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Abstract: Oceanic internal waves occur within stratified water along the boundary between water
layers of different density and are generated when strong tidal currents flow over seabed topography.
Their amplitude can exceed 50 m and they transport energy over long distances and cause vertical
mixing when the waves break. This study presents the first fully automated methodology for the
mapping of internal waves using satellite synthetic aperture radar (SAR) data and applies this to
explore their spatial and temporal distribution within UK shelf seas. The new algorithm includes
enhanced edge detection and spatial processing to target the appearance of these features on satellite
images. We acquired and processed over 7000 ENVISAT ASAR scenes covering the UK continental
shelf between 2006 and 2012, to automatically generate detailed maps of internal waves. Monthly and
annual internal wave climatology maps of the continental shelf were produced showing spatial and
temporal variability, which can be used to predict where internal waves have the most impact on the
seabed environment and ecology in UK shelf seas. These observations revealed correlations between
the temporal patterns of internal waves and the seasons when the continental shelf waters were more
stratified. The maps were validated using well-known seabed topographic features. Concentrations
of internal waves were automatically identified at Wyville-Thomson Ridge in June 2008, at the
continental shelf break to the east of Rosemary Bank in January 2010 and in the Faroe-Shetland
Channel in June 2011. This new automated methodology has been shown to be robust for mapping
internal waves using a large SAR dataset and is recommended for studies in other regions worldwide
and for SAR data acquired by other sensors.

Keywords: internal waves; frequency maps; synthetic aperture radar; SAR; remote sensing; image
processing; edge detection

1. Introduction

Oceanic internal waves (IWs) usually develop in stratified water, in which pycnoclines form
boundaries that separate water layers of different density. The density difference may be driven by
temperature (thermoclines) or salinity (haloclines), with thermoclines occurring more commonly in the
open ocean. IWs are common in continental shelf regions, and where brackish water overlies saltwater
at the mouths of large rivers. IWs can be generated by strong tidal currents that flow over a seabed of
varying topography, such as shelf breaks and shallow sills. IWs are responsible for transferring energy
between the large-scale tides and small-scale mixing. On the continental shelf, when their energy
reaches the seabed, the shear stress causes sediment disturbance and resuspension. Areas prone to
such disturbance form an ideal habitat for certain benthic animals, and hence should be considered
for protection when planning offshore developments such as renewable energy devices and oil and
gas platforms.
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A deeper understanding of the mechanisms of IW formation and interaction with the coastal
environment requires the collection and analysis of large volumes of experimental measurements.
Traditionally, measurements of IW fields have been carried out using instruments deployed in the ocean,
such as moored buoys equipped with temperature, salinity and ocean current sensors or by using
acoustic instruments such as sonars on ships. However, in situ measurements are time-consuming,
expensive and unsuitable for large-scale observations. Remote sensing (RS) methods provide an
alternative to in situ observations of IWs. RS methods are inexpensive and can provide excellent spatial
coverage and consistency of observations. They provide insight into the space-time distribution of IWs
that are dynamic and diverse.

Synthetic Aperture Radar (SAR) sensors have demonstrated excellent capability for observation of
IWs from space. SAR sensors operate by detecting the return of a pulse of radiation in the microwave
band and are insensitive to cloud cover and solar illumination. Hence, they can provide all-weather,
day and night monitoring of IWs on the ocean surface. Their operation principles are based on high
sensitivity to small-scale roughness of the ocean surface induced by wind. The manifestation of IWs in
SAR images can be seen as bright and dark bands. Two mechanisms are involved in the generation
of intensity bands: modulation of the surface roughness by surface current associated with IWs;
and damping of the surface capillary waves by oils and films that tend to concentrate in the regions of
surface water convergence, where they form slicks.

Rapid growth in the volume of data produced by satellite SAR sensors over the last decade has
stimulated the development of new methods for automatic analysis of SAR images. Several approaches
have been developed in the literature for the detection of IWs in SAR data. Rodenas and Garello [1]
used a 2-D spectral analysis based on short-time Fourier transform (STFT) to study IW packets in ERS-1
SAR images and to estimate packet wavelength. A similar technique was applied by Changbao et al. [2]
to evaluate the dominant wavelength and propagation direction. Rodenas and Garello [3] suggested
that the wavelet transform (WT) can perform better than STFT in locating irregularities of the IW signal.
They used an analytical IW model to develop a set of wavelet basis functions that were adapted to
the IW signatures and applied these functions for analysis of IW patterns in ERS-1 SAR images of the
Strait of Gibraltar. The approach based on WT was further extended and a fully automatic tool was
developed for detection and orientation estimation of IWs in the ERS-1 SAR images in [3]. The tool
employed decomposition of SAR images into different scales using 2-D dyadic WT to suppress speckle
noise and improve the accuracy of edge detection. The output of the multi-resolution edge detector
was further processed to discriminate look-alike features such as ship wakes, oil slicks and currents.
Rodenas and Garello [3] demonstrated the efficiency of this method by processing individual ERS-1
and RADARSAT SAR scenes.

A multiple-stage methodology for IW detection using stationary wavelet transform (SWT) was
proposed by Simonin et al. [4], including pre-processing, edge extraction and edge analysis stages.
To discriminate look-alikes from the IW features, Simonin et al. [4] implemented an analysis of
geometric features of IW edges. However, the algorithm was tested on a very limited set of images and
a more detailed study was needed to select IW detection parameters and optimise its performance in
various conditions. Bao et al. [5] suggested a convolutional neural network approach for automatic
detection of IWs in SAR images produced by the ENVISAT Advanced Synthetic Aperture Radar
(ASAR) sensor. The neural network was trained using a database of 950 scenes of IWs in the South
China Sea region. The system demonstrated overall good performance but incorrectly identified river
estuaries and coastline features [5].

Hence, several advanced approaches have been developed for automatic detection of IWs in
satellite images, but none of these have yet been applied to routine processing of large datasets and
automatic generation of IW maps. In contrast, a number of SAR studies of the geographical distribution
of IWs were based on manual/visual analysis of satellite images. Dokken et al. [6] studied IW activity
along the coast of Norway using more than 2600 ERS and RADARSAT-1 images, though the IWs were
not combined as a map. Zhao et al. [7] published maps showing the distribution of 116 IW crests in the
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South China Sea manually traced on ERS-1/2 and Envisat SAR data. Lorenzetti and Dias [8] identified
over 460 IW packets in the southeastern continental shelf of Brazil using visual analysis of 264 Envisat
SAR images. Kozlov et al. [9] used SAR data to map spatial statistics of short-period IWs in the Kara
Sea, based on 89 ENVISAT ASAR images acquired between July and October 2007.

Many studies use a multi-sensor approach for investigation of IWs from space [10–14], based on
the joint use of SAR and optical sensor data. Lavrova and Kostianoy [10] processed and analysed SAR
and multispectral sensor images to study the temporal and spatial variability of IWs in the Caspian
Sea. Several years of Envisat ASAR, Sentinel-1A,1B SAR, Sentinel-2 MSI and Landsat-8 OLI scenes
were processed to build a composite map of IW packets to investigate their behaviour with changes
in sea surface temperature. Zhou et al. [11] built annual, seasonal and monthly distribution maps
of IWs in the Andaman Sea by combining MODIS Terra/Aqua optical and Sentinel-1 SAR images.
The SAR sensor was mainly used to fill the gaps in optical data during complex weather conditions.
Ning et al. [12] applied data acquired by Sentinel-1 SAR and Gaofen-3 SAR sensors in different periods
of time to extend the interval of IW observations in the Malacca Strait. The SAR images were analysed
manually to estimate the amplitude and group velocity of IWs. These parameters were linked to the
seabed topography in the Malacca Strait. Mitnik et al. [13] applied SAR images acquired by Envisat
ASAR, Sentinel-1 and ALOS PALSAR satellite sensors at various polarisations to study IWs and other
mesoscale dynamic features generated by the Oyashio current in the northwestern Pacific Ocean.
Satellite visible and infrared images were used to complement SAR data. Observations of IWs in
the Flores Sea, Indonesia were studied using the Himawari-8 geostationary satellite optical sensor,
in combination with MODIS optical sensor images and Sentinel-1 SAR images [14]. Our literature
review did not discover any previous studies of the distribution of IWs on the UKCS using satellite
data, but studies have been carried out in other parts of the world, where internal waves are frequently
observed [6,9,11,12,14].

The review of published literature shows that the study of the geographical distribution and other
characteristics of IWs can benefit from the joint processing of satellite data acquired by multiple sensors.
Satellite images of IWs were mainly processed manually to minimise detection errors, but this approach
also leads to large processing time that only increases with the application of different sensors. In this
paper, we attempt to solve this problem by implementing a fully automatic approach that eliminates
human errors and enables the processing of large volumes of satellite images. By applying statistical
techniques to estimate the geographical distribution of IWs, we reduced the impact of image noise
and detection errors. We approach the problem of IW detection in SAR images by considering it as an
edge detection task. The problem of edge detection has been extensively studied in the fields of image
processing and computer vision [15]. The Canny edge detection algorithm is one of the most successful,
providing good accuracy, efficiency and simplicity. We adopted this algorithm for the detection of
IW features in SAR data. Based on the Canny algorithm, we have developed a methodology for
automatic processing of ENVISAT advanced synthetic aperture radar (ASAR) sensor data and applied
this methodology to investigate internal waves on the UK continental shelf (UKCS) in 2006–2012.
For this time period, we produced maps of internal wave distribution and climatology. Through
this novel approach, we aim to realise the full value of existing and future satellite SAR datasets for
systematic observational studies of these important physical oceanographic features.

2. Study Region and Datasets

2.1. Study Region

The study was carried out for most of the UKCS, including Dogger Bank in the North
Sea, the extension of the UKCS region west of Rockall and parts of the Faroe-Shetland Channel.
The continental slope in these areas plays an important role in bringing nutrients to the region and
supporting a wide diversity of marine species [16,17]. The outline of the UKCS region used in this
study is shown in red in Figure 1, which also shows the bathymetry and seabed topographical features.
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blue text. 
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Figure 1. Map of the study region. The borders of the UK continental shelf (UKCS) are shown in
red solid lines. The bathymetry is taken from the General Bathymetric Chart of the Oceans (GEBCO)
dataset [18]. The sea depth is displayed in a dark-blue and yellow palette and with black contour lines
at intervals 25, 50, 100, 150, 200, 500, 1000, 2000 m. The seabed topographical features are shown in
blue text.

2.2. ENVISAT ASAR Data

IWs were detected on the UKCS by processing the archive of ASAR sensor data acquired
in 2006–2012 by the ENVISAT mission and accessed through the ESA EO Data Gateway Service
(https://eogrid.esrin.esa.int/). Data were acquired using both vertical (VV) and horizontal (HH)
co-polarisation. However, only VV polarisation data were applied to IW detection due to higher
sensitivity to variations in sea surface roughness [19].

The ASAR sensor can operate using one of five image acquisition modes, of which the wide swath
(WS) mode is most appropriate for IW detection in the UKCS as it achieves the best combination of
spatial resolution and coverage. In WS mode the sensor swath is 405 km and the spatial resolution
of each pixel is about 150 m × 150 m with a 50% overlap, so the pixel spacing is about 75 m × 75 m.
These characteristics are sufficient to acquire more than 1000 images of the UKCS each year and detect
most IW features in the area. We examined the total number of ASAR overpasses that were available
each month in the sample year 2009. The number of overpasses ranged from 51 in December to 109
in March (see Table 1). There are several reasons why the number of overpasses varied each month:
changes of sensor observation timetable and modes; sensor failures and degradation of data quality
for some overpasses. The average number of possible overpasses was determined by satellite orbit

https://eogrid.esrin.esa.int/
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and the latitude that affects sensor track spacing. The density of the Earth’s surface observations is
significantly greater for higher latitudes. For the ENVISAT ASAR sensor, the frequency of revisiting
the same location at latitude 60◦ with incidence angle >5◦ is six times per 35 days or every 5.8 days [20].

Table 1. Number of overpasses overlapping the entire region of interest in each month of 2009.

Month Number of Overpasses

January 83
February 78

March 109
April 69
May 85
June 70
July 64

August 85
September 83

October 79
November 52
December 51

The ENVISAT ASAR overpasses acquired in WS mode and overlapping with the UKCS in Figure 1
were downloaded and stored for further processing. The results of the preliminary analysis of selected
SAR scenes are shown in Figure 2, where the revisit time averaged over the years 2006–2012 was
plotted against the month number. It is seen in Figure 2 that a sufficient number of observations
is available in the UKCS: on average, any given location was observed every 6.5 days (5.4 times in
35 days) and the maximum interval between observations was 7.9 days in April. The climatology data
also show a slight variation in the number of available images in different months (maximum 16%
deviation from the mean).
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Figure 2. The average revisit time in days for the ENVISAT ASAR sensor within the UK continental
shelf as a function of a month. The estimate is based on ENVISAT scenes acquired in 2006–2012.

Figure 3 shows the spatial distribution of the revisit time values averaged over the years 2006–2012.
It can be seen that sensor data cover the entire UKCS area. The revisit time depends on the location,
varying from 20 days in the most distant parts to the west to 3.3 days in the north-east of the North Sea.
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Overall, this analysis demonstrates that the number of available ENVISAT ASAR sensor
measurements can be sufficient for the estimation of IW monthly, seasonal and annual frequency maps.

3. Methods

3.1. Data Processing Chain

The multistage and fully functional processing chain has been developed for automatic processing
of the archive of ENVISAT ASAR images. The processing chain is shown in the block diagram
in Figure 4 with the arrows indicating the data flow. The chain is implemented using the Python
programming language and uses the Sentinel Application Platform (SNAP), the ESA open-source
platform for Earth observation processing and analysis.

At the first data processing stage, the ASAR archive was scanned to select overpasses that
geographically overlap with the UKCS outlined in Figure 1. Each of the selected scenes was then
processed as follows. First, the image was cropped to include only a section that overlaps with the
UKCS. This helps to reduce the size of the processed image and minimise computational expenses.
The cropped image was then masked to exclude land from further processing. The land mask was
generated using the SRTM3 Shuttle Radar Topography Mission terrain elevation data, with 3 arc
seconds spatial resolution in good agreement with that of the ASAR images.

Each ENVISAT ASAR dataset consists of many millions of pixels, hence tiling is necessary.
We selected a tile size of 2000 × 2000 pixels. There may be three or more tiles along the swath,
depending on how much of the orbit intersects the UKCS.
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Figure 4. ENVISAT ASAR data processing chain. The original ASAR images are initially split into
tiles of smaller size to improve performance. The algorithm for IW detection is applied before image
mapping to geographical coordinates.

The next stage in the block diagram in Figure 4 was to extract the contours of IWs in the image,
then apply tests to discriminate true IW features from non-IW edges. This was applied to the original
level 1 ASAR data to avoid any loss of data due to image resampling and mapping. The intermediate
results of IW detection were saved in the PNG image format at native ASAR resolution. The results
of IW detection were applied at the next processing stage to produce the IW occurrence maps that
show the frequency of IW observation for different regions of the UKCS (Section 4). Any data outside
the UKCS were masked out and the images were mapped into the geographic Lat/Lon projection,
WGS 84 geographic datum. Maps with pixel size 10 × 10 arc minutes, or 19 km in latitude and 10 km
in longitude at UK latitudes, were generated and saved in PNG, GeoTIFF and NetCDF data format.
The stages in the processing chain are detailed in the following sections.

3.2. Automatic Detection of IWs

3.2.1. Implementing Canny Edge Detection

The Canny edge detection algorithm [15] consists of multiple stages: reducing noise using a
Gaussian filter, then calculating the image gradient magnitude and direction. The edges are thinned by
suppressing non-maximal gradients, then a final hysteresis stage retains weaker gradients only if they
are connected to stronger gradient pixels along the edge.

This classic algorithm has been extended with additional stages for the IW edge analysis. At the
first stage, the image background intensity level is estimated by applying a running window median
filter of round shape and 60 pixels in diameter to the ASAR image, which is shown in Figure 5a.
The filter outputs a smoothed image with removed ridge features and details, as illustrated in Figure 5b.

The smoothed image serves as the baseline for estimation of the image noise level and for the
selection of the upper and lower thresholds of the Canny edge detection algorithm. The noise level
is estimated by applying a multiplicative model where the noise level is proportional to the image
intensity [21]. The multiplicative nature of noise in ASAR images is known as the speckle phenomenon,
where the coherent combination of reflected signals with different phases and amplitudes produce
random fluctuations [22]. The variance of the speckle noise σ2

sp in ASAR image is defined by the
equivalent number of looks L and the average intensity I [23] as:

σ2
sp = I/L (1)

It follows from (1) that the intensity of speckle noise increases with image intensity, so the threshold
for Canny edge detection was selected accordingly to match these changes. The upper threshold TU
was calculated for every pixel location (r, c) as:
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TU(r, c) = CU·σsp(r, c) (2)

where CU is a constant that defines the sensitivity of the edge detection algorithm and its false alarm
rate. σsp(r, c) is the variance of speckle noise at location (r, c). A similar approach has been applied for
the selection of the lower threshold TL:

TL(r, c) = CL·σsp(r, c) (3)

The CU and CL constants in (2) and (3) were selected by processing test ASAR images and visual
assessment of detection results.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 22 
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after median filtering; (c) after Gaussian filtering with a filter standard deviation of 3; (d) detected
edges, with connected clusters of edges shown in different colours.

3.2.2. Algorithm Tuning

The algorithm for IW detection (Section 3.2.1) uses several parameters that affect its sensitivity
and the false alarm rate. To achieve better performance and improve the accuracy of detection results,
this algorithm has been additionally tuned using test ASAR images of IWs.
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The test data we used were the scene in Figure 5a (Celtic Sea, 13 July 2011) chosen to have as many
IWs as possible, and all scenes from 14 consecutive days during which no genuine IWs were observed
visually (1–14 July 2009). Images of the original data superimposed with detected edges were manually
inspected for errors, both false negative (where an IW-like edge was visible) and false positive (where
no IW-like edge was visible, or it was not part of a wave train). Images were displayed at each stage of
the algorithm, allowing us to see the effect of each stage. Before tuning, the default parameters were:
lower Canny threshold CL = 0.02; upper Canny threshold CU = 0.2; smoothing sigma σ = 3.

Based on previous experience of front detection, we tried upper Canny thresholds from 0.3 to
0.9 and a lower threshold of 0.1. The upper threshold of 0.5 detected some clear IW-like features not
detected by higher thresholds, whereas 0.3 detected more IWs but significantly increased the number
of false detections. We decided to err on the side of ensuring the detection of IWs with more false
positives and filter out the false positives at a later stage of processing (Section 3.2.3). Further reducing
the lower Canny threshold resulted in many more false positives with no apparent gain in IW detection.
We did not try changing the smoothing sigma, as the chosen value was considered to be reasonable.
Final parameters after tuning were: lower Canny threshold CL = 0.1; upper Canny threshold CU = 0.3;
smoothing sigma σ = 3. The resulting detected edges are shown in Figure 5c,d.

3.2.3. Filtering and Grouping of IWs

This proceeds in three distinct stages following Canny edge detection, as illustrated in Figure 6.
The overarching idea behind this process is to join edges that we consider to belong to the same IW
train and split edges at sharp discontinuities indicative either of a junction between two IWs or of a
non-IW feature. Once this is done, we can select just the features most clearly belonging to IW trains.
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Figure 6. Block diagram of ASAR satellite image processing and internal wave detection technique.
The processing chain is split into two parallel branches in which threshold selection and Sobel edge
detection are applied.

In the first stage, Canny-detected edges are divided into clusters of connected line segments
(Figure 5d), and clusters containing less than Nshort pixels are discarded. We have found that some
scenes contain many very short, isolated fragments that can slow down processing considerably while
contributing little or nothing to algorithm performance. The orientation of such fragments is difficult
to determine, so they are often associated wrongly with other segments in the third stage below. Line
segments are formed by ‘walking’ along edges, creating a break between segments if the line bends by
≥45◦ or we arrive at a previously encountered pixel. At triple points (junctions of three or more edges),
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the two most similarly oriented edges are considered part of the same segment unless they deviate by
≥45◦. Each segment is then simplified by representing it as a number of straight facets, with each facet
made as long as possible without deviating from the segment by more than 1 pixel. Facets within a
segment are then combined into geometric elements (straight sections and circular arcs, depending
on which best fits the segment data). Straight sections are drawn from end to end of the combined
data, while arcs are drawn between the two ends and an intermediate vertex. If the angle between two
adjacent elements is ≥45◦ the segment is split, and if an arc has a radius less than rmin, it is considered
as a discontinuity and the segment is split before and after the arc. Results presented use parameter
settings Nshort = 5 pixels and rmin = 5 pixels (about 375 m).

In the second stage, segments that are longer than Nshort pixels and either within the same cluster
or in a neighbouring cluster separated by less than dmax pixels are considered for grouping, which takes
place if the combination of two elements (one from each segment) into a single straight section or arc
results in a better overall fit. Straight sections are drawn from either end of one element to either end of
the other, while arcs use any three of the four ends. After connection, groups that are shorter than Nlong
pixels are discarded. The algorithm uses parameter settings dmax = 20 pixels and Nlong = 25 pixels.

In the third stage, parallel groups are connected. For each group A, all other groups B with facet
vertices within dseg pixels of any part of group A are found using a KD-tree algorithm [24], then for
each group B, the N pixels within dseg pixels of group A are considered. Their median distance dmed
and the number Nclose of distances within xmax·dmed of dmed are calculated. If Nclose is greater than Nmin
and Nclose/N is greater than pmin, groups A and B are connected. The purpose of this is to find pairs
of groups that have long sections separated by a consistent distance. The greater the separation of
the groups, the more consistent their distance must be. Groups are only considered to be IWs if they
are connected to at least one other group. Figure 7 shows the results of parallel groups identification.
The following parameters were used: dseg = 20 pixels, xmax = 15, Nmin = 25 and pmin = 0.5.

3.3. Distribution of IWs

The factors that adversely affect the accuracy of IW contour maps such as Figure 7 are speckle
noise in ASAR images, low contrast of IWs features and possibly false alarms at the output of the edge
detection algorithm. To reduce these errors and improve the accuracy of IW mapping, we adopted a
gridding approach based on combining the information in space and time. The satellite measurements
were mapped into an evenly spaced grid of lower resolution and averaged over a time interval.

At the output of the detection algorithm, described in detail in Section 3.2, the contours of IWs
were produced in vector format. To combine vector data spatially or in time, the contours were
transformed into a raster format as follows. For each radar image, a raster image of exactly the same
size was created filled with zero values, then IW contours (see Figure 7) were plotted on this image by
using Bresenham’s line drawing algorithm, filling the grid with non-zero values in the locations where
IWs were detected. These raster images were then composited in space and time to produce monthly,
annual and seasonal composite maps of the distribution of IW occurrence. For this study, we adopted
a spatial resolution of 10 × 10 arc minutes, or about 9 × 18 km at 60◦N.

These maps show how frequently IWs were found in radar images. For each grid cell in the map,
the frequency of IW occurrence was estimated as the ratio of detected IW pixels to the total number of
radar image pixels. The frequency values were calculated for multiple radar images and then averaged
in space and time as:

Fi, j =


K∑

k=1

∑
x∈Xi

∑
y∈Y j

wx,y

/(K·N), 0 ≤ i < I, 0 ≤ j < J (4)

where k is the ASAR image index and K is the total number of composed images. i and j are row
and column numbers of a grid element in the IW distribution map, and I,J are the total numbers of
grid elements. (x,y) are the coordinates of a pixel in the ASAR image and Xi,Yj is the subset of all
ASAR pixels contained in grid element (i,j). The total number of pixels in the subset is denoted by N.
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The value of wx,y is set to one if the IW was detected in the ASAR image pixel with coordinates (x,y),
otherwise, it is set to zero.
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The total number of ASAR images combined in Equation (4) is different for monthly, annual and
seasonal IW distribution maps. For a one-month time interval, the average number of images is K ≈ 6
(Figure 2). The number of ASAR image pixels contained in each grid element of the IW distribution
map depends on the map resolution and coordinates. With the 10 × 10 arc minute resolution adopted
here, each grid cell covers around 250 × 130 ≈ 33,000 pixels. Hence, on average, ∼200,000 ASAR pixels
can be composed to estimate the frequency parameter Fi, j using Equation (4) for each grid element of a
monthly IW distribution map. This makes the Fi, j estimate more resistant to the false alarms generated
by the IW detection technique, described in Section 3.2.

4. Results and Discussion

4.1. Distribution of IWs

The distribution of IWs in the UKCS was evaluated at different time scales and intervals. Monthly
maps of IW occurrence were generated for each month in the years 2006–2012. The monthly maps
provide the best time resolution, appropriate for observing ongoing changes in IW distribution.
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However, the number of sensor measurements averaged over one month is relatively small
(see Section 2.2) and this affects the accuracy of the IW occurrence maps. Selected examples of
monthly IW occurrence maps are shown in Figure 8. The frequency of IW in the maps is presented
using a colour palette in the range from 0 (white) to 0.005 (dark red). Masked areas are shown in
grey. As can be expected, a higher frequency of IW occurrence is observed along seabed topographic
features, such as shelf breaks, ridges and troughs (see Figure 1). Figure 8a–d show proliferation of IWs
observed at Dogger Bank in April 2007, the Wyville-Thomson Ridge in June 2008, at the edge of the
continental shelf to the east of Rosemary Bank in January 2010 and in the Faroe-Shetland Channel in
June 2011, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 22 
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Figure 8. Selected monthly maps of internal wave occurrence. The frequency of internal wave
occurrence is shown with a white and red palette and ranges from 0 to 0.005. The maps demonstrate
high seasonal variability of IWs: (a) IWs at Dogger Bank and Faroe-Shetland Channel in April 2007;
(b) IWs at Wyville-Thompson Ridge in June 2008; (c) IWs at Wyville-Thompson Ridge and Celtic Shelf
in January 2010; (d) IWs at Faroe-Shetland Channel in June 2006.
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Figure 9 shows the IW occurrence map calculated using all data available over the period
of ENVISAT ASAR observations from 2006 to 2012. The map indicates the importance of the
Hatton-Rockall Basin and Wyville-Thomson Ridge in the generation of IWs. The comparison of annual
maps with monthly data (Figure 8) also shows high interannual and seasonal variability of IWs in
the UKCS.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 22 
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Figure 9. Internal wave occurrence map of the UK continental shelf for the years 2006–2012, derived
automatically from SAR data. The blue labels show regions with high occurrence if IW, identified by
visual inspection of occurrence maps (see Section 4.2 for details). The occurrence frequency is shown
using gradations of white and red.

Annual composite maps of IW occurrence are presented in Figure 10 for the years 2006–2012. It is
seen from these maps that over the whole year, IWs are mostly present in the Hatton-Rockall Basin
and Hatton Bank. The most significant years in terms of IW activity were 2006, 2010 and 2011.

Monthly climatology maps of IW occurrence are presented in Figure 11. The maps were generated
by combining the same month over the years 2006 to 2012. These show that a higher intensity of IWs
is observed in the spring and summer periods. These observations agree with the seasons when the
UKCS waters are more stratified [25].

IWs can travel hundreds of km from their source, so IW occurrence is not expected to be directly
related to bathymetry, but it is of interest to see whether IWs are detected more often at certain depths.
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Figure 12 shows a bar chart of the mean IW occurrence as a function of bottom depth, binned at 20 m
intervals. This indicates that IW occurrence shows no depth trend between about 900 m and 2500 m,
increasing markedly from 900 m to shore and from 2750 m to the deepest waters in the UKCS at 3160 m.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 22 
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4.2. Evaluation Results

We visually inspected all monthly IW occurrence maps to identify patterns of IW occurrence
(see Supplementary Material to access the maps). IW-like features are detected consistently throughout
the year very close to the coast, though many of these near-coast detections are likely to be false positives
due to the interaction of surface waves with the coastal bathymetry. Further from the coast, we can
be more confident in our results. There follows a list of the most prominent non-coastal IW detection
features seen in Figures 9–11 in the UKCS, from west to east. The features are denoted with letters and
their locations are shown in red in Figure 9. Selected features are shown in closeup in Figure 13.
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Figure 13. Closeup maps of monthly climatological internal waves occurrence from Figure 11.
Blue labels show locations of: (a) A, B and C features in the Iceland Basin and Hatton-Rockall Basin;
(b) D feature in Hatton-Rockall Basin; (c) E feature at Wyville-Thompson Ridge; (d) F feature west of
the Outer Hebrides. Occurrence frequency values < 0.0001 have been omitted from the map for clarity.
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• A (see Figure 13a): A very strong, localised feature is visible close to the westernmost extremity of
the UKCS in the Iceland Basin, centred on about 58◦ 30′N, 22◦ 30′W in waters around 3000 m
deep, around 150 km from the nearest bathymetric feature, Hatton Bank, which at its shallowest is
around 500 m deep. This feature appears mainly in 2006, 2010 and weakly in 2009, most strongly
in March and October, slightly further south in September and in a more dispersed form in June.

• B (see Figure 13a): Separated from feature A to the east is a generally more dispersed feature that
runs along the western edge of Hatton Bank between the southern edge of the UKCS at about
57◦N, 22◦W and about 59◦N, 20◦W, appearing in 2006 and 2010 and in the same months except in
September. This suggests that the features are related, e.g., non-horizontally-propagating IWs
may be generated at the edge of Hatton Bank and propagate down to the seafloor and back up to
the Icelandic Basin.

• C (see Figure 13a): A small, distinct feature is visible on the southern edge of Hatton Bank at the
edge of the UKCS at about 57◦N, 19◦W, appearing strongly in October 2006, with weaker features
dispersed northwards from this feature along the southern edge of Hatton Bank to about 59◦N,
15◦W, appearing strongly in January 2009.

• D (see Figure 13b): A weak, dispersed feature is visible at the western edge of the Rockall Bank at
about 57◦N, 15◦ 30′W, appearing strongly in July 2011.

• E (see Figure 13c): A strong, localised feature is visible at the southern edge of the Faroe Bank at
the edge of the UKCS at about 60◦N, 9◦W, appearing mostly in 2009–2010 from April–August.

• F (see Figure 13d): A weak linear feature runs N-S on the Hebridean Shelf west of the Outer
Hebrides from 56 to 58◦N, 8◦W, at about 100 m depth, appearing mostly in 2009 and 2011,
most strongly in May and July, also in August–September.

• G: A weak linear feature runs E-W on the Celtic Shelf at 50◦N from Jones Bank at the edge of the
UKCS at about 8◦W to Land’s End at 6◦W, at about 100 m depth, appearing in 2007, 2009 and 2011
in March–April and July–September.

• H: A stronger linear feature runs north of the Bristol Channel from about 51◦N, 7◦W to the
southwestern tip of Wales at 51◦30′N, 6◦W, at 50 to 120 m depth, appearing strongly with distinct
linearity in August 2007.

• I: A small, distinct feature is visible off the Lizard peninsula in Cornwall at 50◦N, 5◦W, at 80 to
90 m depth, appearing strongly in March 2012.

• J: A small feature is visible off the north coast of Scotland at about 58◦N, 4◦W, at 60 to 90 m depth,
appearing in 2009–2011, most strongly in July and December.

• K: A broad region of indistinct features is visible in and on the southeast edge of the Faroe-Shetland
Channel, northwest of a line between 59◦N, 5◦W and the edge of the UKCS at 62◦N, 2◦E, appearing
in variable locations in 2007–2012, mostly in May–July and strong features in the middle of the
Channel in February 2007 and in the north in June–July 2011.

• L: Another broad feature extends from the northeast tip of Scotland at 58◦30′N, 3◦W to the
northeast, passing southeast of Shetland and across Viking Bank to the edge of the UKCS at
61◦30′N, 2◦E, close to the Norwegian Trough, at 50 to 180 m depth, appearing mainly in 2011–12
but also in 2008–2010, very distinctly in September, less so in May-August and faintly through
most of the year.

• M: A strong, highly distinct feature visible in a fixed location west of Shetland at 60◦N, 2◦W,
appearing equally in all years and months and probably an artefact relating to the island of Foula.

• N: A broad, weak feature is visible east of Scotland centered on 57◦30′N, 1◦W, at 60 to 120 m
depth, appearing in 2007–2009 and 2011, most strongly in September but also from May–August.

• O: A broad feature is visible extending from the Northumberland coast at 55◦30′N, 1◦30′W to 56◦N,
30′W at 50 to 90 m depth, appearing from 2007–2012 in March, May–July and September–October.

• P: A small but strong feature is visible off the south Kent coast at 50◦30′N, 1◦E at about 30 m depth,
appearing in 2010–2011 in March, July–August and October.



Remote Sens. 2020, 12, 2476 18 of 21

• Q: A very strong feature, visible in a fixed location in the Thames estuary centered on 51◦30′N,
2◦E at 10 to 20 m depth and appearing throughout the year is probably an artefact due to
artificial structures.

• R: A broad, weak feature is visible east of the Humber centred on 53◦30′N, 2◦E at 15 to 30 m
depth, appearing in most years and months but most strongly in 2006 and 2010–2011 and in April.
At this depth, and with this consistency of appearance, it is possible that the feature is due to
seabed effects on surface waves.

• S: A broad feature is visible over Dogger Bank at 54◦30′N, 2◦E at 15 to 25 m depth, appearing
in all years and most months, most strongly from March to July. At this depth, and with this
consistency of appearance, it is possible that the feature is due to seabed effects on surface waves.

The features identified at the UK continental shelf using IW occurrence maps were compared
to observations presented in other studies. The Atlas of Internal Solitary-like Waves [26] indicates
IW activity in the Faroe-Shetland Channel and at Rockall Bank and the north and west coasts of
Scotland. These locations are in good agreement with features K, D and J, respectively in Figure 9.
The spatial resolution of IW occurrence maps in the atlas is at least 10 times lower than the resolution
of the maps generated in this study and many features observed here were missing in the atlas.
More detailed information was provided through in situ measurements and modelling experiments
carried out in [27–31]. Three main areas were identified in the literature as IW hotspots: the Malin
Shelf, the Wyville-Thomson Ridge and Jones Bank in the Celtic Shelf.

Detailed studies of IWs at the Malin Shelf were carried out by Small et al. in [27] using acoustic
measurements and SAR data. It was shown that in summer IWs are a common feature in this region.
These observations also match with the IW hotspot F in this region in Figure 13d. This feature can also
be clearly seen in the climatology maps in July and August (Figure 11g,h). Vlasenko et al. [28] carried
out numerical modelling of IW at the Malin Shelf and provided further insight into the behaviour of
IWs in this region. This study describes two wave processes developing in this area: a tidal beam
generated at the shelf break and the bottom trapped internal waves generated by the tidal flow over
local seabed features.

Another IW hotspot studied in the literature is the Wyville-Thomson Ridge. The numerical
simulation results performed by Hall et al. [29] indicated the presence of internal tides in this region.
Vlasenko et al. [30] carried out a detailed analysis of water circulation at the ridge that demonstrated
favourable conditions for IWs.

Internal waves in the Celtic Sea have been studied in situ and with numerical modelling. Vlasenko
et al. [31] carried out numerical modelling of the interaction of stratified tidal flows with the seabed at
Jones Bank and found that tidal currents can generate two types of IWs. Palmer et al. [32] carried out
in situ observations at Jones Bank and revealed IWs of up to 40 metres in amplitude occurring during
spring periods. Feature G in Figure 9 shows a high occurrence of IWs around Jones Bank.

5. Conclusions

In this work, a methodology has been developed for processing satellite SAR sensor data to map
internal waves in the UK Continental Shelf. We have made significant advances on previous approaches
by implementing automated detection of the IW features. This has the advantage of speeding up the
analysis, enabling thousands of SAR images to be processed rather than tens. It also avoids the tedious
and subjective manual/visual detection of IW packets, a critical factor in the generation of an accurate
and comprehensive distribution map.

We provide the first detailed and systematic distribution maps of IW occurrence across the UKCS
by processing a 7-year time series of ENVISAT ASAR sensor data, acquired by the European Space
Agency. Overall, the IW occurrence maps demonstrate good agreement with previous findings and
with prominent non-coastal seabed topographic features. The comparison of annual and monthly IW
maps reveals high interannual and seasonal variability of IWs in the UKCS.
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Features revealed by this work could be investigated further by construction of time series of IW
occurrence in a region of interest, followed by manual examination of the scenes contributing to each
feature to check for artefacts due to meteorological events (e.g., convective storms or atmospheric
gravity waves), or consistent features indicative of a permanent structure in the water. As structures
such as wind farms or oil platforms are placed in or removed from UKCS waters, time series analysis
may also reveal the effect of these structures on IW occurrence.

Future work will address adapting the methodology to exploit SAR datasets produced by other
sensors. For example, ESA’s Sentinel-1A and 1B paired sensors would offer an improvement in revisit
time, spatial resolution and continuity of IW observations. The advance we have demonstrated in this
automated and robust algorithm should be widely applicable to studies of the distribution and impact
of internal waves in other regions around the world.

Supplementary Materials: The following is available online at http://www.mdpi.com/2072-4292/12/15/2476/s1,
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archived at the Centre for Environmental Data Analysis (CEDA), with discovery metadata lodged with the
Marine Environmental Data and Information Network (MEDIN). Users can download the archive files from:
doi:10.5285/d920cb54fe694711b59379f2b1b1f569.

Author Contributions: Conceptualization, A.A.K., P.I.M. and P.E.L.; methodology, A.A.K. and P.E.L.; software,
A.A.K., P.I.M. and P.E.L.; formal analysis, A.A.K., P.E.L.; investigation, A.A.K., P.I.M. and P.E.L.; resources, A.A.K.
and P.I.M.; writing—original draft preparation, A.A.K.; writing—review and editing, A.A.K., P.I.M. and P.E.L.;
visualization, A.A.K. and P.E.L.; supervision, A.A.K.; project administration, A.A.K.; funding acquisition, P.I.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the UK Department for Business Energy and Industrial Strategy’s (BEIS)
Offshore Energy Strategic Environmental Assessment programme (Contract number: OESEA-17-73). Archiving
and storage capability for ENVISAT ASAR sensor data was funded through the NERC Earth Observation
Data Acquisition and Analysis Service (NEODAAS) and the NERC Climate Linked Atlantic Sector Science
(CLASS) project.

Acknowledgments: The authors would like to thank John Hartley as the Director of Hartley Anderson Limited
for organising the financial support of this work. We are also thankful to Vasyl Vlasenko from the School of
Biological and Marine Sciences, University of Plymouth, for his valuable consulting support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rodenas, J.A.; Garello, R. Wavelet analysis in SAR ocean image profiles for internal wave detection and
wavelength estimation. IEEE Trans. Geosci. Remote Sens. 1997, 35, 933–945. [CrossRef]

2. Changbao, Z.; Jingsong, Y.; Weigen, H.; Bin, F.; Aigin, S.; Donglin, L. Satellite SAR Remote Sensing of Ocean
Internal Waves. In Proceedings of the 20th Asian Conference on Remote Sensing (ACRS), Hong Kong
Convention and Exhibition Centre, Hong Kong, China, 22–25 November 1999; p. 5.

3. Rodenas, J.; Garello, R. Internal wave detection and location in SAR images using wavelet transform.
IEEE Trans. Geosci. Remote Sens. 1998, 36, 1494–1507. [CrossRef]

4. Simonin, D.; Tatnall, A.R.; Robinson, I.S. The automated detection and recognition of internal waves. Int. J.
Remote Sens. 2009, 30, 4581–4598. [CrossRef]

5. Bao, S.; Meng, J.; Sun, L.; Liu, Y. Detection of ocean internal waves based on Faster R-{CNN} in SAR images.
J. Oceanol. Limnol. 2020, 38, 55–63. [CrossRef]

6. Dokken, S.T.; Olsen, R.; Wahl, T.; Tantillo, M.V. Identification and characterization of internal waves in SAR
images along the coast of Norway. Geophys. Res. Lett. 2001, 28, 2803–2806. [CrossRef]

7. Zhao, Z.; Klemas, V.; Zheng, Q.; Yan, X.H. Remote sensing evidence for baroclinic tide origin of internal
solitary waves in the northeastern South China Sea. Geophys. Res. Lett. 2004, 31. [CrossRef]

8. Lorenzzetti, J.A.; Dias, F.G. Internal Solitary Waves in the Brazilian SE Continental Shelf: Observations by
Synthetic Aperture Radar. Int. J. Oceanogr. 2013, 2013, 403259. [CrossRef]

9. Kozlov, I.E.; Kudryavtsev, V.N.; Zubkova, E.V.; Zimin, A.V.; Chapron, B. Characteristics of short-period
internal waves in the Kara Sea inferred from satellite SAR data. Izv. Atmos. Ocean. Phys. 2015, 51, 1073–1087.
[CrossRef]

http://www.mdpi.com/2072-4292/12/15/2476/s1
https://catalogue.ceda.ac.uk/uuid/d920cb54fe694711b59379f2b1b1f569
https://catalogue.ceda.ac.uk/uuid/d920cb54fe694711b59379f2b1b1f569
http://dx.doi.org/10.1109/36.602535
http://dx.doi.org/10.1109/36.718853
http://dx.doi.org/10.1080/01431160802621218
http://dx.doi.org/10.1007/s00343-019-9028-6
http://dx.doi.org/10.1029/2000GL012730
http://dx.doi.org/10.1029/2003GL019077
http://dx.doi.org/10.1155/2013/403259
http://dx.doi.org/10.1134/S0001433815090121


Remote Sens. 2020, 12, 2476 20 of 21

10. Lavrova, O.; Kostianoy, A. Spatio-temporal variability of internal waves in the Caspian Sea, European
Geosciences Union EGU 2020. Available online: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-
10011.html (accessed on 8 June 2020).

11. Zhou, L.; Yang, J.; Wang, J.; He, S.; He, Z.; Liu, A.K.; Hsu, M.-K. Spatio-temporal distribution of internal
waves in the Andaman Sea based on satellite remote sensing. In Proceedings of the 2016 9th International
Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong,
China, 15–17 October 2016; IEEE: Piscataway, NJ, USA, 2016. [CrossRef]

12. Ning, J.; Sun, L.; Cui, H.; Lu, K.; Wang, J. Study on characteristics of internal solitary waves in the Malacca
Strait based on Sentinel-1 and GF-3 satellite SAR data. Acta Oceanol. Sin. 2020, 39, 15–156. [CrossRef]

13. Mitnik, L.M.; Khazanova, E.S.; Dubina, V.A. Mesoscale and synoptic scale dynamic phenomena in the
Oyashio current region observed in SAR imagery. Int. J. Remote Sens. 2019, 41, 5861–5883. [CrossRef]

14. Gede, I.G.; Chonnaniyah, K.A.; Osawa, T. Internal solitary wave observations in the Flores Sea using the
Himawari-8 geostationary satellite. Int. J. Remote Sens. 2019, 41, 5726–5742. [CrossRef]

15. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8,
679–698. [CrossRef] [PubMed]

16. Narayanaswamy, B.E.; Bett, B.J.; Hughes, D.J. Deep-water macrofaunal diversity in the Faroe-Shetland region
(NE Atlantic): A margin subject to an unusual thermal regime. Mar. Ecol. 2010, 31, 237–246. [CrossRef]

17. Watson, R.; Albon, S.; Aspinall, R.; Austen, M.; Bardgett, B.; Bateman, I.; Berry, P.; Bird, W.; Bradbury, R.;
Brown, C. UK National Ecosystem Assessment: Technical Report; United Nations Environment Programme
World Conservation Monitoring Centre: Cambridge, UK, 2011.

18. GEBCO Bathymetric Compilation Group. The GEBCO_2020 Grid—A Continuous Terrain Model of the Global
Oceans and Land; British Oceanographic Data Centre; National Oceanography Centre; NERC: Liverpool, UK,
2020. [CrossRef]

19. Ward, K.D.; Tough, R.J.A.; Watts, S. Sea clutter: Scattering, the K distribution and radar performance.
Waves Random Complex Media 2007, 17, 233–234. [CrossRef]

20. European Space Agency. ASAR Product Handbook, ESA 2007, Issue 2.2. Available online: http://envisat.esa.
int/handbooks/asar/CNTR.html (accessed on 8 June 2020).

21. Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing Active and Passive-Volume II: Radar Remote
Sensing and Surface Scattering and Emission Theory; Addison-Wesley: Boston, MA, USA, 1982; 628p,
ISBN-13: 978-0890061916.

22. Kulemin, G.P. Millimeter-Wave Radar Targets and Clutter; Artech House: Boston, MA, USA, 2003; 344p,
ISBN-13: 978-1580535403.

23. Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Raleigh, NC, USA,
2004; 510p, ISBN-13: 978-1891121319.

24. Goodman, J.E.; O’Rourke, J. Chapter 43: Nearest neighbours in high-dimensional spaces. In Handbook of
Discrete and Computational Geometry, 3rd ed.; Goodman, J.E., O’Rourke, J., Csaba, D.T., Eds.; CRC Press LLC:
Boca Raton, FL, USA, 2017; pp. 1135–1155, ISBN-13: 978-1584883012.

25. Elliott, A.J.; Clarke, T. Seasonal stratification in the northwest European shelf seas. Cont. Shelf Res. 1991, 11,
467–492. [CrossRef]

26. Jackson, C.R. Northeast Atlantic. In An Atlas of Internal Solitary-like Waves and Their Properties, 2nd ed.; Global
Ocean Associates: Alexandria, VA, USA, 2004; pp. 121–150. Available online: http://www.internalwaveatlas.
com/Atlas2_index.html (accessed on 23 July 2020).

27. Small, J.; Hallock, Z.; Pavey, G.; Scott, J. Observations of large amplitude internal waves at the Malin Shelf
edge during SESAME 1995. Cont. Shelf Res. 1999, 19, 1389–1436. [CrossRef]

28. Stashchuk, N.; Vlasenko, V. Bottom trapped internal waves over the Malin Sea continental slope. Deep Sea
Res. Part I Oceanogr. Res. Pap. 2017, 119, 68–80. [CrossRef]

29. Hall, R.A.; Huthnance, J.M.; Williams, R.G. Internal tides, nonlinear internal wave trains, and mixing in the
Faroe-Shetland Channel. J. Geophys. Res. 2011, 116, 1–15. [CrossRef]

30. Vlasenko, V.; Stashchuk, N. Tidally Induced Overflow of the Faroese Channels Bottom Water Over the
Wyville Thomson Ridge. J. Geophys. Res. Oceans 2018, 123, 6753–6765. [CrossRef]

https://meetingorganizer.copernicus.org/EGU2020/EGU2020-10011.html
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-10011.html
http://dx.doi.org/10.1109/cisp-bmei.2016.7852785
http://dx.doi.org/10.1007/s13131-020-1604-2
http://dx.doi.org/10.1080/01431161.2019.1701215
http://dx.doi.org/10.1080/01431161.2019.1693079
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://www.ncbi.nlm.nih.gov/pubmed/21869365
http://dx.doi.org/10.1111/j.1439-0485.2010.00360.x
http://dx.doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
http://dx.doi.org/10.1080/17455030601097927
http://envisat.esa.int/handbooks/asar/CNTR.html
http://envisat.esa.int/handbooks/asar/CNTR.html
http://dx.doi.org/10.1016/0278-4343(91)90054-A
http://www.internalwaveatlas.com/Atlas2_index.html
http://www.internalwaveatlas.com/Atlas2_index.html
http://dx.doi.org/10.1016/S0278-4343(99)00023-0
http://dx.doi.org/10.1016/j.dsr.2016.11.007
http://dx.doi.org/10.1029/2010JC006213
http://dx.doi.org/10.1029/2018JC014365


Remote Sens. 2020, 12, 2476 21 of 21

31. Vlasenko, V.; Stashchuk, N.; Palmer, M.R.; Inall, M.R. Generation of baroclinic tides over an isolated
underwater bank. J. Geophys. Res. Oceans 2013, 118, 4395–4408. [CrossRef]

32. Palmer, M.R.; Inall, M.E.; Sharples, J. The physical oceanography of Jones Bank: A mixing hotspot in the
Celtic Sea. Prog. Oceanogr. 2013, 117, 9–24. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/jgrc.20304
http://dx.doi.org/10.1016/j.pocean.2013.06.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Region and Datasets 
	Study Region 
	ENVISAT ASAR Data 

	Methods 
	Data Processing Chain 
	Automatic Detection of IWs 
	Implementing Canny Edge Detection 
	Algorithm Tuning 
	Filtering and Grouping of IWs 

	Distribution of IWs 

	Results and Discussion 
	Distribution of IWs 
	Evaluation Results 

	Conclusions 
	References

