Fig.9:a). The im-
pact of advection on the chlorophyll diffusive smoothing
(Fig.9:c-d) appears highly non-linear: The largest effect
is observed due to the mean currents and this effect is per-
haps surprisingly reduced when also eddies are removed

(Fig.9:d). However, more broadly the conclusions based
on the temporal analysis (Fig.9) are consistent with the
spatial analysis (Fig.8). Fig.9 confirms that advection
substantially increases the impact of turbulent diffusion
on the chlorophyll variability on a large range of scales
(> 10% for up to the 180 day time-scale).

C. A relationship between chlorophyll spatial and
temporal scales

The chlorophyll distributions are influenced by the
complex dynamics occurring at wide ranges of spatial
and temporal scales. To have a simultaneous under-
standing of the ecosystem processes across a range of
spatio-temporal scales, it is of general interest to find a
relationship between the characteristic spatial and tem-
poral scales for the processes driving surface chlorophyll.
In this short section we will not distinguish between the
specific processes driving chlorophyll, but we will demon-
strate (Fig.10) a methodology (developed in [73]) on how
to find a relationship between the spatial and the tem-
poral scales for the magnitude of chlorophyll variability.
In essence, the relationship is defined by computing the
magnitude of temporal variability for a sequence of low
pass filtered CMEMS chlorophyll spatial distributions at
a range of spatial scales (125 km, 500 km, 2000 km).
Spatial filtering removes processes that occur on the sub-
filter spatial scales and those processes typically influence
the chlorophyll dynamics on some specific range of tem-
poral scales. For example, the processes removed by the
spatial filtering may lead to a substantial decrease in the
CMEMS chlorophyll daily variability (Fig.10). As one
increases the temporal scale, the spatial high-resolution
scale processes that were removed by the low pass filter
play lesser role in the magnitude of chlorophyll temporal

variability (∆`ρ) and the ∆`ρ curves of the spatially fil-
tered and the unfiltered chlorophyll start converging to
each other. This means that the difference in the daily
variability between the filtered and the unfiltered chloro-
phyll (we will call it “Missing Daily Variability of the
Filtered Data” and abbreviate it with MDVFD) is re-
duced when we increase the temporal scales. The connec-
tion between spatial and temporal variability is provided
as follows: For each spatial filter (at spatial scale `) we
subdivide the temporal scales into different ranges (< 1
month, 1 − 6 months, > 6 months) and ask how much
was MDVFD reduced at each specific range of tempo-
ral scales. Then if MDVFD reduces by N% at a certain
range of temporal scales (e.g 1-6 months) then we say
that this specific range of temporal scales contains N%
of MDVFD. It is then clear that as one increases the
spatial scale of the low pass filter one removes processes
with longer temporal scales and larger fraction of MD-
VFD will be concentrated at larger temporal scales (e.g
above the scale of 6 months). This provides a connection
between the spatial scale of the low pass filter and the
ranges of temporal scales of MDVFD. The Fig.10 shows
this spatio-temporal relationship: while the 125 km spa-
tial filter has 50% of MDVFD on sub-monthly scales and
only 2% of MDVFD on scales larger than half year, the
2000 km spatial filter corresponds to 17% of MDVFD on
the sub-monthly scale and almost 50% of MDVFD on the
scales larger than half year.

D. Impact of nutrients and eddies on chlorophyll

In the climate change scenarios the upper ocean warms
up, leading to increased ocean stratification. The in-

creasingly stratified ocean acts as a barrier to vertical
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FIG. 9. The impact of the turbulent diffusion term in the RDA model on the chlorophyll magnitude of temporal variability
(in mg/m3) depending on the advection input: no advection (panel a), only mesoscale eddy advection (panel b), only mean
advection (panel c), both mean and mesoscale eddy advection (panel d). The dashed lines parallel to the variability curves mark
a 10% and 100% increase in the magnitude of temporal variability with respect to the RDA model with the turbulent diffusion.
The vertical lines show the scale from which the variability matches the fully forced model within 10%. The combined impact
of mesoscale eddies and mean currents on how turbulent diffusion spreads across time-scales is highly non-linear: removing
mean currents close to the daily time-scale impacts chlorophyll temporal variability more (in both absolute numbers and
proportionally) than removing both mean currents and mesoscale eddies. If there is no advection, turbulent diffusion has no
impact on the chlorophyll temporal variability above the daily scale (upper left panel). By including mean currents, but no
mesoscale eddies, turbulent diffusion increases the magnitude of chlorophyll temporal variability by > 10% on the full range
of scales (1 day - 1 year). By including eddy advection, but no mean currents, turbulent diffusion has < 10% impact on the
magnitude of chlorophyll temporal variability above the ∼ 80 day scale, which is broadly consistent with Fig.6. Removing both
mesoscale eddies and mean currents has < 10% impact on the magnitude of chlorophyll temporal variability above the scale of
a half year.

nutrient mixing and lowers the surface nutrient concen-
trations [86, 87]. Besides nutrients, the increased vertical
stratification influences the first baroclinic Rossby radius
impacting on the mesoscale eddy kinetic energy (EKE,
[88, 89]). In this section we will use the RDA model to
explore the impact of the changed nutrients and EKE
on the surface chlorophyll. Although the RDA model
is a major simplification, we believe it might offer at
least some qualitative insights into how phytoplankton
might respond to some of the environmental changes. A
form of analytical relationship between the mean chloro-

phyll and the mean nutrients has been derived for the
stochastic steady state of the RDA model in Eq.4. How-
ever, in reality chlorophyll might be far from a stochastic
steady state prediction described by Eq.4 and we have
found (not shown here) that the stochastic steady state
model does not approximate well the simulations from
this study.

In Fig.6 we show the spatio-temporal means (for 2018
and the RDA spatial domain) of chlorophyll and nu-
trients plotted against each other in a series of experi-
ments, where the CMEMS nutrients and EKE (forcing
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FIG. 10. The upper panel (a) shows the magnitude of temporal variability (in mg/m3) for the spatially filtered CMEMS
chlorophyll data (moving median filter) at a range of scales: 25 km (original resolution), 125 km, 500 km, 2000 km, and the
magnitude of temporal variability of the regional mean value (“CMEMS reg. average”). The two local minima (dashed vertical
lines) in the curve for the regional mean value correspond to the bi-annual periodicity in the CMEMS chlorophyll. The scale
where the temporal variability of the spatially filtered data meets with the temporal variability of the original CMEMS (25 km)
data is the scale where the processes removed by the spatial filtering have no longer impact on the magnitude of chlorophyll
temporal variability. The upper panel then provides connection between the spatial and the temporal scales shown in the
bottom panel (b). The bottom panel demonstrates how the temporal variability of the spatially filtered data (at 125 km, 500
km and 2000 km) splits (in %) into three categories: < 1 month variability, 1-6 months variability and > 6 months variability.
We see that when we remove processes beneath 125 km the > 6 months variability is only 2% of the missing daily variability,
whilst in the case of 2000 km spatial filter it grows to 50%.
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the RDA model) were re-scaled by constant factors, i.e.
as k.N(t, ~x), where N are the nutrients from the CMEMS
model. The constant (k) factors were for nutrients taken
from the k ∈ (0.5, 1.4) interval and for EKE from the
k ∈ (0, 1.7) interval (in case of EKE we rescaled each
eddy velocity component with the same factor). Fig.6
demonstrates that changing EKE by ± 50-70% has a rel-
atively minor impact on the mean chlorophyll concen-
trations, whilst lowering EKE more substantially (by ∼
85% and more) can have a large impact on the mean
chlorophyll concentrations. Fig.6 also demonstrates that
under the increased EKE, phytoplankton becomes in-
creasingly insensitive to the changing nutrients: with
zero EKE chlorophyll scales almost linearly with nutri-
ents (e.g. 50% decrease in nutrients amounts to 50%
decrease in chlorophyll concentrations, similar to Eq.5),
while with increased EKE the scaling becomes increas-
ingly sub-linear (e.g. for CMEMS EKE 50% decrease
in nutrients there is about 20% decrease in chlorophyll
concentrations). This is an interesting result implying
that in the increased EKE scenario the phytoplankton
concentrations become more stable. In particular, the
RDA model suggests (Fig.6) that within ±70% of the
current EKE levels, a dramatic decline of nutrients has
comparably small impact on chlorophyll. It is not en-
tirely clear how to interpret this result, neither how se-
riously it should be taken: we would recommend to take
it with a lot of caution, unless it is reconfirmed in more

realistic simulations using higher complexity models.
It is also interesting to explore how the chlorophyll sur-

face distributions respond to the changes imposed on the
nutrients, or EKE. Since in tropical Pacific the chloro-
phyll spatial variability dominates over temporal vari-
ability (Fig.3) it is useful to understand how the spa-
tial regional patterns of chlorophyll change under the
changed chlorophyll mean. In Fig.11 we show the im-
pact of halved nutrient concentrations (Fig.11:a-b) and
decreased EKE by 88% (Fig.11:c-d) on the chlorophyll
annual mean spatial distributions. The changed nutrient
concentrations and the eddy velocities were re-scaled ver-
sions of the original CMEMS data, where by “re-scaled”
we mean the original CMEMS distributions multiplied by
a spatio-temporally constant factor. The Fig.11 shows
that the resulting chlorophyll 2018 mean spatial distri-
butions are far from being the re-scaled versions of the
2018 mean chlorophyll forced by the CMEMS data. In
particular Fig.11:a shows that under the nutrient decline
chlorophyll changes by substantially larger proportion in
the areas with higher chlorophyll concentrations (eastern
tropical Pacific). This indicates that areas with the high-
est biological activity are also most vulnerable to change.
It is perhaps surprising that reducing nutrients (Fig.11:a-
b) has proportionally largest impact on chlorophyll in the
chlorophyll-rich areas, since the same areas have corre-
spondingly highest eddy activity (Fig.1) and chlorophyll
is less sensitive to the nutrient concentrations in the pres-
ence of eddies (Fig.6).

E. Scale-propagation of a multiplicative stochastic
noise

In the last part of our analysis we investigate the im-
pact of a stochastic Gaussian white noise on the chloro-
phyll dynamics across range of spatial scales. Such white
noise usually represents a number of higher-complexity,
scale-constrained processes that were not explicitly in-
cluded into the dynamical model. If such processes
have linear relationship to the dynamical model vari-
ables, their impact on the model variables will remain
constrained to the (spatio-temporal) scales of those pro-
cesses. However if the relationship between those pro-
cesses and dynamical model variables is highly non-
linear, the impact of those processes on the model vari-
ables may propagate beyond the original scale of the pro-
cess. A simple example is the impact of wind stress on
the vertical mixing and primary productivity in the wa-
ter column: the phenomena observable on weekly time-
scales, such as phytoplankton blooms (e.g. see the critical
turbulence hypothesis in [90]), may be sensitive to such
details, as to whether we capture wind stress with an
hourly, or 3-hourly resolution [91].

We have run the 2017-2018 model simulation with a
multiplicative white noise [92, 93] to account for a ran-

dom variability in the growth rate parameter P (Eq.1).
The multiplicative Gaussian noise has already proven to
be both realistic and useful in the population dynam-
ics models [94, 95]. The Fig.12 compares simulations in
which the growth parameter (P ) was perturbed by the
Gaussian noise with 20% standard deviation (correspond-
ing to ∆P = ±1.4.10−8m3mmol−1s−1). The random
perturbations were applied as a white noise on the RDA
model-grid spatio-temporal scale (25 km and 1 day). The
Fig.12 shows the magnitude and scale-propagation of the
stochastic noise impact on chlorophyll in simulations us-
ing different sets of dynamical drivers (the RDA model,
the RDA model without mean currents, the RDA model
without eddies, the RDA model without any advection).
The outputs for the stochastic simulations were low-pass
filtered at different scales (25 km, 100 km, 400 km, 1600
km and at the “regional” scale, 6400 km, where only total
spatial averages were calculated) and compared with the
corresponding low-pass filtered deterministic simulations
(with the fixed P value). The chosen metric for the com-
parison was the Root Mean Square Difference (RMSD).
The Fig.12:a shows the percentage of the 25 km scale
RMSD that remains on scales > 25 km. The larger is
the percentage, the more is the 25 km white noise prop-
agated to the larger scales by the model dynamics. The
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FIG. 11. Panels a-b show the impact of 50% nutrient decrease on the annual 2018 mean chlorophyll concentrations. Similarly
to a-b, the panels c-d show the impact of 88% decrease in the EKE on the mean annual 2018 chlorophyll concentrations. The
panels b and d show the absolute change (in mg/m3) in chlorophyll concentrations when compared to the simulation forced by
the CMEMS nutrients and EKE. The panels a and c show the same change, but relative (in %) to the values of the simulation
using the CMEMS data.

reduction of chlorophyll RMSD as a function of scale is
compared to the scaling of the mean absolute value of the
white noise originally applied to the RDA model (shown
by the black dashed curve in Fig.12:a labeled as “Noise”).
The white noise is by definition uncorrelated on the scales
above 25 km, but it remains visible also on the 100-1000
km spatial scales (on the level of <10%, Fig.12), since the
low-pass filtering applied at ≥ 100 km scales effectively
averages out the white noise over a finite number of sam-
ples, so the low-pass filtered mean will differ from the
theoretical zero mean of the sampling Gaussian distribu-
tion. The number of samples increases with the spatial
scale of the low-pass filter and in the limit of infinite
scale the mean absolute value of the noise is precisely
zero. Since the non-linear dynamics of the RDA model
is expected to propagate the white noise to larger scales,
the mean absolute value of the white noise applied to the
RDA model is expected to reduce faster than the RMSD

of chlorophyll. The black dashed curve in Fig.12:a can
be then interpreted as a “theoretical maximum” for the
chlorophyll RMSD reduction as a function of scale, such
theoretical maximum being reached when the RDA does
not scale-propagate the stochastic noise.

For a non-advective RDA model (~u = κT = 0) the mul-
tiplicative noise generates at each spatial point a type
of random-walk solution which is constrained to some
neighborhood of the steady state solution (Eq.7). The
steps of the random walk are larger in nutrient-rich areas,
however this might be compensated by the fact that the
convergence of a perturbed solution to the unperturbed
solution might be faster in the areas with larger nutri-
ent concentrations (Eq.8). The Fig.12 shows that the
multiplicative noise with 20% standard deviation leads
to 4% RMSD in chlorophyll when the model has no ad-
vection, or runs with only mean advection (Fig.12:b).
The RDA model without mesoscale eddies (and sub-grid
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FIG. 12. The two panels show the impact of different drivers (e.g. mean and eddy advection, biological activity) on the
propagation of a white stochastic noise in the RDA model. The panel b shows the Root Mean Square Difference (RMSD)
in chlorophyll between the stochastic run and the corresponding deterministic run (y-axis) vs spatial log-scale (x-axis). The
RMSD values are divided by the mean 2018 chlorophyll of the deterministic run and shown in %. The panel a shows the
same quantity, only compared (in %) to its own value at the lowest, 25 km scale. The purpose of the panel a is to show how
the impact of the stochastic noise propagates through the spatial scales under different dynamical scenarios. The different
scenarios are: i) the RDA model configuration with the mean and eddy currents (”RDA, adv”), ii) the RDA model with the
mean currents removed (”RDA, only eddy adv”), iii) the same RDA configuration with the mesoscale eddies and diffusion
removed (”RDA, only mean adv”), and iv) the RDA model without any advection (”RDA, no adv”). The panel a compares
the chlorophyll RMSD to the scaling of a white noise (”Noise”) applied at the model resolution scale.

eddy diffusion) does not propagate the noise to the ≥
100 km scales, as the noise reduction in those simula-
tions is close to its “theoretical maximum” (Fig.12:b).
When mesoscale eddies (and sub-grid eddy diffusion) are
included, the fluctuations in chlorophyll introduced by
the stochastic noise on the 25 km scale, decrease to 2%,
or 1% depending on whether we include also the mean
currents (Fig.12:b). However, mesoscale eddies and the
turbulent diffusion term introduce scale-propagation into

the chlorophyll noise, with 10-30% of the 25-km fluctu-
ations visible on the 100-500 km scales (Fig.12:a). The
reason for this scale-propagation of the chlorophyll noise
is the eddy mixing, which smooths the chlorophyll noise,
lowering the size of the chlorophyll random fluctuations
(see the lower RMSD at the 25 km scale, Fig.12:b), but
introducing larger-scale correlations to the random fluc-
tuations. These larger scale correlations explain why the
RMSD reduces comparably slowly as a function of scale
(Fig.12:a).

F. Summary

Low complexity reaction-diffusion, or reaction-
diffusion-advection models have been often used to
study conceptual questions in population biology, such
as the critical patch size for population survival [35].
However, a realistic simulation of phytoplankton dy-
namics in a specific global region is typically assumed
to require a medium, or high complexity models. Here
we demonstrate that for very specific purposes in a
suitably tailored choice of region (e.g. tropical Pacific),
the RDA model forced by a higher-complexity model
outputs for nutrients and surface currents, provides a
sufficiently realistic simulation for the phytoplankton
chlorophyll concentrations (a proxy for primary pro-

ductivity and phytoplankton biomass). The advantage
of the RDA model is that the model depends only on
few external inputs and model parameters, all of which
are straightforward to interpret and modify. Since the
model is computationally cheap to run and can be easily
perturbed with a stochastic noise, one can produce
almost arbitrary number of both deterministic and
stochastic simulations.

We use the RDA model to develop a multi-scale view
of a driver (eddy and mean advection, eddy diffusion)
impact on the chlorophyll distributions. The impact of
different drivers on chlorophyll is explored in a series of
simulations, where we remove specific set of drivers and
analyse the changes to the chlorophyll variability on a
range of spatial (25-2500 km) and temporal (1 day - 1
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year) scales. We show that for the 1/4◦ model, advection
has a major impact on the mean chlorophyll concentra-
tions. Turbulent diffusion has a negligible impact on the
mean chlorophyll concentrations, but it is propagated by
the larger scale currents and influences chlorophyll vari-
ability on a wide range of spatial and temporal scales.
The scale-impact of drivers on the phytoplankton was
evaluated through the magnitude of spatial, or temporal
variability corresponding to the first statistical moment
of chlorophyll increments (e.g. [62]), in the future this
analysis might be extended to a more complete statis-
tical view of chlorophyll scaling that would include also
higher statistical moments.

We analysed the impact of surface nutrient decline
and changes to the mesoscale eddy kinetic energy (EKE)
on the mean surface chlorophyll concentrations (some
changes to nutrients and EKE are projected in the future
climate scenarios). The RDA model indicates that unless
EKE radically changes from its current levels, chlorophyll
tends to scale sub-linearly with nutrients, which implies
that the chlorophyll concentrations are relatively stable
with respect to the nutrient decline. However, the RDA
model also shows that the chlorophyll sensitivity to nutri-
ents goes through a sudden transition and becomes sub-
stantially larger if we minimise the EKE to 0-15% from
its current value. In the limit of vanishing EKE, chloro-
phyll scales with nutrients approximately linearly. We
also investigate the spatial scale-propagation of a white

multiplicative Gaussian noise, introduced into the RDA
model on the model resolution scale. We demonstrate
that the impact of the stochastic noise on the chloro-
phyll concentrations propagates to 100-500 km spatial
scales through the mixing by eddy advection and diffu-
sion term.

This study aims to provide an inspiration for re-
searchers to further explore specific contexts in which
low-complexity models could serve as a sufficiently real-
istic tool to address questions that would often be beyond
the computational affordability of the higher-complexity
models. The limitations of the low-complexity model
need to be always recognized, but this should not mean
that low-complexity models have to be always discarded
as a tool of realistic modelling. Eventually the fu-
ture modelling could become a multi-complexity effort,
where high and medium complexity models become inte-
grated with low-complexity models, each serving its op-
timal purpose while mutually achieving the desired goal
with a reduced computational cost. Moreover, the low-
complexity models such as the RDA model used in this
study, could provide a priceless public educational tool
to enhance the understanding of marine biogeochemistry
in different realistic situations.
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