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Modeling the Seasonality and Controls of Nitrous Oxide
Emissions on the Northwest European
Continental Shelf
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Abstract Estimates of oceanic emissions of nitrous oxide (N,0) are surrounded by a considerable degree
of uncertainty, particularly regarding the contribution of productive shelf regions, where assessments are
based on limited observations. In this paper, we have applied a coupled hydrodynamic-biogeochemical
model resolving N,O dynamics to estimate N,O emissions within the northwest European continental shelf.
Based on 10-year average distributions (2006-2015), dominant seasonal patterns of N,O air-sea exchange
were identified. Within the southwest region of the shelf and deep parts of the North Sea, emissions are
highest during winter. Peak emissions during late autumn are typical for the northwest part of the shelf and
central North Sea, while in the western English Channel, Irish Sea and western North Sea peak outflux shifts
toward early autumn. Within these regions, most N,O production occurs below the seasonal pycnocline,
and duration and intensity of stratification defines the timing and rate of its subsequent release to the
atmosphere. In contrast, within the southeast North Sea and most of the coastal areas, lack of stratification
allows the excess N,O to outgas as soon as it is produced, driven by ammonium availability, resulting in peak
emissions in summer. We estimate that N,O emissions from the northwest European shelf contribute
0.02224 Tg N to the atmosphere annually, that is, between 3.3-6.8% of total emissions from European shelves
and estuaries.

1. Introduction

Nitrous oxide (N,O) is the third most important long-lived greenhouse gas contributing ~6% of the direct
anthropogenic radiative forcing, preceded by carbon dioxide and methane which contribute ~76% and
~16%, respectively (IPCC, 2013). With a global warming potential about 300 times higher than that of carbon
dioxide, N,O plays a significant role in the greenhouse effect (Myhre et al., 2013). N,O also contributes to the
destruction of stratospheric ozone (Andreae & Crutzen, 1997; Nevison & Holland, 1997), its emissions cur-
rently having the largest ozone depletion potential of all ozone depleting substances (Carpenter et al., 2014;
Ravishankara et al., 2009).

The main pathways for natural N,O emissions to the atmosphere are production during microbially
mediated nitrification and denitrification processes within soils and in the ocean. During nitrification,
N,O is produced as a by-product of ammonium oxidation to hydroxylamine, or via nitrite reduction,
with enhanced yield at oxygen-limited conditions (Capone, 1991; Goreau et al., 1980; Loscher et al., 2012).
N,O is also an intermediate product of denitrification, leading to either net production or net consump-
tion flux depending on oxygen conditions (Bianchi et al, 2012; Cohen & Gordon, 1978; Nevison
et al., 2003).

The ocean is an important source of N,O to the atmosphere. According to the Fifth Assessment Report of
Intergovernmental Panel on Climate Change, in 2006 mean total emissions of N,O to the atmosphere from
all natural and anthropogenic sources combined were 17.9 Tg N yr™*, of which oceans contributed 21.2% (3.8
Tg Nyr~ "), while 3.4% (0.6 Tg N yr~ ") originated from coastal areas including estuaries and rivers. However,
these estimates are surrounded by a considerable degree of uncertainty with ranges of global, oceanic, and
coastal emissions between 8.1-30.7, 1.8-9.4 and 0.1-2.9 Tg N yr™*, respectively (Ciais et al., 2013). Bange
et al. (1996) suggested that coastal and upwelling regions which are known for high N,O production were
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poorly represented in previous budgets and provided a revised estimate for global oceanic production rate of
4.5-7.64 Tg N yr ",

Our current ability for more accurate estimates of N,O distributions and emissions is hindered by the lack of
comprehensive, quality-controlled observations able to describe the spatial and temporal variability, espe-
cially within dynamic marginal seas and coastal areas. International intercomparison exercises, such as
the one conducted by Wilson et al. (2018) will assure consistent quality control of N,O measurements,
and together with other recent international initiatives, such as the MarinE MethanE and NiTrous Oxide
database (MEMENTO) (Bange et al., 2009; Kock & Bange, 2015) and the proposed N,O Observation
Network for harmonized measurements from various platforms (Bange et al., 2019) will contribute toward
improved quality and spatiotemporal coverage of measurement data, essential for the reduction of uncer-
tainties in global and regional estimates of emissions and their variability, as well as further development
and validation of numerical models of N,O.

Coupled hydrodynamic-biogeochemical models integrate our current understanding of ocean functioning,
enabling the analysis, interpretation, and upscaling of available observational data, as well as predicting
the response of N,O to natural and anthropogenic stressors and changing climate. Recent modeling efforts
largely focused on assessing mechanisms of N,O production and projection of emissions at a global scale (Ji
et al., 2018; Martinez-Rey et al., 2015; Suntharalingam et al., 2000; Suntharalingam & Sarmiento, 2000;
Zamora & Oschlies, 2014). However, global models currently poorly represent coastal and shelf seas despite
their disproportionally large role in biogeochemical cycling (Holt et al., 2017). To reduce the current uncer-
tainties related to N,O dynamics within coastal regions and their contribution to global emission rates,
regional models with higher resolution of local hydrography and a detailed description of biogeochemistry
are needed. These models can provide information highly relevant for the support of regional marine envir-
onmental policy development and management (Hyder et al., 2015). Furthermore, regional models allow the
analysis of drivers controlling spatiotemporal distributions and sea-to-air fluxes of N,O within shelf sea
regions and therefore can help in the interpretation of existing data sets and inform the design of observa-
tional efforts to further improve understanding of N,O processes and its emission estimates. To this end,
we have applied a complex biogeochemical-ecological model resolving N,O dynamics on the northwest
European continental shelf, with the aim to (a) identify dominant seasonal patterns of N,O air-sea flux
and the drivers underpinning its variability, and (b) quantify the “present-day” contribution of the northwest
European shelf as a source of N,O to the atmosphere.

2. Materials and Methods
2.1. Model Description and Setup

For the purpose of our study we use the 3-D coupled hydrodynamic-biogeochemical modeling system
NEMO-FABM-ERSEM configured on the Atlantic Meridional Margin (AMM?7) domain, which is based on
an update of Edwards et al. (2012). The geographical domain extends from 20°W to 13°E and 40°N to
65°N (Figure 1), and has a horizontal resolution of 1/15° in latitudinal and 1/9° in longitudinal direction,
corresponding to ~7 km. Vertically, the model resolution was improved to 50 o-z layers, from the original
32, and has a minimum bathymetry of 10 m. In areas of steep bathymetry change the total number of layers
is decreased to reduce spurious vertical transport.

Atmospheric forcing is provided by the ERA-interim reanalysis of the European Centre for Medium-Range
Weather Forecasts (Dee et al., 2011), while physical oceanic boundary conditions are taken from GLORYS
reanalysis (Ferry et al., 2012). The model is initialized on 1 January 2000 with the physical and biogeochem-
ical states from a previous long-term hindcast simulation and a homogeneous concentration of N,O of
10.75 nmol L™, based on typical observational values for the study area. This combination of initial condi-
tions allowed for a short 6-year spin-up period (2000-2005), with the last 10 years (2006-2015) used for the
assessment of N,O dynamics.

Formulation and parameterization of the biogeochemical-ecological model ERSEM follows that of
Butenschon et al. (2016), extended with the processes of N,O production and air-sea exchange described
below, implemented within FABM—Framework for Aquatic Biogeochemical Models (Bruggeman &
Bolding, 2014).
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Figure 1. Map of the model domain. Black contour line outlines the northwest European continental shelf area (part of
the modeled domain delineated with 200 m isobath, as well as Norwegian trench). Shaded area defines the extent of the
on -shelf part of the UK Exclusive Economic Zone (EEZ). Red box delimits the mapped area shown on Figure 2,
where measurements of N,O were taken within the UK Shelf Sea biogeochemistry program (cruises DY018, DY029,
and DY033).

In oxygenated waters N,O is mainly produced as a by-product during the process of nitrification (Freing
et al., 2012). Hence, the pelagic production of N;O (N;Opro4, Nmol N L! day’l) was parameterized as pro-
portional to total nitrification flux, assuming enhancement under low oxygen conditions:

Nzoprod:a Fhit Enh7 (1)

where « is the N,O yield constant, Fp; is the total nitrification flux (umol N L™" day™"), and Enh is a factor
enhancing N,O production at low-oxygen conditions, parameterized as

2

ox’+h
Enh=min (Emax, O + Aox ) ,

ox?

where Ej.x is the maximum value of enhancement, Ox is the oxygen concentration (umol O, L™ and hgy
is a constant. The value of E,,, of 20 was chosen following Codispoti (2010), while h,. of 2,700
(umol L™%)* was applied.

Nitrification flux F; is modeled implicitly as a first-order process dependent on availability of ammonium
(Amm) and modified by temperature, oxygen and pH:

Fri=rnief (T)f (Ox)f (pH)Amm (3)

Maximum ammonium mass-specific nitrification rate r,; of 0.5 day_1 was applied. The value is rather
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close to the mean specific nitrification rate of 0.55 day™* reported by Yool et al. (2007) based on a wide
range of measurements dominated by data from the northeast region of Atlantic Ocean.

Temperature dependency of nitrification is modeled following Blackford et al. (2004):

r-10 =32

f(T):QloT —Qp 3 4)
where T is water temperature in degrees Celsius and Q is a coefficient of 2.0.

Dependency of nitrification on oxygen is parameterized as

ox?
Ox)— 2> 5
fO=g5 ®)

Finally, limitation of nitrification by pH is accounted for as
f(pH)=min(2, max(0,0.6111pH — 3.8889)) (6)

The formulation was parameterized by Blackford and Gilbert (2007) based on observational work of
Huesemann et al. (2002).

According to Bange (2008), reported N,O yields from nitrification range from 0.004% to 0.4%. Dore and
Karl (1996) reported a higher yield of 0.5% for the North Pacific time series station ALOHA, while Ji
et al. (2018) derived yield uncertainty range of 0.04-0.12% at oxygen concentrations above 50 umol L™,
based on measurements in the Eastern Tropical Pacific. In our model we implemented a value of 0.1% for
the N,O production yield at nitrification, which allowed realistic distributions of N,O to be modeled on
the northwest European Shelf.

Several modeling studies exclude N,O production in the photic zone (e.g., Battaglia & Joos, 2018;
Martinez-Rey et al., 2015) following an assumption that nitrification by ammonia-oxidizing bacteria
(AOB) is inhibited by light (Horrigan & Springer, 1990; Ward et al., 1982). However, there is a growing
evidence that nitrification by ammonia-oxidizing archaea (AOA) takes place within the photic zone, and
that this mechanism might be the dominant route for ammonia oxidation in the upper ocean (e.g.,
Beman et al., 2012; Newell et al.,, 2013; Peng et al., 2016; Ward, 2008), although photosensitivity of
AOA has also been reported (Horak et al., 2018; Merbt et al., 2012). Several studies summarized by
Yool et al. (2007) (see Figure 1b therein) have shown that there is no clear increase in nitrification rate
with depth, which would indicate inhibition by light in the euphotic zone. Other studies have also
demonstrated nitrification to take place within the photic zone (Clark et al., 2008; Dore & Karl, 1996;
Wankel et al., 2007). Moreover, experiments conducted by Smith et al. (2014) demonstrated nitrification
rates in the photic zone to be more strongly regulated by competition with phytoplankton for ammonium
rather than directly by light. Since details on sensitivity of nitrification to light intensity are still debated,
within this work we followed the original formulation of ERSEM, where nitrification rate is not affected
by light.

Pelagic denitrification-related sources and sinks of N,O were not included in the present model
formulation. The majority of waters within the study area are well oxygenated, and for denitrification
to take place an anoxic environment is required. Therefore, we assume that the amount of denitrifica-
tion occurring in the system is negligible, as was previously confirmed by in situ observations in the
North Sea (Law & Owens, 1990). Furthermore, we did not include benthic sources and sinks of N,O
in the model formulation applied here based on the evidence that N,O production rate in the North
Sea sediments is very low (Law & Owens, 1990). It is likely for the major pathway of nitrogen removal
in the sediments within our study area to be not denitrification, but anammox, as found by Kitidis et al. (2017)
for the sediments of the Celtic Sea. The process of anammox does not involve N,O production or
consumption.

Air-sea flux of nitrous oxide (Fy, o, umol N,O m ™2 day ") was calculated as a product of the gas-transfer velo-
city kn,o and the difference between equilibrium and surface water gas concentrations:
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FNZO:kNZO (NZOeq - Nzosea) (7)
The gas transfer velocity was calculated following Wanninkhof (1992):

Sc

—-0.5
kn,0=0.39U2 | — , 8
no=0390(55) ®

where U is the wind speed and Sc is the Schmidt number. Solubility of N,O in seawater was calculated
according to Weiss and Price (1980). Time-varying atmospheric partial pressure of N,O based on monthly
values over marine surface sites for the Northern Hemisphere (NOAA, 2014) was applied uniformly over
the model domain.

2.2. Self-Organizing Maps

To identify dominant patterns in seasonality of N,O air-sea exchange on the northwest European shelf
we employed self-organizing map (SOM). SOM is a type of artificial neural network that uses unsuper-
vised learning to retrieve the main underlying patterns or structures (termed nodes) within a complex
data set and to produce its low-dimensional discretized representation (Kohonen, 2001). The number
of SOM nodes is somewhat subjective and depends on the characteristics of input data and research
questions. Following experimentation with different numbers of SOM nodes, we chose to base our imple-
mentation on four nodes organized in a linear pattern, which allowed for determination of distinct sea-
sonal patterns of N,O fluxes within small number of classes. Weights of each node were initialized as a
linear combination of the first two principal components of the data. Thereafter, SOM was trained using
all input data vectors sequentially. At the end of the training process, each node represented one of four
distinct types of annual cycles of N,O air-sea flux within the northwest European shelf. The annual
cycles at each model grid point were then mapped to their closest node to define four regions with dis-
tinct seasonal pattern of N,O fluxes. We use MiniSOM, a minimalistic NumPy based implementation of
SOM (Vettigli, 2019).

2.3. Observational Data

Measurements of N,O were made during four research cruises in the study area. These were a circumnavi-
gation of the UK during June and July 2011 on board RRS Discovery (UK Ocean Acidification program cruise
D366) and three cruises on board RRS Discovery to the Celtic Sea in November 2014, April 2015, and July
2015 (UK Shelf Sea Biogeochemistry program cruises DY018, DY029, and DY033, respectively).

A total of 181, 62, 241, and 252 samples were collected during cruises D366, DY018, DY029, and DY033,
respectively. At each station, up to 10 samples were collected and analyzed at depths between the sea surface
and within 10 m of the seabed. Seawaters were collected into 1 L glass bottles using acid cleaned Tygon tub-
ing directly from CTD Niskin bottles. Samples were overfilled in order to expel air bubbles, poisoned with
200 wl of saturated HgCl, solution and temperature equilibrated at 25.0 & 0.5 °C. In all cases samples were
analyzed within 8 hr of collection. N,O was determined by single-phase equilibration gas chromatography
with electron capture detection similar to that described by Upstill-Goddard et al. (1996). Each individual
sample was calibrated against three certified (+5%) reference standards of 287, 402, and 511 ppb (Air
Products Ltd) which are traceable to NOAA WMO-N,0-X2006A scale for N,O mole fractions. Mean instru-
ment precision from daily, triplicate analyses of the three calibration standards was <0.95% coefficient of
variation. Concentrations of N,O in seawater were calculated from solubility tables of Weiss and
Price (1980) at equilibration temperature (~25°C) and salinity.

3. Results
3.1. Model Validation
The model skill in reproducing seasonal variability in vertical distributions of N,O was assessed by compar-

ing modeled saturations with measurement data collected in the Celtic Sea in November 2014 (Rees, 2019a),
April 2015 (Rees, 2019b) and July 2015 (Rees & Stephens, 2019). Covering different seasons and extending
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Figure 2. Comparison of modeled (solid lines) and measured (red dots) vertical profiles of N,O saturation (%) in the
Celtic Sea. Limits of standard deviation for modeled data are shown (dashed lines). For measurements, standard
deviations are indicated if several measurements were taken at the same depth (horizontal lines). Maps (area denoted by
red box on Figure 1) specify locations of stations sampled within each cruise.

geographically over a transect in the order of 600 km (Figure 2), these research expeditions captured
contrasting conditions of the physical status and biological productivity of the shelf sea (e.g., Garcia-
Martin et al., 2019; Kitidis et al., 2017; Ruiz-Castillo et al., 2019).

58.5°N

54.5°N

50.5°N

46.5°N

20

15

-10

Saturation difference

14°W

Figure 3. The difference between modeled and measured N,O saturations
(%) for June-July 2011, comparing measured values closest to the surface
(<10 m depth) with corresponding results of the model. Positive (negative)

values mean overestimation (underestimation) of N,O saturations by the

model.

Vertical profiles of N,O saturations averaged over time and horizontal
space were constructed for data collected within each of the three cruises
and were compared with vertical profiles of modeled N,O for the corre-
sponding locations and time instances. During November 2014
(Figure 2, left), the model showed very low variability and vertically uni-
form saturations of N,O close to equilibrium (about 101.2%) in the upper
50 m of the water column, and a pronounced increase in saturations
between the depths of 50 and 70 m, up to about 120.2%. This increase
was also evident in direct observations, though the model tends to slightly
overestimate N,O saturation at depths greater than 60 m. Vertically uni-
form N,O saturations throughout water column were characteristic for
the April 2015 (Figure 2, center), as shown both in the observational data
and reproduced in the model, with the latter close to equilibrium, while
the former mostly slightly undersaturated, with average saturations of
95.98% and 100.5% in the observations and in the model, respectively.
For July 2015 (Figure 2, right), measurements showed N,O saturations
mostly between 100% and 110%. The model showed mean saturation of
101.8% in the upper 10 m, which increased to a maximum of 113.9% at
40 m depth, followed by a steady decrease with greater depth, bringing
modeled results back into agreement with the observed values.
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Figure 4. Seasonally averaged distribution of modeled N,O air-sea fluxes (umol m™> day_l) over the northwest European continental shelf based on a 2006-2015
climatology: Spring (March-May), summer (June-August), autumn (September-November), and winter (December-February). Positive values indicate
outgassing of N,O into the atmosphere, negative-uptake by the ocean. The red contour line separates regions with positive and negative fluxes.

The model skill in reproducing shelf-wide spatial distribution of N,O saturations within surface waters was
assessed by comparing model results with measurement data collected between June and July 2011 (Brown
& Rees, 2014) (also available from the MEMENTO database; Bange et al., 2009; Kock & Bange, 2015), cover-
ing a range of geographical locations with varying hydrographical and biogeochemical conditions within the
northwest European shelf (Figure 3). Measurements taken closest to the surface (where they were taken at
depth < 10 m) were compared with the corresponding values from the model. Modeled saturations generally
match measurements rather well, although there is a slight tendency for overestimation compared to obser-
vational data (modeled and measured saturations averaged over all stations are 107.36 + 4.49% and
102.62 + 6.75%, respectively). The overestimation is especially apparent for the highly productive shallow
region in the southern North Sea, as well as Kattegat area.

3.2. Mean Seasonal Distributions of N,O Air-Sea Fluxes

Characteristic seasonality of air-sea fluxes of N,O over the northwest European continental shelf area
(defined here as part of the modeled domain delineated with the 200 m isobath, but also including the
Norwegian Trench) is assessed based on a climatological year representing the average of a 10-year model
simulation (2006-2015).

The northwest European continental shelf as a whole is a source of N,O to the atmosphere, emitting on aver-
age 2.03 + 1.93 umol N,O m~> day . However, there is a considerable amount of variability in the distribu-
tion of fluxes between seasons, as well as spatial differences within each individual season (Figure 4).
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Figure 5. (left) Seasonal patterns of N,O sea-to-air fluxes, mean over the region (black lines) and at selected stations (red lines). Positive values indicate outgassing
to the atmosphere, negative-uptake. To remove weather-related noise, fluxes are shown as 14-day moving average values. (right) The corresponding spatial
distribution of classes (A-D) within the northwest European continental shelf area. Location of stations CCS (Central Celtic Sea; 49.39°N,8.58°W), NNS (Northern
North Sea; 57.25°W,2.5°E), LF (Long Forties area; 57.25°N,0.5°W), SNS (Southern North Sea; 53°N,2.5°E), and NT (Norwegian Trench; 58.75°W,4.5°E) are

identified.

Fluxes to the atmosphere increase from spring toward summer, especially in the coastal areas around UK
and the south-eastern North Sea region where maximum values rise from ~4 umol m~2 day ™" in spring to
~10 umol m~? day ™' in summer. In autumn, in the North Sea, fluxes are comparatively higher offshore
(reaching ~7 umol m~2 day ") than in coastal regions. Fluxes are lower than in summer in the southernmost
part of the North Sea and eastern English Channel, but higher in the western English Channel and eastern
part of the Celtic Sea. Also in the northern shelf regions, N,O outflux is greater in autumn than in summer.
In winter, equilibrium conditions or weak negative fluxes (i.e., uptake of N,O from the atmosphere) prevail
over the western part of the North Sea, the English Channel and the Irish Sea. The rest of the area is
characterized by low outgassing of <3 wmol m™2 day™!, apart from a region west and southwest of
Ireland (4-6 umol m™2 day™") and along the western coast of France (up to 9 umol m™~2 day ™).

3.3. Dominant Seasonal Patterns of N,O Air-Sea Fluxes

Through the application of SOM, dominant classes (A-D) of seasonal cycle in N,O air-sea fluxes on the
northwest European shelf were identified (Figure 5, left). Class A is characterized by high fluxes during win-
ter months (November-December), while low fluxes are typical for the rest of the year. Within classes B and
C peak fluxes shift toward late-autumn (October—-November) and early-autumn (September—October)
months, respectively. For all the above classes, a minor increase in fluxes from early spring toward May-
June is characteristic and consecutively more pronounced. Class D is characterized by bell-shaped seasonal
distribution with higher fluxes from late spring until early autumn, peaking in summer (July-August), and
low fluxes throughout winter months.

Spatially, seasonal distributions corresponding to class A are found within the southwestern region of our
study area (Celtic Sea, outer part of Armorican shelf) and offshore region of the northern North Sea
(Figure 5, right). Class B fluxes are characteristic for central North Sea and outer parts of Irish and
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Shetland Shelves. Temporal patterns corresponding to class C can be found in the western English Channel,
Irish Sea, coastward region of Shetland Shelf and western part of North Sea adjacent to UK coast. Class D
represents south-eastern North Sea, central English Channel, coastal areas around UK, Ireland, and
France, as well as Norwegian Trench.

4. Discussion

4.1. Controls of Seasonality in N,O Air-Sea Fluxes

To determine the major drivers shaping the seasonal patterns of N,O fluxes identified in the previous sec-
tion, we have selected four stations within the model domain: CCS (Central Celtic Sea; 49.39°N,8.58°W),
NNS (Northern North Sea; 57.25°W,2.5°E), LF (Long Forties area; 57.25°N,0.5°W), and SNS (Southern
North Sea; 53°N,2.5°E), respectively representing classes A, B, C, and D (see Figure 5). Temporal patterns
of air-sea fluxes of N,O, as well as their absolute values at these stations rather well reflect the average-
per-class values, showing short-lasting winter maximum for class A, bell-shaped seasonal distributions of
class D (although with a maximum skewed toward late-spring period at SNS station), and classes B and C
showing transitional dynamics between the former two (Figure 5, left).

The distinct seasonality of N,O air-sea fluxes among these stations, and, therefore, between the identified
regions, depends on the seasonality of N,O saturation state within surface waters and the underlying
mechanisms controlling it. Thus, the region corresponding to class A is characterized by relatively deep
water and strong seasonal density stratification (Figure 6; Station CCS). Excess N,O (i.e., saturation state
>100%) builds up from late spring until late autumn below the seasonal pycnocline. Intrusion of these water
masses, increasingly oversaturated with N,O, into the upper mixed layer, is effectively prevented until the
late autumn when stratification collapses and excess N,O is allowed to escape into the atmosphere. A similar
mechanism for the buildup of N,O oversaturation exists within class B (Figure 6; Station NNS), which is also
characterized by strong seasonal density stratification, albeit at shallower water depths. During the stratified
period, oversaturation of N,O builds up below, but also within the pycnocline. As the water column gradu-
ally starts to mix from September onward, this facilitates earlier outgassing of excess N,O into the atmo-
sphere relative to class A. For the region corresponding to class C (Figure 6; Station LF), more transient,
weaker, and shorter-lasting water column stratification is typical. This allows for more effective outgassing
during spring and summer compared to the previous two classes. Subsequently, mixing of the water column
due to the earlier breakdown of stratification during September—-October results in high fluxes of N,O into
the atmosphere, leaving water either at equilibrium or weakly undersaturated with respect to the atmo-
sphere until the following spring (see Figure 5, left). Finally, class D is typically represented by shallow
coastal areas and is characterized by a permanently mixed water column (Figure 6; Station SNS). Here,
saturation of N,O increases from spring (specifically, April in case of SNS station), and is maintained at rela-
tively high levels throughout the summer months, eventually decreasing from late summer to early autumn.

Within temporally stratified regions (classes A and B), bulk N,O production mostly takes place below the
mixed layer, allowing for the gradual buildup of oversaturation (excess N,O) below the pycnocline in waters
isolated from the surface mixed layer and without contact with the atmosphere until stratification starts to
break down (Figure 7; Stations CCS and NNS). However, in spring some N,O production within these
regions takes place at the base of mixed layer, fueling the concurrent increase in air-sea fluxes (see
Figure 5 for the corresponding stations).

Within class C, when water column is mixed during spring-early summer and early autumn, N,O produc-
tion occurs uniformly throughout the water column (Figure 7; Station LF). Throughout the relatively short
stratification period, excess N,O builds up below the pycnocline, driving an increase in outflux to the atmo-
sphere in early autumn (see Figure 5). Within permanently mixed regions corresponding to class D, lack of
stratification allows for the excess N,O to escape to the atmosphere as soon as it is produced (Figure 7;
Station SNS). As a result of the SOM analysis, air-sea flux of N,O within the Norwegian Trench was attrib-
uted to class D, otherwise characteristic for shallow permanently mixed regions. This is explained by a strong
density gradient between ~20-30 m depth, leading to the bulk of N,O production, followed by outgassing, to
take place within the upper mixed layer during the productive season. This results in a temporal pattern of
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Figure 6. Seasonal distributions of N,O saturations (%) over a climatological year (based on 2006-2015) at stations CCS
(Central Celtic Sea; 49.39°N,8.58°W), NNS (Northern North Sea; 57.25°W,2.5°E), LF (Long Forties area; 57.25°N,0.5°W),
and SNS (Southern North Sea; 53°N,2.5°E), representing classes A, B, C, and D, respectively. White contour lines
indicate density anomaly (kg m™).

emissions showing lower rates during winter and higher fluxes in summer (Figure S1 in the supporting
information).

4.2. The Northwest European Shelf as a Source of N,0O

By synthesizing observational evidence, Bange (2006) estimated mean N,O saturations of 113% for the whole
European shelf. Our results indicate a mean N,O saturation of 104.9% for the northwest European continen-
tal shelf (Table 1), which is somewhat lower than Bange (2006) estimate which included the high contribu-
tions of the Baltic Sea and some areas of the Mediterranean. For the Central North Sea, Law and
Owens (1990) reported saturations of 102.2%, while Bange et al. (1996) gave estimates of 104%, which are
rather close to the mean given by our model results for classes B and C, representing the central North
Sea region.

With the mean air-sea fluxes of 2.03 + 1.93 umol N,O m ™2 day ™, our model results show that the northwest
European shelf N,O emissions contribute 0.02224 Tg N yr~" to the atmosphere. This comprises between
3.3% and 6.8% of the total emissions from European shelves and estuaries which are estimated to be 0.33—
0.67 TgN yrt (Bange, 2006). Almost half (49%) of the total emissions within our study area originate from
productive coastal regions corresponding to class D; the highest fluxes occur during summer and autumn,
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Figure 7. Seasonal distributions of N,O production (nmol Lt day_l) over a climatological year (based on 2006-2015) at
stations CCS (Central Celtic Sea; 49.39°N,8.58°W), NNS (Northern North Sea; 57.25°W,2.5°E), LF (Long Forties area;
57.25°N,0.5°W), and SNS (Southern North Sea; 53°N,2.5°E), representing classes A, B, C, and D, respectively. White
contour lines indicate density anomaly (kg m™).

accounting for up to 71% of the total emissions (Table 1). Class D shows the highest emissions (0.00459 Tg N)
in summer, regions of C and B classes in autumn (0.00206 and 0.00183 Tg N, respectively), and class A in
winter (0.00138 Tg N), following the differences in intensity and duration of stratification among these
classes (see Figure 5). Notably, in contrast to other regions and seasons, class C on average acts as a weak

Table 1

Modeled Daily Mean Air-Sea Fluxes (umol N>,O m> day_l ), Saturations (%) and Total Emissions (Tg N per Season and per Year) From Regions Corresponding to
the Identified Classes (A-D)

Region/class A B © D Total
Mean saturation (%) 102.83 + 2.25 102.86 + 2.58 104.56 + 4.54 107.21 + 5.79 104.89 + 4.16
Mean air-sea flux (umol m 2 d_l) 1.57 + 1.79 1.59 + 1.93 1.87 + 2.07 2.59 +1.93 2.03 +1.93
Total emission, (Tg N) Spring 0.00052 0.00032 0.0006 0.00258 0.00401
Summer 0.00077 0.00072 0.00185 0.00459 0.00794
Autumn 0.00115 0.00183 0.00206 0.00275 0.00779
Winter 0.00138 0.00024 —0.0001 0.00099 0.0025
Total (y_l) 0.00382 0.00311 0.00441 0.01091 0.02224
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sink for atmospheric N,O in winter (see also Figure 4). Previous modeling work by Holt et al. (2012) has pro-
jected that a significant area of the northwest European shelf will become increasingly stratified under the
influence of future climate. From the perspective of dynamics of N,O fluxes, this is expected to lead to an
expansion of class A and B regions in the future, with potential decrease in emissions within these regions
due to decreased productivity. This will in turn lead to stronger decoupling from coastal regions which are
less influenced by the open ocean processes, i.e. class C and D regions, where mixing is expected to intensify
further, along with biogeochemical cycling enhanced by higher temperatures.

As part of its international commitments, the UK submits annual estimates of anthropogenic greenhouse
gas emissions to the United Nations Framework Convention on Climate Change (UNFCCC) and the
European Union Monitoring Mechanism Regulation (MMR). According to the UK National Atmospheric
Emissions Inventory (NAEI, https://naei.beis.gov.uk/), total anthropogenic emissions from all sources
within the UK comprise 0.04598 Tg N yr™' on average for the period 2006-2015. Our study shows that the
on-shelf part of the UK EEZ annually emits 0.00877 Tg N, a considerable addition of 19.1% to the total
land-based emission estimates, and 29% compared to UK emissions from agricultural sources, which com-
prise 0.03027 Tg N yr . Although N0 is naturally produced within the marine environment and therefore
is not included in the national accounting, anthropogenic nutrient input has the potential to increase emis-
sions within coastal seas. Further regional modeling efforts are necessary to quantify the contribution of
human activity to N,O emissions from coastal regions and inform policy on their management potential,
for example, via nutrient input reduction measures.

As is the case for the northwest European shelf as a whole, a substantial degree of heterogeneity in spatio-
temporal distributions of emissions exists within the on-shelf part of the UK EEZ, as indicated by average
air-sea flux of 1.7 + 1.84 umol m~2 day~* and saturation of 104.4 + 3.86%. This variability highlights that
more accurate measurement-based estimates of N,O fluxes require higher temporal and spatial sampling
resolution, which can be facilitated via the establishment of a harmonized N,O Ocean Observation
Network, as proposed by Bange et al. (2019). This initiative will support the development of models such
as the one used in the current study, for further improvement of our understanding of the present dynamics
and future trends in marine N,O emissions.

4.3. Critical Assessment of Model Assumptions and the Future Outlook

The modeled N,O air-sea flux values (Table 1) are prone to uncertainties in the adopted formulation and
parameterization of N,O production and air-sea exchange. For instance, the model overestimates N,O per-
cent saturation at water depths of ~40 m during summer (Figure 2, right), which potentially results in over-
estimated sea-to-air flux within temporally stratified regions. Nevertheless, since accumulation of N,O in the
water column and timing of its release to the atmosphere are controlled by the stratification regime, the reli-
able representation of seasonality depends on the accuracy of our hydrodynamic model simulations.

Our model formulation allows for the enhancement of N,O production at low oxygen conditions. However,
within this study the impact on production was negligible due to high oxygen content throughout the model
domain (not shown). Our results thus indicate that N,O production within the waters of northwest
European shelf is primarily a function of substrate (ammonium) availability, and may be modified by tem-
perature and pH variability (Beman et al., 2011; Huesemann et al., 2002; Kitidis et al., 2011) affecting nitri-
fication rate, as parameterized in ERSEM (Butenschon et al., 2016).

As demonstrated by Zamora and Oschlies (2014), nitrification rates and the corresponding N,O production
within the surface ocean are the major sources of uncertainty for emission estimates within global model set-
tings. Although in our model we did not explicitly limit nitrification (and hence N,O production) within the
photic zone, the model showed that most of the N,O production within temporally stratified regions (classes
A and B) occurs at the base of the pycnocline as it starts to develop in spring. During the remainder of the
stratified period N,O production continued below the pycnocline, with production rates within surface
layers remaining very low both during stratified and mixed seasons. These distributions of production cor-
relate with those of ammonium accumulation (Figure S2 in the supporting information). The model there-
fore suggests that lower nitrification in the photic zone is an emergent property related to the substrate
dynamics rather than to photoinhibition. This complements the findings of Smith et al. (2014), who ascribed
the competition between nitrifiers and phytoplankton for ammonium as the dominant factor limiting N,O
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production within the photic zone. In shallower, well-mixed regions (class D and, to some extent, class C)
the supply of ammonium is abundant throughout water column, as is the production of N,O, during
the entire biologically active period. Nevertheless, the existing uncertainty surrounding the role of light
in regulating nitrification rates creates an imperative for further modeling and experimental studies
exploring the sensitivity of ammonia oxidation to different light levels and regimes, and its effects on
the production of N,O.

The model parameterization adopted in this paper focuses on nitrification as a single process generating
N,O, which, as we have demonstrated, is appropriate for the geographical region and the spatial resolution
of the model used in this study. However, its application in areas experiencing lower oxygen concentrations
(e.g., upwelling regions) or dynamic sediment activity (e.g., estuaries) requires more detailed consideration
of the whole nitrogen cycle. This is particularly so with respect to the parameterization of denitrification
within benthic and pelagic zones which may provide either a source or sink of N,O. Future iterations should
also consider the inclusion of anammox and dissimilatory nitrate reduction to ammonium (DNRA), which
may affect the N,O cycle by modifying substrate availability. The understanding of these processes, however,
remains incomplete, which hinders their implementation within large-scale model simulations. For
instance, there is evidence from terrestrial environments that some organisms responsible for DNRA can
potentially consume N,O (Sanford et al., 2012). The priority for future model development and its imple-
mentation within the northwest European shelf is an exploration of the model sensitivity to varied parame-
terizations of benthic N,O sinks and sources, as this has the potential to increase model accuracy in
biogeochemically complex productive shallow regions, where the model to data match is weaker (see
Figure 3).

Observations of N,O concentrations and air-sea exchange remain sparsely distributed both in space and in
time, even for the northwest European shelf. Recent developments in technology for increasing the fre-
quency of measurements (e.g., Grefe & Kaiser, 2014) coupled with improvements in flux estimation (e.g.,
Holding et al., 2019) and systematically coordinated observations (Bange et al., 2019; Wilson et al., 2018) will
each contribute to refinements in the N,O budget. In addition to the space- and time-resolving measure-
ments of N,O concentrations, model developments will require better constraints on the rates and distribu-
tions of nitrogen cycling processes over the estuarine-coastal-offshore continuum. The targeting of specific
undefined processes, for example, the factors controlling the balance between anammox and denitrification
(Kitidis et al., 2017) and the potential for N,O consumption in oxygenated waters (e.g., Raes et al., 2016)
remain a high priority in order to further our understanding of the extremely complex marine nitrogen cycle
and thus to enable the mechanistic implementation of enigmatic processes into future model environment.

5. Conclusions

Within this study we have augmented a well-established biogeochemical-ecological model with N,O-related
processes to study distributions and controls of air-sea fluxes of this potent greenhouse gas within the north-
west European continental shelf region.

Our study has shown that physical constraints directly regulate seasonal patterns of N,O fluxes on the shelf.
The duration and intensity of water column stratification defines the vertical position and timing of N,O pro-
duction. This, in turn, offers the control to the accumulation of excess N,O within the water column and the
timing and rate of subsequent release to the atmosphere. The physical regime and its inherent seasonal
variability also regulate biological productivity which controls the supply of ammonium for nitrification
via planktonic excretion and exudation, and via organic matter mineralization, and determines the total
amount of N,O produced and eventually lost to the atmosphere.

We estimate that the northwest European shelf as a whole is a source of N,O to the atmosphere, contributing
0.02224 Tg N annually, which, however, comprises only between 3.3 and 6.8% of total emissions from
European shelves and estuaries. Since 49% of the total emissions within our study area originate from coastal
regions, changes in anthropogenic nutrient input have the potential to substantially impact on regional N,O
emissions. Further modeling efforts will quantify the anthropogenic footprint of these emissions and project
their future changes.
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