Coccolithophore calcification fails to deter microzooplankton grazers.

Mayers, K M J; Poulton, AJ; Bidle, K; Thamatrakoln, K; Schieler, B; Giering, SLC; Wells, SR; Tarran, GA; Mayor, DJ; Johnson, MD; Riebesell, U; Larsen, A; Vardi, AV; Harvey, E. 2020 Coccolithophore calcification fails to deter microzooplankton grazers.. Frontiers in Marine Science, 7, 569896. 1-12. https://doi.org/10.3389/fmars.2020.569896

[img]
Preview
Text
fmars-07-569896.pdf - Published Version
Available under License Creative Commons Attribution No Derivatives.

Download (1MB) | Preview

Abstract/Summary

Phytoplankton play a central role in the regulation of global carbon and nutrient cycles, forming the basis of the marine food webs. A group of biogeochemically important phytoplankton, the coccolithophores, produce calcium carbonate scales that have been hypothesized to deter or reduce grazing by microzooplankton. Here, a meta-analysis of mesocosm-based experiments demonstrates that calcification of the cosmopolitan coccolithophore, Emiliania huxleyi, fails to deter microzooplankton grazing. The median grazing to growth ratio for E. huxleyi (0.56 � 0.40) was not significantly different among non-calcified nano- or picoeukaryotes (0.71 � 0.31 and 0.55 � 0.34, respectively). Additionally, the environmental concentration of E. huxleyi did not drive preferential grazing of non-calcified groups. These results strongly suggest that the possession of coccoliths does not provide E. huxleyi effective protection from microzooplankton grazing. Such indiscriminate consumption has implications for the dissolution and fate of CaCO3 in the ocean, and the evolution of coccoliths.

Item Type: Publication - Article
Additional Keywords: coccolithophore, phytoplankton, microzooplankton, biomineralisation, predation, evolution
Subjects: Biology
Ecology and Environment
Marine Sciences
Oceanography
Divisions: Plymouth Marine Laboratory > Science Areas > Marine Biochemistry and Observations
Depositing User: Glen Tarran
Date made live: 15 Jan 2021 12:27
Last Modified: 15 Jan 2021 12:27
URI: http://plymsea.ac.uk/id/eprint/9081

Actions (login required)

View Item View Item