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Abstract: Opticalmodels have been proposed to relate spectral variations in the beam attenuation
(cp) and optical backscattering (bbp) coefficients to marine particle size distributions (PSDs).
However, due to limited PSD data, particularly in the open ocean, optically derived PSDs suffer
from large uncertainties and we have a poor empirical understanding of the drivers of spectral cp
and bbp coefficients. Here we evaluated PSD optical proxies and investigated their drivers by
analyzing an unprecedented dataset of co-located PSDs, phytoplankton abundances and optical
measurements collected across the upper 500 m of the Atlantic Ocean. The spectral slope of
cp was correlated (r>0.59) with the slope of the PSD only for particles with diameters >1 µm
and also with eukaryotic phytoplankton concentrations. No significant relationships between
PSDs and the spectral slope of bbp were observed. In the upper 200 m, the bbp spectral slope
was correlated to the light absorption by particles (ap; r<-0.54) and to the ratio of cyanobacteria
to eukaryotic phytoplankton. This latter correlation was likely the consequence of the strong
relationship we observed between ap and the concentration of eukaryotic phytoplankton (r=0.83).
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citation, and DOI.

1. Introduction

Microscopic organic particles play a key role in the ocean biological carbon pump, transferring
carbon from the surface to the deep ocean [1], which helps modulate the Earth’s climate [2,3].
These particles encompass a variety of living organisms (i.e., viruses, bacteria, phytoplankton
and zooplankton) and detrital matter (e.g., debris and faecal pellets) that vary in concentration,
size and composition, both spatially and temporally. Understanding the variability in particle
concentration, size distribution and composition is of paramount importance to accurately
estimate the magnitude of global carbon fluxes [4,5].

The Particle Size Distribution (PSD) is defined as the concentration of marine particles within
a given size class and is often approximated as a power law function of the diameter (D; units of
µm):

N(D) = N0

(
D
D0

)−ξ
, (1)
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where N(D) is the number of particles per volume within a given diameter bin (units of m−3 µm−1),
N0 is the concentration of particles at the reference diameter (D0), and ξ is the dimensionless
slope of the distribution.
One common method to measure the PSD is through an electrical impedance particle sizer

such as the Coulter Counter [6]. This instrument counts and sizes particles based on changes in
the electrical field generated through an aperture across which the particle suspension is forced,
without distinguishing between living or detrital particles. Flow cytometry can be used as a
complementary technique to help resolve the composition of the particles. It can be used to
distinguish phytoplankton groups from detritus over a broad size range by exploiting the natural
fluorescence properties of individual phytoplankton cells [7]. Both these techniques have an
invaluable analytic power, but are discrete measurements, involving specialized equipment and
trained operators. Consequently, they are not well-suited to capture high spatial and temporal
variations in particle size and composition.

To increase the temporal and spatial resolutions with which we observe marine particles,
optical scattering has been proposed as a monitoring tool [8–13]. Measurements of the particulate
beam attenuation (cp) and optical backscattering (bbp) coefficients offer the crucial advantage
to be acquired continuously on ships [14,15] and moorings [16], using autonomous profiling
platforms [17,18], as well as from space through ocean color remote sensing [10,19]. Measuring
cp and bbp coefficients provides an opportunity to observe, in a systematic way, the dynamics of
marine particles from the surface to the ocean interior.

Spectral variations in cp and bbp (units of m−1) have been approximated as a power law function
of the wavelength (λ; units of nm):

cp(λ) = cp(λ0)
(
λ

λ0

)−γ
, (2)

and
bbp(λ) = bbp(λ0)

(
λ

λ0

)−η
, (3)

where cp(λ0) and bbp(λ0) are the coefficients at the reference wavelength (λ0), and γ and η are
the dimensionless slopes of the cp and bbp coefficients, respectively.

Assuming that the size distribution of a population of marine particles can be approximated by
Eq. (1), studies have suggested that as the slope ξ decreases, so do γ and η [8–11,13]. Hence, γ
and η have been proposed as proxies to estimate ξ, and bio-optical models relating ξ to γ or η
have been developed [9,11]. However, these models suffer from large uncertainties in open-ocean
surface waters [15]. These uncertainties are unknown for the mesopelagic zone of the ocean
(i.e., 200-1000 m) where no PSD data are available to the best of our knowledge. These gaps
arise from limited oceanographic sampling of PSDs, meaning we cannot validate model outputs
[11] and have a poor understanding of other factors that may influence the relationships between
optical proxies (γ or η) and PSD. Coincident measurements of spectral optical properties, flow
cytometry and particle size distributions, as a function of depth and trophic regimes, are needed
to fill these gaps.
Here, we analyze an unprecedented dataset of co-located particle size distributions (from

a Coulter Counter), phytoplankton abundances and composition (from flow cytometry), and
spectral cp and bbp coefficients collected in the upper 500 m of the Atlantic Ocean during two
Atlantic Meridional Transect (AMT) expeditions. We focus on the size and composition of
the encountered particle populations, and on descriptors of the size distribution (i.e., ξ). We
then relate ξ to γ and η, evaluate previously established bio-optical models, and investigate the
influence of particle composition and light absorption on γ and η.
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2. Material and methods

2.1. Study area and sampling platforms

Measurements of optical properties and particle abundances and characteristics were acquired
during two AMT expeditions carried out in October-November 2012 (AMT22) and September-
November 2016 (AMT26) (Fig. 1). Both transects started in the United Kingdom and ended in
Chile (AMT22) and the Falkland Islands (AMT26), and encompassed various trophic regimes
with chlorophyll concentration ([Chl]) spanning a range from 1mg m−3 to values ≤0.03mg m−3

in the oligotrophic subtropical gyres (Fig. 1).

Fig. 1. Stations sampled during AMT22 using the ship’s flow-through underway system
(circle), and AMT22 (star) and AMT26 (square) using the rosette sampler. Stations are
superimposed onto the October 2016 Ocean Colour ESA Climate Change Initiative (v3.1)
monthly Chlorophyll concentration ([Chl], units of mg m−3) composite.

During AMT22, 134 samples of co-located PSD, spectral cp and particulate light absorption
(ap) coefficients were obtained from the 5 m underway clean seawater supply of the ship acquired
in flow-through mode (Fig. 1). Spectral bbp coefficients and flow cytometry samples were
collected at 5 m depth during the upcast of a rosette sampler equipped with 24× 20-L Niskin
bottles. A Sea-bird Scientific SBE 9 Conductivity-Temperature-Depth (CTD) sensor provided
vertical profiles of temperature and salinity. A total of 31 bbp and flow cytometry measurements
acquired within a 1 h window from the underway system sampling were retained (Fig. 1).

OnAMT26, PSD and flow cytometry sampleswere acquired at 23 stations using a similar rosette
sampler as used on AMT22 (Fig. 1). Samples were acquired during the upcast at five depths (5,
150/200, 300/375, 400/450, and 500 m) in addition to the depth of the deep chlorophyll maximum
(DCM) as identified by an AquaTracka III fluorometer (Chelsea Technologies Group Ltd). Flow
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cytometry measurements were limited to the upper 200m. In the upper 200m, water samples were
also acquired at individual depths to measure the spectral light absorption coefficients by colored
dissolved organic matter (aCDOM). A Sea-bird Scientific SBE 9 Conductivity-Temperature-Depth
(CTD) sensor provided vertical profiles of temperature and salinity. The rosette sampler was also
equipped to collect 0-500 m profiles of spectral optical backscattering coefficients. Only profiles
acquired during the upcast were retained because they were the closest to water sampling. At the
same time of the water sampling, 0-250 m profiles of the spectral beam attenuation and light
absorption coefficients by particles were independently collected through an optics rig.

2.2. Particle size distribution and descriptors

The protocols used for measuring the particle size distribution (units of particles m−3 µm−1) are
detailed in Organelli et al. [20]. Briefly, during both cruises, seawater samples were measured
on board immediately after sampling, by means of a Multisizer III Coulter Counter (Beckman
Coulter). The Coulter Counter was fitted with a 70 µm aperture during AMT22, and with 20
µm and 100 µm apertures on AMT26. Hence, the measured size ranges of equivalent spherical
diameters (ESDs) were 1.4–42 µm, 0.588–12 µm and 2–60 µm for 70, 20 and 100 µm apertures,
respectively. ESDs were distributed in 200 and 256 logarithmically spaced size bins on AMT22
and AMT26, respectively. All apertures were calibrated using bead suspensions before and
during the cruises [20]. On both cruises, blank references of filtered seawater were recorded
daily for each aperture [20].

Samples were repeated on both cruises. On AMT22, 2mL samples were replicated from 2 to
26 times. During AMT26, 50 µL and 1mL replicates were acquired for 20 and 100 µm apertures,
respectively. Samples were replicated from 3 to 15 times in order to achieve an error <15%
around 3 µm and 6 µm for 20 µm and 100 µm apertures, respectively [20]. All replicates for each
aperture were finally summed to obtain PSDs. For AMT26 samples, the PSDs obtained from the
20 and 100 µm apertures were then combined into a single measurement by merging the two
PSDs at around 2.14 µm where they presented similar bin widths and upper/lower bin limits. The
resulting PSD consisted of 360 logarithmically spaced bins distributed between 0.588 and 60 µm.
For all AMT22 and AMT26 PSDs (n=268), the uncertainty of measurements within each size
bin was calculated by propagation of the error [21] due to the number of particles, the blank
reference and the Multisizer III volumetric pump accuracy [20].

For each measured PSD, the dimensionless slope of the distribution ξ was obtained from fitting
Eq. (1) in logarithmic space. In particular, ξ was estimated through Monte Carlo simulations
(n=1000) by randomly sampling, within each size bin, normally distributed PSD values within
twice the measured standard deviation (i.e., 95% confidence level). For each measured PSD, the
resulting ξ was the median value of all simulated regression slopes. PSD slopes were computed
over the full measured size range (i.e., 1.4-42 µm for AMT22 and 0.588-60 µm for AMT26),
and named ξ1.4−42 and ξ0.59−60 for AMT22 and AMT26, respectively. Specific to AMT26, ξ
was also calculated for particles with diameters between 0.588 and 1.14 µm (ξ0.59−1.14), and for
those ranging between 1.14 and 60 µm (ξ1.14−60). The threshold at 1.14 µm was chosen to include
prokaryotic phytoplankton (i.e., the genera Synechococcus and Prochlorococcus) within the
fraction of smallest particles [22]. This threshold was also consistent with changes in measured
PSD slopes as observed around 1 µm (see Results). The concentrations of particles (units of m−3)
for various size ranges were derived by integrating the measured PSDs within the given size
ranges. Finally, the area concentration of equivalent spherical particles (units of µm2 m−3 µm−1)
was computed by multiplying the particle concentration within each size bin for the particle
cross-sectional area at the central diameter of the given bin and divided for the bin width.
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2.3. Phytoplankton abundance and composition

On both AMT22 and AMT26, a Becton Dickinson FACSort flow cytometer equipped with
an air-cooled laser emitting blue light at 488 nm measured the abundance and structure of
phytoplankton communities [23]. Seawater samples were directly collected from Niskin bottles
in 250mL polycarbonate bottles and immediately analyzed for counting the two cyanobacteria
Prochlorococcus sp. and Synechococcus sp., and pico- and nano-eukaryotic phytoplankton cells
on the basis of their auto-fluorescence and light scattering properties [23,24]. Coccolithophores
and cryptophytes were enumerated separately from nano-eukaryotes [23]. Heterotrophic bacteria
were also counted on a sub-sample ofwater collected from the rosette sampler that was immediately
fixed with glutaraldehyde (paraformaldehyde on AMT22) solution (Sigma-Aldrich, 50%, Grade
1. 0.5% final concentration) at 4°C for 30 min. Samples were then stained for 1 h at room
temperature in the dark with the DNA stain SYBRGreen I (Thermo-Fisher) to distinguish bacteria
from the other suspended particles, and finally analyzed with the flow cytometer [24]. In this study,
we refer to cyanobacteria as the sum of abundances of Prochlorococcus sp. and Synechococcus
sp., to prokaryotes as the sum of abundances of cyanobacteria and heterotrophic bacteria, and to
eukaryotes as the sum of abundances of all pico- and nano-eukaryotic phytoplankton including
coccolithophores and cryptophytes.

2.4. Optical properties and proxies of particle size

Spectral measurements of the bulk beam attenuation coefficient were acquired by an ac-s spec-
trophotometer (WETLabs, Seabird-Scientific) on AMT22, and using an ac-9 spectrophotometer
(WETLabs, Seabird-Scientific) on AMT26. The measurements acquired by the ac-s and ac-9 are
comparable due to the same optical configuration of the instruments, beam acceptance angle
[25], and path length (25 cm). The ac-s data were interpolated to 151 wavelengths between 450
and 750 nm every 2 nm. The ac-9 collected data at 9 bands (i.e., 412, 440, 488, 510, 532, 554,
650, 676, 715 nm). On both cruises, measurements were also acquired after filtration through a
0.2-µm filter to evaluate the contribution of the colored dissolved organic matter, and calibration
drifts. The 0.2 µm filtered signal was then subtracted from the bulk signal to obtain the spectral
beam attenuation coefficients of particles (cp) according to established protocols [26].
The ac-s and ac-9 measurements of light absorption before and after 0.2 µm filtration were

also used to compute the spectral particulate light absorption coefficients (ap). On the ap data, a
scattering correction was applied [27]. The spectral particulate scattering coefficients (bp) were
then derived by subtracting ap from cp. Spectral light absorption coefficients by colored dissolved
organic matter (aCDOM) were measured on board immediately after water sampling using a liquid
waveguide capillary cell system (LWCC; 3000 series, World Precision Instruments) following
protocols detailed in Dall’Olmo et al. [28]. Measurements were collected using a path length
of 1 m within the spectral range 350-750 nm. The total light absorption coefficient (atot) was
obtained as the sum of ap, aCDOM and the light absorption by pure seawater (aw) as given by Pope
and Fry [29].

Optical backscattering coefficients were acquired during the upcast of the rosette used for water
sampling by a HydroScat-6P (HOBILabs) sensor. This sensor acquired, every 0.3 m, the angular
scattering coefficients β at a central angle of 140° and five wavelengths (i.e., 442, 488, 550,
620, and 671 nm). At each wavelength, β was converted into the particulate angular scattering
coefficient βp by removing the contribution of pure seawater which in turn depends on temperature
and salinity [30]. Then, βp was converted into bbp following established protocols and applying a
χ factor equal to 1.14 [31,32]. The bbp vertical profiles were smoothed with a moving-median
filter (5 point window) and finally binned at 1 m resolution. HydroScat- 6P measurements were
analyzed using manufacturer calibration. Moreover, an inter-comparison between HydroScat-6P
measurements and those simultaneously acquired by a WETLabs ECO-BB3 (Seabird-Scientific)
sensor showed high consistency, verifying the quality of these measurements [20].
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Optical backscattering measurements acquired by the HydroScat-6P sensor may require a
correction for attenuation of light called σ-correction [31]. Following HOBILabs [31], the
correction factor Kbb was computed from independent ap, aCDOM and bp measurements acquired
as described above. Because we used discrete aCDOM values, this correction was developed
only using 43 samples distributed between 0 and 200 m along all the AMT26 transect. At each
wavelength, estimated Kbb values were lower for the mesopelagic than upper water column
samples, and the mean values are reported in Supplement 1, Table S1. To test the potential
impact of the σ-correction on the whole database, the average Kbb values were applied to all
measured uncorrected bp coefficients (i.e., n=134). The σ-correction increased bbp values. The
increase was the highest for bbp values at 442 nm (4.2± 1.2%) while it decreased to 0.67± 0.16%
at 671 nm (Supplement 1, Table S1). In agreement with previous studies in clear waters [32,33],
the impact of the σ-correction on the derived optical backscattering coefficients was therefore
negligible. As a consequence, analyses were pursued only on bbp values to which no σ-correction
was applied. Such a choice also avoided making assumptions on σ-correction for samples without
coincident aCDOM measurements, and thus allowed us to exploit the entire database of co-located
PSDs and bbp measurements, including also those acquired on AMT22.
For each measured cp coefficient, the dimensionless slope of the spectrum γ was obtained by

fitting Eq. (2) in logarithmic space. To compare with data from the literature, γ was computed for
the entire spectral ranges measured [9,13]. For each measured bbp coefficient, we computed the
slope of the spectrum η over two different spectral ranges: i) η488−550 was computed as the ratio
in log-space between the bands 488 and 550 nm following Antoine et al. [16], in order to use the
same spectral range of, and compare the results with, a previously established bio-optical model
specifically developed for space-based applications [11]; and ii) η442−671 was computed by fitting
Eq. (3) in log-space over the entire measured spectral range (i.e., 442-671 nm). Then, AMT26
values of γ, η488−550 and η442−671, and AMT22 values of η488−550 and η442−671 were calculated
from 1 m resolution vertical profiles as the median of the slopes estimated in a window of 5 m
centered at the depth of PSD samples. Only for AMT22, the median value of γ was acquired in a
window of 5 minutes corresponding to the time of the PSD water sampling.

2.5. Statistics

All comparisons were evaluated using the Pearson’s correlation coefficient (r) of a linear fit,
whose significance was tested on a two-tailed Student’s t-test. Statistics were calculated on
log-transformed quantities of particle concentrations and ratios, and light absorption coefficients
[34]. The root mean square error of prediction (RMSE) and the median percent difference (MPD)
were calculated as follows:

RMSE =

√√√√ n∑
i=1
(xi,estimated − xi,measured)2

n
, (4)

and
MPD = median

(
100∗

���� xi,estimatedxi,measured
− 1

����) , (5)

respectively, where xi are estimated and measured variables, and n is the number of observations.

3. Results

3.1. Shape of the PSDs

The number concentration of particles decreased with increasing diameter (Fig. 2; Supplement 1,
Figs. S1 and S2). At the surface and at the DCM, PSDs showed peaks in the submicron range
around 0.7-0.8 µm, between 1 and 2 µm and less frequently above 5 µm (Fig. 2; Supplement 1,

https://doi.org/10.6084/m9.figshare.13096139
https://doi.org/10.6084/m9.figshare.13096139
https://doi.org/10.6084/m9.figshare.13096139
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Fig. S2). In addition, in the submicron range, peaks centered around 0.6 µm were also observed
in some PSDs at the surface and at the DCM, even though these peaks could not be fully resolved
because of the detection limits of the Coulter Counter (Fig. 2). In the mesopelagic zone, PSDs
were generally featureless (Fig. 2; Supplement 1, Fig. S1). All PSDs at the surface and DCM
showed low uncertainties within each size bin up to 5 µm for AMT26 and up to 7 µm for AMT22,
while uncertainty increased for PSDs collected in the mesopelagic zone (Supplement 1, Fig. S3).
Additional examples of PSDs with associated uncertainty from both AMT22 and AMT26 cruises
can be found in Organelli et al. [20].

Fig. 2. Particle Size Distributions (PSDs) collected during the AMT26 cruise at the
following depths: 5 m, deep chlorophyll maximum (DCM) and 500 m. In each panel, PSDs
are shown in log-log scale. To improve visualization, PSDs have been spaced and smoothed
with a moving-median filter (fifteen point window). Dashed vertical lines indicated the lower
and upper limits of the size bin at which the PSDs acquired with the Coulter Counter’s tube
apertures of 20 µm and 100 µm diameters were merged.

The mean area concentration of equivalent spherical particles generally decreased with
increasing diameter (Fig. 3). For samples at the DCM, besides the not-fully resolved peak around
0.6 µm, two additional clear peaks, likely due to pico-eukaryotes, were observed between 1 and
2 µm. For surface AMT22 samples, the area concentration was higher than for samples collected
on AMT26 though with a larger variability (Fig. 3).

The power-law fit on the whole measured size range was insensitive to the observed peaks of
particles and to the size distribution of submicron particles (Fig. 4). For AMT26 samples, the
mean (± standard deviation) slope computed over the entire size range, ξ0.59−60, was 3.4± 0.3
(n=134) while the slope of the distribution of measured submicron particles, ξ0.59−1.14, was
6.0± 1.0 (Figs. 4 and 5). This ξ0.59−1.14 slope was also driven by the poorly-resolved peak at
0.6 µm, likely due to Prochlorococcus. No significant correlation was observed among ξ0.59−60
and ξ0.59−1.14 (Supplement 1, Fig. S4(a)), while ξ0.59−60 was significantly correlated with the
slope of particles above 1.14 µm (ξ1.14−60; Supplement 1, Fig. S4(b)). The average value of

https://doi.org/10.6084/m9.figshare.13096139
https://doi.org/10.6084/m9.figshare.13096139
https://doi.org/10.6084/m9.figshare.13096139
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Fig. 3. Mean area concentrations for samples collected during the AMT22 cruise at 5 m
depth (n=134), and on the AMT26 cruise at 5 m (n=23), at the depth of the deep chlorophyll
maximum (DCM; n=25) and in the mesopelagic region (n=86). Error bars represent one
standard deviation. The dashed vertical line indicates the size bin at which the PSDs acquired
with apertures of 20 µm and 100 µm diameter were merged. AMT22 PSDs were collected
between 1.4–42 µm.

ξ1.14−60 was close (3.22± 0.23, n=134) to that describing the whole size range (Fig. 5(a)). The
average slope for PSDs collected during AMT22 between 1.4 and 42 µm, ξ1.4−42, was 3.38± 0.44
(n=134), and thus close to AMT26 ξ0.59−60 and ξ1.14−60 values (Fig. 5(a)).

Fig. 4. Examples of how particle size distributions cannot be described by a single slope. (a)
The power law fit (solid line) is calculated over the whole measured size range (0.59-60 µm);
(b) The power law fit (dashed line) is calculated over the whole measured size range
(0.59-60 µm), and for particle diameters between 0.59 and 1.14 µm (yellow solid line) and
between 1.14 and 60 µm (orange solid line). Error bars represent the combined uncertainty
(95% confidence intervals) as propagated from the summation of multiple particle size
distribution measurements (see methods).

The slope ξ varied from the surface to the mesopelagic zone (Fig. 5(b)). Large mean slopes
computed over the entire size range were observed at the surface and at the DCM (3.5± 0.2,
n=48), with the steepest mean slopes at the DCM (3.6± 0.2, n=25). Lower slopes characterized
the particle populations in the mesopelagic zone (3.3± 0.3, n=86). The slopes ξ observed along
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Fig. 5. (a) Frequency distributions of the slopes ξ estimated for all AMT22 and AMT26
samples (n=268). The slopes ξ were calculated over different ranges of particle sizes: 1.4-
42 µm for AMT22 samples (ξ1.4−42); and 0.59-60 µm (ξ0.59−60), 0.59-1.14 µm (ξ0.59−1.14)
and 1.14-60 µm (ξ1.14−60) for AMT26 samples; (b) Frequency distributions of the slopes
ξ0.59−60 for AMT26 samples grouped according to sampling depth.

the AMT transect were in agreement with expected oceanic values [13,35,36]. The slopes
ξ0.59−1.14 computed for the submicron range also decreased from 6.9± 1.0 (n=23) at the surface
and 6.8± 1.6 (n=25) at the DCM, to 5.6± 0.4 (n=86) in the mesopelagic layer.

3.2. Phytoplankton and detritus contributions

The comparison between particle concentrations derived from PSD and flow cytometry measure-
ments showed varying contributions of phytoplankton to the bulk particle population (Figs. 6 and 7).
The concentrations of eukaryotic phytoplankton and of particles >1.14 µm were significantly cor-
related at the surface and at the DCM (log10(Eukaryotes)= 1.59(±0.09)*log10(Particles1.14−60 µm)-
6.26(±0.87), r=0.90, p-value<0.01, n=79; Fig. 6(a)). At the DCM, eukaryotic phytoplankton
represented at least half the pool of particles (Fig. 6(b)) with average relative contributions of
56± 16%. In contrast, non-phytoplanktonic particles >1.14 µm dominated at the other depths
(Fig. 6(b)). The relative contributions of these detrital particles were 67± 19% and 95± 7% at
the surface and in the mesopelagic zone, respectively. These values for detrital particles are
consistent with previous estimations made for the southeast Pacific Ocean [37].
The concentrations of submicron particles were correlated with those of particles >1.14 µm

(r=0.94, p-value<0.01, n=134; Fig. 7(a)), when the large range of concentrations from the ocean
surface to the mesopelagic zone was considered. A significant correlation was also observed
between the concentrations of submicron particles and cyanobacteria when including all samples
(r=0.87, p-value<0.01, n=67), but due to the lower size limit of the Coulter Counter, PSDs
underestimated these photosynthetic organisms (Fig. 7(b)). A better agreement on the 1:1 line
with the Coulter Counter and cyanobacteria was found at the DCM where these organisms are
larger and fluoresce more than at the surface [38]. Assuming low cyanobacteria abundances
deeper than 200 m, the relative contributions of detritus with diameters <1.14 µm was calculated
only for the mesopelagic region and was on average 93± 15% (Fig. 7(b)).

3.3. Spectral scattering and optical proxies of particle size

Measured spectral cp and bbp coefficients were consistent with previous measurements acquired
in open-ocean waters [14,26,32,39]. The lowest cp and bbp values occurred for samples in
the mesopelagic ocean (Fig. 8). No clear differences were observed for the values of cp and
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Fig. 6. (a) Comparison between cellular abundances of eukaryotic phytoplankton (from
flow cytometry) and concentrations of particles with diameters >1.14 µm (from the Coulter
Counter). The dashed line indicates the 1:1 ratio. Statistics for the linear fit on the log-
transformed particle concentrations of samples at the surface and at the DCM level are
reported. (b) Relative contributions of eukaryotic phytoplankton within populations of
particles with diameters >1.14 µm vs. the concentrations of those particles. The dashed line
indicates 100% of contribution by eukaryotic phytoplankton to the bulk particle population.
In both panels, particle concentrations of AMT22 samples refer to the size range between
1.4 and 42 µm.

Fig. 7. (a) Comparison between concentrations of particles with diameters between 1.14
and 60 µm vs. those between 0.59 and 1.14 µm (from the Coulter Counter). The solid line is
the linear fit on log-transformed quantities and statistics are shown. (b) Comparison between
cellular abundances of cyanobacteria (from flow cytometry) and concentrations of particles
with diameters <1.14 µm (from the Coulter Counter). The dashed line indicates the 1:1 ratio.
Statistics for the linear fit on log-transformed particle concentrations are shown. In both
panels, only samples collected during AMT26 are included.

bbp between the surface and the level of the DCM (Figs. 8(a) and (b)). The exception to this
was for AMT22, where the samples collected at the end of the transect under high-chlorophyll
concentrations (Fig. 1) showed the highest cp and bbp values of the whole dataset (Fig. 8).
The cp spectra measured on both AMT22 and AMT26 were relatively flat with values of γ

varying from 0.5 to 1.7 (on average 0.95± 0.20) regardless of depth (Fig. 8). This is in accordance
with previous observations in the same area [26] and in other regions of the Atlantic Ocean [15].
Some features in the bbp spectra were sometimes observed, such as depressions at 488, 550 and
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Fig. 8. Measured particulate spectral (a) beam attenuation (cp) and (b) optical backscattering
(bbp) coefficients along the AMT22 and AMT26 transects, in the upper 500 m. (c) Frequency
distributions of the slopes γ, η488−550 and η442−671 estimated for measured cp and bbp
during AMT22 and AMT26 field expeditions.

620 nm (Fig. 8(b)). Similar features in bbp measurements acquired by a HydroScat- 6P meter have
been observed in other regions of the global ocean [19,33]. As a consequence of such variability,
the values of η varied strongly with the spectral range used for the computation (Fig. 8(c)). The
values of η488−550 ranged globally from -4.35 to 10.7, though we acknowledge that η values lower
than -1.5 and higher than 5 have not been reported in the literature [11,13,16,26,33] and will
therefore be excluded from the following analyses. The values of η442−671 ranged from 0.24 to
2.09 (on average 1.20± 0.35). The range of η442−671 values was in agreement with previous
measurements along the same transect [26], as well as those acquired in other regions of the
ocean [13,16,33]. The slope η442−671 also increased with bbp(550), which is an indicator of
seawater turbidity [33], though with different trends between surface samples and those collected
at the other depths (Supplement 1, Fig. S5).

The relationship between the PSD slopes (ξ) computed over the entire size range and γ derived
from spectral cp measurements was statistically significant, but with relatively large scatter
(r=0.68, p-value<0.01, n=156; Fig. 9(a)). The measured ξ values were generally lower than
those predicted using a bio-optical model based on cp [9], and yielded RMSE and MPD values
equal to 0.62 and 18%, respectively. Consistency with this cp-based model was observed only
for samples collected at 5 m in chlorophyll-rich waters encountered at the end of the AMT22
transect (Fig. 9(a)). We must note that these samples collected during the AMT22 significantly
influenced the observed relationship between ξ and γ as they encompassed a wider trophic range
than waters encountered on AMT26. On AMT26, no optical scattering measurements co-located
with PSDs were made south of 40°S where waters are rich in chlorophyll (Fig. 1).

No significant relationship was observed between the PSD slopes (ξ) and those derived from
bbp at 488 and 550 nm, η488−550 (Fig. 9(b)). Our observations for the upper 500 m of the Atlantic
Ocean were close to the ξ predicted from a previously published model [11], but most of the
samples collected at 5 m depth strongly departed from that model (Fig. 9(b)). Neither did
we observe a significant relationship between ξ and η442−671 when data from all depths were
combined (r=-0.19, p-value=0.011, n=163; Fig. 9(c)). In this case, the previously established
model [11] overestimated the measured ξ (RMSE=1.03, MPD=27%; Fig. 9(c)). Both γ, η488−550
and η442−671 were poorly or not correlated with the PSD slopes computed only for particles
<1.14 µm (Supplement 1, Fig. S6). Finally, γ and η442−671, were poorly correlated globally
(Fig. 9(d)) and no correlation was found between γ and η488−550 (r=-0.18, p-value=0.12, n=75).

https://doi.org/10.6084/m9.figshare.13096139
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Fig. 9. Comparison between the slopes ξ computed over the entire measured size range and
those derived from spectral optical measurements of beam attenuation (cp) and particulate
optical backscattering (bbp) coefficients: (a) γ; (b) η488−550; and (c) η442−671; Error bars
(black horizontal lines within each point) represent the standard deviation. Dashed lines
represent previously published bio-optical models. Please note that previous models are
limited to the range of γ and η values found in those studies. In panel (b), η488−550 <-1.5 and
>5 have been disregarded. Statistics for linear fits, RMSE and MPD values are shown. (d)
Relationship between γ and η442− 671. Error bars (black lines within each point) represent
the standard deviation. Statistics for linear fits are shown.

4. Discussion

Previous experimental studies have used the spectral properties of particulate beam attenuation
(cp) and optical backscattering (bbp) coefficients to infer particle size distributions (PSDs) in the
oceans. Good performance in retrieving PSD using both cp and bbp was observed in coastal
waters, where minerals and lithogenic material are abundant, and for populations of particles with
sizes spanning over several orders of magnitudes [9,13,40]. In open-ocean waters, PSDs were
also modelled from spectral bbp measurements, though with high uncertainties [11]. Our results
show that spectral cp is an optical proxy of PSDs only when a wide trophic range of Atlantic
open-ocean waters is considered. In contrast, spectral bbp properties of marine particles were not
related to co-located PSDs across the same trophic range and for the most oligotrophic waters of
the Atlantic Ocean, between September and November (Fig. 9). Our results confirm findings for
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other regions of the global ocean [15,33], and suggest prudence in using the spectral slope of bbp
to infer the slope of open-ocean PSDs.
Theory [8] predicts steeper spectral slopes for both cp and bbp as the mean particle size

decreases. The η values measured by the HydroScat-6P during the AMT field expeditions were
consistent with studies using different instruments [26], except for a few samples, and varied with
seawater turbidity (Supplement 1, Fig. S5) as previously observed [33]. The lack of correlation
observed between η and γ thus implies that these spectral optical scattering properties were driven
by different factors. In an attempt to identify these factors, we differentiated between particles
and phytoplankton, investigated the effects of light absorption, and analyzed their relationships
with η and γ in our dataset.

At the surface and at the DCM, γ was related to the abundance and fractions of particles larger
than 1.4 µm (Fig. 10(a); Supplement 1, Table S2), while no or weakly-significant relationships
were observed between γ and the abundances of submicron particles (Supplement 1, Table S2).
The variability of γ was also significantly associated with the ratio of pico- to nano-eukaryotic
phytoplankton (Fig. 10(b)), regardless of the varying relative contributions of phytoplankton and
detritus between particle populations at the surface and at the DCM (Fig. 6). γ was thus related
to eukaryotic phytoplankton abundance and size distribution in our dataset.

Fig. 10. Relationships between the slope γ of the particulate beam attenuation coefficient
(cp), and: (a) ratios of the concentrations of particles with diameters between 1.4 and 2 µm
to particles with diameters between 2 and 42 µm (from the Coulter Counter); (b) ratios of
cellular abundances of pico-eukaryotes to nano-eukaryotes (from flow cytometry). Statistics
for linear fits on the log-transformed particle and phytoplankton concentrations are shown
(see Supplement 1, Table S2). Error bars (black vertical lines within each point) represent
the standard deviation. In panel (b), statistics rely on all samples but stars (as they followed
a different trend with statistics r=0.96, p-value<0.01, n=5). These starred DCM samples
have been collected at equatorial latitudes.

The slope of bbp computed using measurements between 442 and 671 nm (η442−671) also varied
with phytoplankton abundances, when data at the DCM and surface were combined. η442−671
was best correlated with the ratio between the abundances of cyanobacteria and eukaryotic
phytoplankton across the upper Atlantic Ocean, even though this relationship was noisy (r=0.54,
p-value<0.01, n=76; Fig. 11; Supplement 1, Table S3). Interestingly, the relationships between
η442−671 and the entire pool of particles (i.e., including detrital matter) were weaker than when
only living eukaryotic phytoplankton was considered (Supplement 1, Table S3). Such weak
relationships were consistent with the lack of correlation between η442−671 and ξ in Fig. 9.
Moreover, we found that η442−671 was not correlated with the abundance of all prokaryotes
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(Supplement 1, Table S3). These results thus support previous findings that reinforce the role
of phytoplankton as a driver of the bbp variability in the productive zone of open-ocean waters
[14,20,41–43].

Fig. 11. The slope η442−671 of the particulate optical backscattering coefficient (bbp) as a
function of the ratio of the concentrations of cyanobacteria and eukaryotic phytoplankton as
measured by flow cytometry. Error bars (black vertical lines within each point) represent
the standard deviation. Statistics for linear fits on the log-transformed ratios are shown (see
Supplement 1, Table S3).

In the mesopelagic region of the Atlantic Ocean, η442−671 roughly decreased with increasing
concentrations of particles >1.14 µm (r=-0.25, p-value=0.02, n=86; Supplement 1, Table S4),
and generally increased as a function of the ratio of small-to-large particles (r=0.27, p-value<0.01,
n=86; Supplement 1, Fig. S7 and Table S4). For these samples, no significant relationships were
observed with concentrations of particles <1.14 µm, phytoplankton and prokaryotes (Supplement
1, Table S4). Similar conclusions could not be drawn for γ because the number of coincident
measurements of spectral cp coefficients and flow cytometry was limited for that region of the
ocean (n<15; Supplement 1, Table S5). The high relevance of detrital particles >1.14 µm for
η442−671 might be linked to differences in the nature of mesopelagic and upper-ocean particles.
Indeed, as suggested by Organelli et al. [20], particles in the mesopelagic zone of the Atlantic
Ocean may be made of harder material, or represent denser and more structurally complex and
large aggregates, than for phytoplankton and detrital particles higher in the water column.

We found that ηwas not a good proxy of marine particle size when it was computed over narrow
spectral ranges. We analyzed the correlations between particle abundances and characteristics
and η computed between the wavelengths 488 and 550 nm, η488−550, both in the upper ocean
and in the mesopelagic zone. η488−550 was not dependent on the concentration of particles
of different sizes and nature (Supplement 1, Tables S6 and S7). Low correlations were only
found between η488−550, the abundance of particles > 1.14 µm, eukaryotes and the ratio of
prokaryotes to eukaryotic phytoplankton in the upper ocean (Supplement 1, Table S6). These
low correlations may be a consequence of the uncertainty associated with the bbp measurements
at those wavelengths [44]. Indeed, η488−550 was calculated using two relatively close bands
that are characterized by uncertainties up to 40% in such waters [14,26] yielding a very large
spectral variability in bbp (Fig. 8). Hence, we recommend that the spectral slope of bbp should be
computed using data covering a wide spectral range.
The spectral slope of optical backscattering, η, was affected by the light absorption of the

optically significant substances in water (Fig. 12). The slope η442−671 decreased significantly
as a function of the total light absorption (atot; Fig. 12(a)), but this relationship was not driven
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by the light absorption of the colored dissolved organic matter (aCDOM; r=-0.47, p-value<0.01,
n=30), nor by the relative contribution of the light absorption by seawater (aw) to atot (r=0.37,
p-value=0.02, n=41). The slope η442−671 decreased as a function of the particulate light
absorption coefficients (ap) at 488 nm, though two different trends between particles from the
mesopelagic region (r=-0.82, p-value<0.01, n=14) and those at the surface and at the DCM
(r=-0.54, p-value<0.01, n=52) were observed (Fig. 12(b)). In contrast to η442−671, γ was less
correlated with atot (r=0.32, p-value=0.04, n=42) and ap(488) when AMT22 and AMT26 data
were combined (r=0.36, p-value<0.01, n=69). Thus, we experimentally confirmed that spectral
cp coefficients are more robust to variations in light absorption than spectral bbp [45]. In our
samples at 5 m and at the DCM, the strong dependence of η442−671 on ap could be the consequence
of algal pigment absorption that depressed bbp in the blue as previously observed with algal
culture experiments and in natural waters [45,46]. This effect is dependent on the relative
size of the particles with respect to the wavelength, and on the real and imaginary refractive
indices of the particles [47]. It is therefore expected to be larger with increasing size, because
particles may contain more absorbing substances that reduce the backscattered light. Indeed, at
5 m and at the DCM, we found that ap(488) significantly increased with the concentration of
eukaryotic phytoplankton (log10(ap(488))= 0.61(±0.05)*log10(Eukaryotes)-7.86(±0.51), r=0.83,
p-value<0.01, n=62; Fig. 12(c)), which contains higher per-cell chlorophyll-a and other pigment
concentrations than cyanobacteria [22]. The same ap(488) values decreased with increasing
ratios of cyanobacteria to eukaryotic phytoplankton abundances (r=-0.69, p-value<0.01, n=62;
Supplement 1, Fig. S8) but a poor correlationwas observedwith the concentration of cyanobacteria
only (Fig. 12(d)). These findings thus suggested that the significant but noisy correlation observed
between η442−671 and the ratio of cyanobacteria to eukaryotic phytoplankton (Fig. 11; Supplement
1, Table S3) was likely a secondary consequence of the strong correlation observed between
eukaryotic phytoplankton abundances and ap(488) (Fig. 12(c); Supplement 1, Fig. S8).

However, the bbp data acquired by the HydroScat-6P in this study were not corrected for light
attenuation and absorption as the impact of the so called σ-correction on bbp coefficients was
found to be negligible (Supplement 1, Table S1) [32]. For the sake of completeness, we also
assessed the impact of the σ-correction on the values of η442−671. The σ-correction was small
and increased η442−671 systematically (y=1.02x+0.07, r2=0.99, p-value<0.01, n=133; where y
and x are the values of η442−671 after and before σ-correction, respectively; Supplement 1, Fig.
S9) with RMSE and MPD equal to 0.09 and 7%, respectively. This sensitivity analysis helped
also confirming that the impact of light absorption to spectral bbp coefficients is intrinsic in the
bbp measurements [45], and further prevents one from using spectral bbp properties to study
open-ocean PSD dynamics.
When using optical measurements to estimate PSDs, another important limitation comes

from the choice of the slope of a power-law fit as single predictor of particle size (i.e., ξ). This
choice is convenient for bio-optical modelling but it represents an oversimplification of reality
[36,48–51]. Our data from AMT26 clearly showed that a single slope of PSD cannot describe
the large variability of marine particle sizes and concentrations encountered across the upper 500
m of the Atlantic Ocean (Fig. 4). The size distribution of submicron particles was drastically
different from, and uncorrelated to, that of particles with diameters >1 µm (Fig. 5; Supplement
1, Fig. S4). Our measurements showed peaks that were likely associated with prokaryotic
populations below and around 0.6 µm that, unfortunately, could not be fully resolved because
of the Coulter Counter’s detection limits. The occurrence of such peaks should discourage the
use of ξ values that describe PSDs increasing continuously as a function of decreasing particle
diameters, as well as the use of the ξ0.59−1.14 values for submicron particles reported in this study.
In addition, ξ cannot reproduce any peak due to specific particle populations such those observed
for particles >1 µm (Fig. 4). These peaks included picoeukaryotes and nano-phytoplankton and
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Fig. 12. Relationships between the slope η442−671 of the particulate optical backscattering
coefficient (bbp) as a function of (a) the total light absorption coefficients (atot) at 488 nm;
and (b) the particulate light absorption coefficients (ap) at 488 nm. Error bars (black vertical
lines within each point) represent the standard deviation. Statistics for linear fits on the
log-transformed light absorption coefficients are shown. In plot (b), statistics colored in black
refer to samples collected at 5 m and at the level of the DCM while those colored in purple
refer to mesopelagic samples only. Relationships between the particulate light absorption
coefficients (ap) at 488 nm as a function of (c) the concentration of eukaryotic phytoplankton;
and (d) the concentration of cyanobacteria. Statistics for linear fits on log-transformed
quantities are shown and refer only to samples collected at 5 m and at the level of the DCM.

significantly influenced the particle area concentration (Fig. 3), which is directly related to the
optical scattering properties of marine particles [13,52].

5. Conclusions

We investigated the particulate spectral scattering properties (cp and bbp) as proxies of marine
particle size in the upper 500 m of the Atlantic Ocean, across various trophic regimes including
mid-ocean gyres. We analyzed the relationships linking ξ to γ and η, and their potential drivers
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using an unprecedented dataset of co-located spectral cp and bbp coefficients, particle size
distributions from a Coulter Counter, phytoplankton abundancies from flow cytometry, and light
absorption measurements. The main findings of this analysis are:

a. The slope of bbp (η) was not a good proxy of the slope of the PSD (ξ) in the upper 500 m
of the Atlantic Ocean, while the slope of cp (γ) was related to ξ only over a wide range of
trophic conditions;

b. γ was related to the ratio of the abundances of pico- and nano-eukaryotic phytoplankton,
and was robust to variations in light absorption;

c. η values were significantly related to the light absorption by particles in the upper ocean
and in the mesopelagic zone;

d. η was also related to the ratio of the abundances of cyanobacteria and eukaryotic phyto-
plankton, although this relationship was likely due to the correlation between particle light
absorption and the concentration of eukaryotic phytoplankton;

e. η values computed over a narrow spectral range using a HydroScat-6P offered little
information on marine particles.

To explore the dynamics of particles in the open-ocean waters of the Atlantic Ocean, the spectral
slopes of cp and bbp thus showed some limitations, even though γ was to first order related to the
slope of the PSD and eukaryotic phytoplankton.
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Table S3. Correlation coefficient (r), number of points (n) and p-value for linear fits between the slope of the 
particulate optical backscattering coefficient (bbp) between 442 and 671 nm and various log-transformed 

particle concentrations and ratios. Prokaryotes are defined as the sum of cyanobacteria and heterotrophic 
bacteria. Only samples collected at 5 m and the depth of the deep chlorophyll maximum are used. **highly 

significant; *significant; nsnot significant.  

Concentrations r n p-value Cruise 

Particles 0.6-60 µm -0.42 47 <0.01** AMT26 

Particles 0.6-1.14 µm -0.40 47 <0.01** AMT26 

Particles 1.14-60 µm -0.40 77 <0.01** AMT22, AMT26 

Prokaryotes -0.16 73 0.18ns AMT22, AMT26 

Cyanobacteria 0.38 76 <0.01** AMT22, AMT26 

Eukaryotes -0.51 76 <0.01** AMT22, AMT26 

     

Ratios r n p-value Cruise 

Particles 0.6-1.14 µm :  

Particles 1.14-60 µm 
0.05 47 0.75ns AMT26 

Prokaryotes : Eukaryotes 0.46 73 <0.01** AMT22, AMT26 

Cyanobacteria : Eukaryotes 0.54 76 <0.01** AMT22, AMT26 

 

 

Table S4. Correlation coefficient (r), number of points (n) and p-value for linear fits between the slope of the 
particulate optical backscattering coefficient (bbp) between 442 and 671 nm and various log-transformed 

particle concentrations and ratios. Prokaryotes are defined as the sum of cyanobacteria and heterotrophic 
bacteria. Only samples collected in the mesopelagic region are used. **highly significant; *significant; nsnot 

significant. 

Concentrations r n p-value Cruise 

Particles 0.6-60 µm 0.03 86 0.75ns AMT26 

Particles 0.6-1.14 µm 0.07 86 0.51ns AMT26 
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Table S6. Correlation coefficient (r), number of points (n) and p-value for linear fits between the slope of the 
particulate optical backscattering coefficient between 488 and 550 nm, η488-550, and log-transformed quantities 

of various particle concentrations and ratios. Prokaryotes are defined as the sum of cyanobacteria and 
heterotrophic bacteria. Only samples collected at 5 m and at the level of the deep chlorophyll maximum are 

used. **highly significant; *significant; nsnot significant. 

Concentrations r n p-value Cruise 

Particles 0.6-60 µm -0.09 47 0.54ns AMT26 

Particles 0.6-1.14 µm -0.08 47 0.59ns AMT26 

Particles 1.14-60 µm -0.39 77 <0.01** AMT22, AMT26 

Prokaryotes 0.06 73 0.60ns AMT22, AMT26 

Cyanobacteria -0.05 76 0.69ns AMT22, AMT26 

Eukaryotes -0.28 76 <0.01** AMT22, AMT26 

     

Ratios r n p-value Cruise 

Particles 0.6-1.14 µm : 

Particles 1.14-60 µm 
0.08 47 0.59ns AMT26 

Prokaryotes : Eukaryotes 0.38 71 <0.01** AMT22, AMT26 

Cyanobacteria : Eukaryotes 0.18 76 0.12ns AMT22, AMT26 

 

Table S7. Correlation coefficient (r), number of points (n) and p-value for linear fits between the slope of the 
particulate optical backscattering coefficient between 488 and 550 nm, η488-550, and log-transformed quantities 

of various particle concentrations and ratios. Prokaryotes are defined as the sum of cyanobacteria and 
heterotrophic bacteria. Only samples collected in the mesopelagic region are used. **highly significant; 

*significant; nsnot significant. 

Concentrations r n p-value Cruise 

Particles 0.6-60 µm 0.14 86 0.19ns AMT26 

Particles 0.6-1.14 µm 0.13 86 0.22ns AMT26 

Particles 1.14-60 µm 0.14 86 0.19ns AMT26 

Prokaryotes 0.18 20 0.46ns AMT26 

Cyanobacteria -0.08 20 0.73ns AMT26 

Eukaryotes 0.13 18 0.62ns AMT26 

     

Ratios r n p-value Cruise 

Particles 0.6-1.14 µm : 

Particles 1.14-60 µm 
0.04 86 0.71ns AMT26 

Prokaryotes : Eukaryotes -0.07 18 0.77ns AMT26 

Cyanobacteria : Eukaryotes -0.28 18 0.27ns AMT26 
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