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Abstract

Aquaculture is the fastest growing food sector globally and protein provisioning

from aquaculture now exceeds that from wild capture fisheries. There is clear

potential for the further expansion of marine aquaculture (mariculture), but there

are associated risks. Some naturally occurring algae can proliferate under certain

environmental conditions, causing deoxygenation of seawater, or releasing toxic

compounds (phycotoxins), which can harm wild and cultured finfish and shell-

fish, and also human consumers. The impacts of these so-called harmful algal

blooms (HABs) amount to approximately 8 $billion/yr globally, due to mass mor-

talities in finfish, harvesting bans preventing the sale of shellfish that have accu-

mulated unsafe levels of HAB phycotoxins and unavoided human health costs.

Here, we provide a critical review and analysis of HAB impacts on mariculture

(and wild capture fisheries) and recommend research to identify ways to min-

imise their impacts to the industry. We examine causal factors for HAB develop-

ment in inshore versus offshore locations and consider how mariculture itself, in

its various forms, may exacerbate or mitigate HAB risk. From a management per-

spective, there is considerable scope for strategic siting of offshore mariculture

and holistic Environmental Approaches for Aquaculture, such as offsetting nutri-

ent outputs from finfish farming, via the co-location of extractive shellfish and

macroalgae. Such pre-emptive, ecosystem-based approaches are preferable to

reactive physical, chemical or microbiological control measures aiming to remove

or neutralise HABs and their phycotxins. To facilitate mariculture expansion and

long-term sustainability, it is also essential to evaluate HAB risk in conjunction

with climate change.
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Introduction

Managing global food security is one of the greatest chal-

lenges of the twenty-first century. Currently, around 820

million people (1 in 9 people) suffer from malnutrition

(FAO, IFAD, UNICEF, WFP and WHO, 2018) and this is

projected to rise as the human population grows from 7.6

to a projected 11.2 billion by 2100 (UN, 2017). While agri-

cultural productivity and yields from wild capture fisheries

have plateaued or are in decline, aquaculture has grown

substantially over the last forty years, particularly in Asia, a

region which now supplies ~90% of the global aquaculture

market (FAO, 2018). Future food production in all sectors,

however, may be limited by increasing climate variability,

including extremes in rainfall intensity and temperature.

These changes in climate in combination with increasing

human population numbers, pollution events, impaired

nutrient cycling, outbreaks of disease and pestilence are

likely to result in future shortfalls in food production

(FAO, 2018; FAO, IFAD, UNICEF, WFP and WHO, 2018).

For aquaculture production, one of the most critical threats

is the occurrence of harmful algal blooms (HABs).
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Increasing frequency of HABs is associated with climate

change, nutrient enrichment and habitat disturbance and is

leading to growing impacts, including the poisoning or

asphyxiation of finfish, shellfish and poisoning of human

consumers (Hallegraeff 1993; GESAMP, 2001; Smayda

2004; Anderson 2012; Berdalet et al. 2016). Harmful algal

blooms can also cause a variety of other impacts affecting

water quality, water flow and amenity value. Therefore,

estimating the economic costs of HABs is complex and

requires consideration of many different issues (see reviews

by Berdalet et al. 2016; Adams et al. 2018). Among the big-

gest economic impacts of HABs are precautionary closures

of fisheries and aquaculture farms to prevent human poi-

soning (see Section ‘Global distribution and characterisa-

tion of HABs affecting human health through seafood

consumption’ on human poisoning). Annual costs of pre-

cautionary closures (US$ at first point of sale) are estimated

at $3–4 billion: >$0.03 billion in the UK (ASIMUTH,

2014); $0.9–1.2 billion in the EU (Hoagland & Scatasta

2006; S-3 EuroHAB, 2019); $0.1–1.0 billion in Korea, Japan

and China (Kim 2006; Trainer & Yoshida 2014); and

>$0.10 billion in the USA (Hoagland et al. 2002). Further-

more, the worldwide economic impacts of marine phyco-

toxins on human health are estimated to be approximately

$4 billion a year (GESAMP, 2001; references in Berdalet

et al. 2016). These estimates are very much ‘best approxi-

mations’ rather than detailed economic assessments (as

conceded by some of the authors, e.g., Hoagland & Scatasta

2006; Adams et al. 2018). According to conservative epi-

demiological assessments, around 2000 cases of HAB-re-

lated food poisonings occur each year globally, following

human consumption of contaminated finfish or shellfish,

and around 15% of these cases prove fatal (FAO, 2012;

CTA, 2013). The proportion of farmed versus wild-caught

finfish and shellfish that contain phycotoxins and subse-

quently poison human consumers is not currently known.

Food fish production from aquaculture (80 million ton-

nes, US$232 billion per year) now exceeds capture fisheries

(Table 1, adapted from FAO, 2018). Growth projections

see this production from aquaculture rising by 37%, from

70 million tonnes to 109 million tonnes, by 2030 (FAO,

2018), with a significant contribution coming from the glo-

bal expansion of mariculture (Kapetsky et al. 2013). Food

fish production from mariculture currently amounts to

28.7 million tonnes, of which more than half comes from

bivalve shellfish. Bivalves are among the most sustainable

mariculture products, since they derive their food entirely

from naturally occurring food sources, predominantly mar-

ine planktonic microalgae. The growth of these algae is

fuelled by natural (and anthropogenic) nutrient supplies

from land runoff and coastal upwelling (Huston & Wolver-

ton 2009). Farming of aquatic plants and algae, dominated

by seaweeds (macroalgae), has also increased recently to

>30 million tonnes (FAO, 2018), worth an estimated US

$11.7 billion. The largest share of seaweed production is for

human food products (polysaccharide carbohydrates and

micronutrients), and the remainder is for animal feeds, fer-

tilisers and biopolymers (Nayar & Bott 2014).

Around 200 marine species are currently farmed, with

the greatest variety in tropical seas (FAO, 2015; Froehlich

et al. 2016). Species can be divided into two broad cate-

gories: (i) fed species, including finfish and some crus-

taceans and (ii) ‘extractive’ species, including (a) unfed

filter-feeding bivalves, algal grazers, detritivores and (b)

autotrophic plants, mainly macroalgae. Each of these cate-

gories has different environmental susceptibilities, interac-

tions and installation planning issues (Gentry et al. 2016),

particularly at inshore sites (≤1 km from the coast). At

inshore sites, mariculture is directly influenced by anthro-

pogenic activities (agricultural and urban runoff, municipal

and industrial effluent inputs, ships and mariculture itself),

which potentially increase HAB risk (Anderson et al. 2008;

Anderson 2012). Recent calculations have suggested that

current seafood consumption could be met by extending

mariculture offshore, into less than 1% of Exclusive Eco-

nomic Zones belonging to coastal states (Gentry et al.

2017). Some HABs, however, originate in open oceanic

waters (Davidson et al. 2009, 2016; Trainer et al. 2012;

Shutler et al. 2015; Gobler et al. 2017), indicating that

some algal species may present similar or even greater risks

as mariculture moves offshore.

Mariculture represents the nexus of environment–food–
health systems, with food productivity and quality depend-

ing on clean coastal waters and healthy intact marine

ecosystems (FAO, IFAD, UNICEF, WFP and WHO, 2018).

To ensure long-term sustainable growth of the industry, a

collection of interconnecting issues covering biosecurity,

economic and environmental aspects (including climate

Table 1 Global food fish production from aquaculture in 2016

Aquaculture production Finfish Molluscs Crustacea Other Total for aquaculture Total as % of total food fish

By weight (million tonnes) 54.1 17.1 7.9 1.0 80* 53

By value (billion US$) 138.5 29.2 57.1 6.8 232 64

*Mariculture currently provides 36% (28.7 million tonnes) of food fish production from all forms of aquaculture (including freshwater and recirculat-

ing systems) and is dominated by molluscs (17.1 million tonnes; FAO, 2018).
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change and HABs) need to be addressed (De Silva & Soto

2009; Lovatelli et al. 2013). Here, we critically review

national and international HAB monitoring data records

and published literature, to evaluate the occurrences, causes

and impacts of HABs on shellfish and finfish mariculture in

inshore and offshore waters. We identify environmental

factors contributing to HAB risk and establish whether

mariculture practices themselves can influence (increase or

reduce) risks of HAB occurrence and impact. Methods for

predicting and mitigating HAB risk are then reviewed. The

risks of HABs to wild capture fisheries, as well as maricul-

ture, are considered in this review also, since mariculture

has the potential to attract and promote aggregations of

wild finfish and shellfish. Building improved understanding

of HAB risk for these related industries is of paramount

importance to ensure future marine food security and

safety.

Impacts of HABs on marine fisheries and
mariculture

Nature of HABs and their impacts

Harmful algal blooms are proliferations of certain microal-

gae, macroalgae or blue/green algae (cyanobacteria), which

under favourable environmental conditions reach certain

levels that can have negative impacts on humans or the

aquatic environment (Hallegraeff 1993; Anderson 2012;

Bresnan et al.2013; GlobalHAB, 2017). Some HAB species

or strains synthesise phycotoxins that are ingested by mar-

ine plankton grazers and potentially bioaccumulate in

higher food chain organisms, including humans. Ephiphy-

tic HAB species including Prorocentrum lima, Ostreopsis

spp. and Gambierdiscus spp. have the potential to contami-

nate seaweeds, but human poisonings are generally caused

by the consumption of seaweed grazing herbivorous shell-

fish, finfish or their predators, rather than from direct con-

sumption of seaweeds. Globally, around 300 HAB species

have been identified, of which more than a third, mainly in

the dinoflagellate group, are known to produce toxins that

are harmful to aquatic organisms and/or to humans con-

suming them (http://www.marinespecies.org/hab/index.

php; Anderson 2012). Toxin production can vary between

different genetic strains for some HAB species (e.g. Touzet

et al. 2010; Cochlan et al. 2012) and/or different environ-

mental conditions (Fehling et al. 2004; Wells et al. 2005).

Poisoning syndromes in humans, responsible HAB genera,

phycotoxin groups, and shellfish, finfish and macro-algal

vectors of these phycotoxins are summarised in Sec-

tion ‘Global distribution and characterisation of HABs

affecting human health through seafood consumption’

(Table 2). Other metabolites may also be generated from

these toxins, many of which have not been characterised in

terms of chemical structure, potency or public health

significance (Wiese et al. 2010; Anderson 2012). Other

HAB species cause harm to fish through gill clogging or via

the production of fish toxins (ichthyotoxins). Also, when

the blooms decay, the degradation of the accumulated algal

biomass by bacteria results in oxygen depletion, affecting

aquatic ecosystems as a whole (Smayda 2004; Svendsen

et al. 2018).

Global distribution and characterisation of HABs affecting

human health through seafood consumption

Information concerning the global occurrence and impact

of HAB events is recorded in the Harmful Algae Event

Database (HAEDAT, http://haedat.iode.org). Bivalve mol-

luscs, which filter and feed directly on microalgae, includ-

ing HAB species, are the principal vectors for shellfish

poisoning in humans. Crustaceans that prey upon intoxi-

cated bivalves, including crabs and lobsters (Shumway

1995; James et al. 2010), and also carnivorous finfish

(Friedman et al. 2017) can also bioaccumulate and in turn

act as important vectors for phycotoxins. Table 2 sum-

marises the principal poisoning syndromes that result from

humans ingesting intoxicated shellfish or finfish and the

respective geographical areas of highest incidence.

The phycotoxins associated with each poisoning syn-

drome (column 1 of Table 2) are neurotoxins, and they are

heat-stable (and thus unaffected by cooking), underlining

their risk to human health. Global maps of reported shell-

fish poisonings are illustrated in Manfrin et al. (2012), and

selected references on poisoning syndromes can be found

in Berdalet et al. (2016). Microalgae can produce a broader

spectrum of toxic compounds than illustrated in Table 2

and include yessotoxins (YTXs) and pectenotoxins (PTXs)

that mainly cause diarrhoea (Reguera et al. 2014). An

increasing number of toxic compounds derived from algae

are being detected as monitoring and analytical tools

become more advanced, including brevetoxins (Turner

et al. 2015) and cyclic imines (Davidson et al. 2015).

Occurrences and impacts of HABs on marine organisms

in fisheries and mariculture

Evidence on the occurrence and impacts of HAB on marine

fisheries and mariculture is being gathered by ongoing

regional programmes (e.g. Maguire et al. 2016), national

programmes (e.g. UK FSA, https://www.food.gov.uk/busi

ness-guidance/biotoxin-and-phytoplankton-monitoring)

and global (GlobalHAB, 2017) programmes (see section ‘In

situ monitoring’). However, despite the increasing coordi-

nation and integration of HAB monitoring programmes

and research, not all incidents are captured and records

may not always tally between local and global databases

(e.g. HAEDAT). Some HABs are difficult to detect, notably
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for species which bloom below the sea surface and evade

in situ monitoring and satellite imaging (Shutler et al.

2015). It is also often difficult to attribute cause(s) to

observed impacts on complex marine systems, particularly

when they involve cryptic species and nonspecific mecha-

nisms, such as the depletion of dissolved oxygen and suffo-

cation of (shell)fish by HABs such as Karenia mikimotoi

(Davidson et al. 2009; Shutler et al. 2015). Since the 1960s,

the number of hypoxic or anoxic ‘dead zones’ in coastal

waters has doubled every decade (Diaz & Rosenberg 2008).

This has occurred in conjunction with increasing eutrophi-

cation caused by nutrient enrichment and excessive algal

growth. In some cases, notable asphyxiation impacts on fin-

fish and shellfish have been attributed to high biomass

blooming HAB species such as Phaeocystis spp., Karenia

spp. and Aureococcus anophagefferens (Peperzak & Poelman

2008; Davidson et al. 2009; Gobler et al. 2011).

Evidence of acute toxicity from HABs on finfish and shellfish

in wild fisheries and mariculture

Harmful algal bloom species from different taxonomic

groups with few commonalities (dinoflagellates, dic-

tyophytes, haptophytes, prymnesiophytes, raphidophytes)

have been implicated in major finfish kills in marine fish-

eries and mariculture. In some cases, the toxicity can be

transmitted up the food chain to seabirds and marine

mammals. Widely cultured finfish species affected by HABs

include Atlantic salmon (Salmo salar), Rainbow trout

(Onchorhynchus mykiss) and Yellowtail amberjack/kingfish

(Seriola quinqueradiata) (reviewed by Landsberg 2002;

Cl�ement et al. 2016). Nevertheless, the mechanisms of toxi-

city for ‘fish killing HABs’ are not well understood. An

example illustrating the complexity associated with HAB

toxicity in finfish is presented for Heterosigma akashiwo.

Here, effects may be due to the production of reactive oxy-

gen species, brevetoxin-like compound(s), excessive mucus

production that impedes oxygen exchange, gill tissue dam-

age by mucocysts and/or haemolytic activity. Uncertainties

arise when there are differences in the toxicity of wild HAB

populations versus laboratory cultures; for example,

reduced toxicity has been shown to result from the long-

term culturing of H. akashiwo (Cochlan et al. 2012). There

may also be variability in mucocyst production by different

strains of microalgae (in the case of Pseudochattonella farci-

men; Andersen et al. 2015).

Marine fisheries (and other wildlife). Some of the largest

and most regular finfish (and other wildlife) kills occur

annually along Florida’s Gulf coast. Here, epidemiological

assessments have attributed these to brevetoxin poisonings

from blooms of the dinoflagellate Karenia brevis (Lands-

berg et al. 2009; Flaherty & Landsberg 2011). A recent

bloom of K. brevis lasted over a year, beginning in

November 2017, extending for a distance of 150–200 miles

along Florida’s Gulf coast and killed hundreds of tonnes of

marine life, including thousands of small fish, numerous

large fish (including groupers and a 21-ft whale shark) and

marine mammals, including dolphins (Pickett 2018). The

2017–2018 bloom is one of the longest and most severe

outbreaks recorded over the last 70 years and illustrates the

scale of impacts possible from a single HAB outbreak

(Krimsky et al. 2018). Elsewhere, for example in the UK

(1978, 1980) and Ireland (1976, 1978, 1979 and 2005),

major finfish and shellfish kills have been attributed to

Karenia mikimotoi (a.k.a. Gyrodinium (or Gymnodinium)

aureolum; e.g. Silke et al. 2005; Mitchell & Rodgers 2007).

These blooms have caused widespread death of wild and

cultured fish, through either acute toxicity attributed to

phycotoxins with neurotoxic, haemolytic or cytotoxic

effects, or via oxygen depletion caused by decaying blooms

(e.g. Boalch 1979; Jenkinson & Connors 1980; Jones et al.

1982).

Saxitoxin produced by Alexandrium spp. may also be

lethal to larvae and juveniles of commercially important

finfish and shellfish species, such as Atlantic mackerel

(Scomber scombrus) and American lobster (Homarus ameri-

canus; Robineau et al. 1991). Biomagnification of saxitoxin

in the marine food chain has also been linked to significant

fish kills, and both seabird and marine mammal deaths

(Pitcher & Calder 2000; Sephton et al. 2007).

Mariculture. Harmful algal blooms often lead to finfish kills

in caged environments, where the fish cannot escape phy-

cotoxins or oxygen depletion from the decaying algal bio-

mass. Risks from HABs are particularly high for finfish

confined in sheltered inshore embayments, where the HABs

may be concentrated by onshore winds and currents. As an

example of this, between 1972 and 1982 in the Seto Inland

Sea, Japan, at least 21.8 million cultured yellowtail amber-

jack (Seriola quinqueradiata) were killed by the raphido-

phyte Chatonella antiqua (Okaichi 1989). In 1972, the

economic loss for the summer outbreak amounted to US

$70 million. Since then, annual losses have been lower, but

recurring severe impacts have continued (Fukuyo et al.

2002). Recurring threats have been reported also from

another toxic raphidophyte, H. akashiwo, causing finfish

kills in Iceland, Spain, British Columbia and Chile (Lands-

berg 2002). The losses caused by outbreaks of H. akashiwo

to wild and net-penned finfish off Puget Sound, Washing-

ton, have been estimated to cost in the region of US$2–6
million per episode. The outbreaks of H. akashiwo are

believed to have been increasing generally in scope and

magnitude in various global regions over the past two dec-

ades (Landsberg 2002).

Originating offshore around the UK (Davidson et al.

2009; Shutler et al. 2015), high biomass blooms
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(>1000 cells/mL) of Karenia mikimotoi have been increas-

ingly frequent and have been associated with significant fin-

fish kills, including for caged fish in inshore waters

(Jenkinson & Connors 1980; Silke et al. 2005; Davidson

et al. 2009). Farmed shellfish including mussels, oysters

and clams (Tapes semidecussatta) in the UK and Ireland,

and hatchery raised juvenile bivalve spat have also periodi-

cally suffered significant mortalities, along with crustaceans

and other benthic invertebrates, in conjunction with

K. mikimotoi blooms (Raine et al. 2001; Silke et al. 2005).

Evidence of chronic toxicity from HABs in wild fisheries and

mariculture

Symptoms of chronic toxicity in finfish are wide ranging

for different HABs. These symptoms include liver patholo-

gies caused by ciguatoxins released from Gambierdiscus

spp. and microcystins produced by Microcystis spp., gill

pathologies caused by cytotoxins from, for example Prym-

nesium spp. and Heterosigma spp., narcosis (loss of balance

and swimming ability) caused by neurotoxins from Karenia

spp. and paralysing saxitoxin from Alexandrium spp., and

excess gill mucus production, for example, caused by

Chaetoceros spp. (review by Burkholder 1998; Svendsen

et al. 2018).

Chronic sublethal effects of HAB toxins in bivalve mol-

luscs include reduction in feeding rates in scallops and oys-

ters (e.g. caused by exposure to Prorocentrum minimum),

reduction in growth and byssus production in blue mussels

(Mytilus edulis), growth reduction in Eastern oysters (Cras-

sostrea virginica), for example caused by Gymnodinium

aurelium/Karenia mikimotoi (Burkholder 1998) and by

Alexandrium tamarense (Li et al. 2002), reproductive

impairment in blue mussels and Bay scallops (Argopecten

irradians), for example caused by Chrysochromulina polyle-

pis, reduction in the recruitment of juvenile Bay scallops,

for example caused by Karenia brevis (reviewed by Bur-

kholder 1998; Basti et al. 2018). Thus, in addition to toxin

accumulation rendering shellfish unsafe for harvesting for

human consumption, toxin presence can have a longer

term effect, impacting on shellfish abundance and time

taken to grow to marketable size. Slower pumping and fil-

tering rates are also likely to increase the time taken to

evacuate toxic material from shellfish tissues. Most shellfish

species can eliminate phycotoxins within a few weeks, but

retention of some toxins (e.g. saxitoxins) in some species,

such as sea scallops (Placopecten magellanicus) and Atlantic

surfclams (Spisula solidissima), can last up to 5 years

(Shumway et al. 1990; Landsberg 2002). Harmful algal

blooms also have the potential to impact adversely on the

supply of larval ‘seed’ or ‘spat’ for aquaculture. Examples of

this include Karenia brevis impacting on larval recruitment

in Bay scallops (Burkholder 1998), Pacific oysters (Cras-

sostrea gigas) and Northern quahog (Mercenaria

mercenaria); (Rolton et al. 2018). For these shellfisheries,

the estimated annual economic losses due to K. brevis along

Florida’s Gulf coast alone are estimated to be up to US$6

million (NOAA 2004; Adams 2017). Karenia brevisulcata

has also been shown to be toxic to larvae of Greenshell

mussel (Perna canaliculus), Pacific oyster and New Zealand

abalone (Haliotis iris); (Shi et al. 2012).

Consumption of intoxicated finfish and shellfish can also

lead to chronic toxicity in organisms higher in marine food

chains. For example, domoic acid derived from Pseudo-

nitzschia sp. can cause neuropathic injury in both finfish

and shellfish eating mammals and birds (Lefebvre et al.

2007; Ramsdell & Zabka 2008; Soli~no et al. 2019).

Environmental factors contributing to HAB risk

Environmental factors promoting HABs

HABs are natural phenomena within the seasonal cycles of

planktonic micro-organisms in aquatic ecosystems (Glibert

et al. 2005; Shumway et al. 2018). In recent decades, harm-

ful events appear to be increasing in frequency, duration

and impact globally. Verifying them is a research priority

(GlobalHAB, 2017; e.g. Wells et al. 2015, 2019). Apparent

increased frequencies of HABs may be due to a combina-

tion of factors (see Figure 1) including: (i) warming sea

surface temperatures, and associated water column stratifi-

cation and range extensions of tropical organisms, includ-

ing toxic species; (ii) increased frequency and intensity of

storm events and flooding and associated increasing nutri-

ent inputs, upwelling intensities and wider HAB dispersal;

(iii) increasing anthropogenic pressures on the marine

environment, notably land- and sea-based nutrient enrich-

ment and disturbance of coastal habitats; and (iv) increased

awareness and improvements in HAB monitoring systems

(Hallegraeff 1993; Raine et al. 2008; Anderson 2012; Bres-

nan et al. 2013; Wells et al. 2015; Gobler et al. 2017;

Anderson et al. 2019).

Evaluating HAB risk in any ‘system’ is highly challenging,

since environmental drivers include a range of physical,

chemical and biological factors, which can combine to influ-

ence (i) the initiation/development of a HAB; (ii) its impact/

toxicity and (iii) the termination of a HAB (Roelke & Buyu-

kates 2001; Anderson et al. 2012a). These factors operate

from micro- (mm) to meso- (10–100 km) to macro

(>100 km) spatial scales and over a range of temporal scales

(from seconds to minutes and from days to months; Dickey

2001). For example, an abundant supply of dissolved nutri-

ents, calm sea state, warming, increasing stratification and

increased sunlight over a period of weeks may allow the algae

to grow in high concentrations, and then, dramatic and sig-

nificantly increased turbulent sea state (causing increased

vertical mixing) over several hours can result in bloom ter-

mination (e.g. Shutler et al. 2015). The challenge of
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understanding HAB occurrence and toxicity is further com-

plicated by ecological interactions between HAB species and

other members of plankton communities, which vary both

spatially and temporally in species composition, genetic

diversity and physiological status (Anderson et al. 2012a;

Davidson 2014). Despite these complexities, some of the key

factors driving HAB dynamics are well characterised and are

outlined in sections ‘Environmental factors contributing to

HAB initiation and toxicity’, ‘Environmental factors con-

tributing to HAB termination’ and ‘Regulation of HABs by

filter feeding shellfish’ below.

Environmental factors contributing to HAB initiation and

toxicity

The pre-requisites for any HAB event are the presence of

algal cells, spores or cysts; suitable conditions of light and

nutrients for their growth and reproduction; and physical

conditions that facilitate their accumulation in favourable

growing conditions. Cells can accumulate either by hori-

zontal transport (advection) in water bodies by wind and/

or tide, or by resuspension from sediments by wave action,

or upwelling of bottom water (e.g. Farrell et al. 2012;

Pitcher et al. 2017). The source of propagules that initiate

blooms may be local, or distant, though the origin of

propagules for any particular harmful bloom is typically

difficult to determine. There is evidence that HABs in some

areas originate in the ocean, rather than in coastal embay-

ments (Hinder et al. 2011; Whyte et al. 2014; Berdalet et al.

2017; Pitcher et al. 2017). The majority of HABs, including

dinoflagellates and diatoms, are holoplanktonic, relying on

vegetative cells to survive inhospitable conditions and to

seed blooms. In some cases, when growth conditions are

suboptimal, highly toxic HABs such as Alexandrium spp.

reproduce sexually and form resting cysts. These cysts settle

on sediments (Smayda & Trainer 2010) and then undergo

resuspension during storms or coastal upwelling, enabling

(re)colonisation of existing and new areas (e.g. Anderson

et al. 1994; Pitcher et al. 2017).

Nutrient availability is another key requirement for

HAB initiation and maintenance. Most HAB species are

primarily photoautotrophs, and their requirements for

autotrophic growth include inorganic nitrogen (N), phos-

phorus (P) and silicate (Si, in the case of diatoms).

Figure 1 Environmental factors promoting HABs. Complex interactions among environmental factors (solar radiation, wind, waves, tides, rainfall,

nutrients), ecological and trophic interactions and biological processes (e.g. cyst formation) can facilitate the proliferation of phytoplankton in general

and harmful algal species as well. Excess and unbalanced nutrient supply and habitat alteration can increase the risk of HAB occurrence. HABs nega-

tively impact mariculture production and product quality. (However, some mariculture practices can mitigate the occurrence and impact of HABs, for

example, through the use of integrated multitrophic aquaculture approaches; see Figure 2).
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High-biomass HABs in estuaries and coastal zones have

been linked to elevated inorganic nutrient inputs (eu-

trophication; Rabalais et al. 2010; Paerl et al. 2014) and

organic nutrients (e.g. urea from fertilisers, following

heavy precipitation and land runoff, Heisler et al. 2008).

However, the effects of nutrient inputs may be con-

founded by many other factors, including natural occur-

rence of HABs, transport of HAB species via mariculture

and other marine activities, variable meteorological forc-

ing, and longer-term climate change (Callaway et al. 2012;

Gowen et al. 2012). There is increasing evidence that

many HAB species can use dissolved and particulate

organic forms of N and P (through prey ingestion), in

addition to autotrophy; this combination of trophic

modes is termed mixotrophy (Burkholder 1998; Anderson

et al. 2002; Lin et al. 2018). Mixotrophic HAB species are

therefore able to proliferate both under high organic N

concentrations and by engulfing prey under nutrient lim-

ited conditions. Examples of mixotrophic HAB species

include low biomass (100–1000 cells/L) blooming

dinoflagellates, such as Alexandrium spp. (Anderson et al.

2012b; Lee et al. 2016) and Dinophysis spp. (Jacobson &

Andersen 1994), and also high biomass (>10 000 cells/L)

blooming species such as Pseudo-nitzschia spp. (Loureiro

et al. 2008) and A. anophagefferens (Gobler et al. 2011).

Furthermore, changes in nutrient ratios (far from the clas-

sic stoichiometric Redfield N:P ratio of 16:1) may be

important in stimulating the growth of some HABs and

influencing their toxin content (Anderson et al. 2002;

Kudela et al. 2010; Glibert et al. 2014a) and responses

may be highly species-specific (Wells et al. 2015).

Reduced turbulent mixing and increased thermal stratifi-

cation are key factors promoting HABs, especially those

comprised of dinoflagellates. Water column stratification

and nutrient enrichment caused by river plumes, jets,

upwelling areas and tidal fronts are also particularly con-

ducive for HAB development (Pitcher et al. 2017). Phyto-

plankton and other planktonic organisms tend to collect

passively in boundary layers in stratified water bodies –
motile dinoflagellate HAB species have the added advantage

of being able to visit both nutrient-rich deeper water and

irradiance-saturated shallower water either side of these

boundary layers (e.g. Smayda 1997). HABs are also more

likely to occur in sheltered zones of lagoons, estuaries and

coasts, as a result of increased water residence times, war-

mer temperatures and increased penetration of photosyn-

thetically active radiation (PAR; e.g. Smayda 1989).

Although strong turbulent mixing may be disadvantageous

to bloom development by causing the breakup of chains of

individuals and by inhibiting cell division (Estrada & Ber-

dalet 1997), low level turbulence can enhance nutrient

availability by facilitating increased transfer of molecules in

or out of plankton cells, especially in passively floating

diatoms (Peters et al. 2006). Other biological processes,

including inter-cell quorum sensing and encounter rates

with competitors and grazers (Gowen et al. 2012), are also

modulated by fine scale turbulence and this can also

favour HABs (e.g. Berdalet et al. 2017).

Environmental factors contributing to HAB termination

Advection and dispersion of HABs, increasing turbulent

shear forces breaking up cells, and/or nutrient limitation

are all understood to contribute to the termination of

HABs (Gentien et al. 2007; Lenes et al. 2013), and conse-

quently, HAB prediction models are often driven by these

physical processes and biogeochemical fluxes. However,

models that only include these processes often ‘over-pre-

dict’ HAB duration, indicating that inter-species biotic

interactions play important roles in terminating harmful

blooms (Roelke & Buyukates 2001; Lenes et al. 2013;

Davidson et al. 2016).

Plankton grazers or predators play an important role in

regulating the abundance of marine planktonic micro-al-

gae, including HAB species. In nutrient limited (olig-

otrophic) offshore marine environments, meso-

zooplankton (e.g. copepods 0.2–20 mm) consume 10–40%
of marine phytoplankton, while micro-zooplankton (20–
200 lm) consume around 60–70% (Calbet 2008). In tem-

perate nutrient-rich (eutrophic) upwelling and estuarine

ecosystems, micro-sized heterotrophic and mixotrophic

dinoflagellates (including HAB species) can dominate phy-

toplankton grazing (Calbet 2008). More detailed, mecha-

nistic understanding concerning how and to what extent

grazers regulate or terminate HABs is lacking. Plankton

community interactions can vary markedly in temperate

waters displaying a seasonal succession of different bloom-

ing species and also in (sub)tropical waters with relative

constant standing stocks of microplankton. In both cases,

food web dynamics can alternate between resource (bot-

tom-up) and predatory (top-down) control (Calbet 2008)

and outcomes for HABs are highly situation-specific

(Turner & Tester 1997).

Marine parasitic microbes (micro- and nano-sized pro-

tists 10–100 lm, pico-sized bacteria 0.2–10 lm and femto-

sized viruses ≤ 0.1 lm) target all of the main phytoplank-

ton groups (Gachon et al. 2010). They have been shown to

play a significant role in terminating some major algal

blooms (Wilson et al. 2002) and have also been linked to

the decline of HABs (Chambouvet et al. 2008; Roth et al.

2008; Jones et al. 2011). In turn, this has prompted

research into the microbial control and bioremediation of

HABs (Brussaard 2004; Sun et al. 2018; see section ‘Spatial

and temporal planning to minimise HAB risk’). Larger

micro-sized parasites such as the dinoflagellate Amoebo-

phyra spp. may also be responsible for the termination
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(Rosetta & McManus 2003; Montagnes et al. 2008) or reg-

ulation (Nishitani et al. 1985) of dinoflagellate HABs such

as Alexandrium spp.

Adaptive responses in HAB species to avoid or combat

grazers and parasites include sensing and moving away

from grazers (Wolrhab 2013); adapting/optimising colony

size (chain length) versus swimming speed (Selander et al.

2012); synthesising and releasing phycotoxins and/or other

allelochemicals (St€uken et al. 2011; Anderson 2012);

undergoing or prolonging encystment (Rengefors et al.

1998; Toth et al. 2004); and undergoing auto-lysis (i.e. pro-

grammed cell death) (Franklin et al. 2006; Lenes et al.

2013). Combinations of mechanisms underlying predator–
prey and host–parasite interactions can vary greatly since

algal prey/host and predator/parasite niches are highly

species-specific (Amin et al. 2015; Ramanan et al. 2016).

Regulation of HABs by filter feeding shellfish

Filter-feeding shellfish can exert considerable (top-down)

grazing pressure, limiting phytoplankton (and zooplank-

ton) biomass, particularly in shallow, well mixed estuaries

and coastal waters, where bottom-living bivalves can come

into contact with and filter the majority of the water col-

umn (Newell 2004; Lucas et al. 2016). Bivalves such as

mussels, suspended on ropes hanging vertically in the water

column can also be effective at filtering plankton at deeper

water sites (Stadmark & Conley 2011; Hedberg et al. 2018).

Physical factors such as water column exchange, turbulent

mixing, temperature and stratification, and the influence of

mariculture infrastructures on each of these (see Sec-

tion ‘Physical alteration of habitats and hydrodynamic

regimes’), can be important in modulating shellfish grazing,

phytoplankton sinking, and phytoplankton community

composition – for example reduced vertical mixing favours

motile dinoflagellates, while nonmotile phytoplankton such

as diatoms sink below the euphotic zone and are more

easily intercepted by grazers (Lucas et al. 2016). The influ-

ence of selective filter feeding by shellfish on plankton com-

munity structure, including HABs species, is relatively

poorly understood (Newell 2004; Petersen et al. 2008;

Lucas et al. 2016). Simple size selection for nano-sized

plankton and above (>4 lm) and higher filtration rates in

the warmer summer months may serve to reinforce sea-

sonal succession from nano- to pico-plankton dominated

communities (Newell 2004). Sensing of food particles and

their surface chemistry have been suggested to play a role

in selective filtering of nutritious plankton in preference to

detrital and mineral particles (Ward & Shumway 2004;

Espinosa et al. 2009; Yahel et al. 2009). Phycotoxins, par-

ticularly paralytic shellfish toxins (PSTs) as well as other

toxin classes (e.g. NSTs and ASTs), are capable of inducing

valve closure and/or reducing filtration rate in bivalves, as

well as impairing growth and reproduction and inhibiting

byssus production (Burkholder 1998; Landsberg 2002;

Manfrin et al. 2012). Nevertheless, some bivalves show

preferential uptake of harmful algal cells. This has been

shown in the laboratory in five bivalve species (Bay scallop,

Eastern oyster, Northern quahog, softshell clam (Mya are-

naria) and the blue mussel (Mytilus edulis). All bivalves,

with the exception of softshell clam, ejected intact cells of

three HAB species (Prorocentrum minimum (PST and

DST), Alexandrium fundyense (PST) and Heterosigma aka-

shiwo (NST)) in their faeces or pseudo-faeces. Only oysters

exposed to H. akashiwo showed partial or complete valve

closure and reduction in filtration rate. These results con-

firm that feeding responses of bivalves in the presence of

HABs can be highly species-specific. Furthermore, clear-

ance of HABs from the water by bivalves may simply result

in the transfer of intact/live cells to the sediment, from

which they could be resuspended (H�egaret et al. 2007).

Environmental impacts of mariculture and
contribution to HAB risk

Long-term time-series data are required to demonstrate

the influence of finfish, shellfish and/or macro-algal mari-

culture on HAB risk as recognised in the Science Plan of

the international programme on HABs (GlobalHAB,

2017). Accumulating evidence from China, which has the

longest running, largest and highest concentration of mar-

iculture in the world, indicates that the frequency and

extent of HABs has been increasing concurrently with the

industry growth since 1960 (Wang et al. 2008; Lu et al.

2014; Wartenberg et al. 2017). The occurrence of HAB

events in China increased sharply in 2009 with ~80 epi-

sodes, covering > 15,000 km2 of China’s coastline in just

one year. The increasing trend, however, also follows

increasing urbanisation of coastal fringes (Liu & Su 2017).

Potential environmental effects of mariculture are listed in

Table 3, and the tendencies for these effects to promote

HAB formation and impact (either directly or indirectly)

are discussed in sections ‘Nutrient emission versus assimi-

lation’, ‘Chemical treatments used to control pathogens

and parasites’, ‘Escapees and introduction of invasive and/

or harmful species’, ‘Physical alteration of habitats and

hydrodynamic regimes’ and ‘Transmission of HAB species

and alteration in the abundance and composition of

plankton communities’.

Organic and inorganic nutrient emission versus

assimilation

Nutrient emissions from mariculture operations are pre-

dicted to increase substantially due to industry expansion

(up to sixfold by 2050). The majority of these emissions
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comprise nutrient waste, primarily from finfish (fed mari-

culture) and also from shellfish, released in a dissolved

form directly to the water column (Bouwman et al. 2013).

These nutrient emissions may promote the growth of

harmful algal species in the vicinity of mariculture farms

(Anderson et al. 2002; Hallegraeff 2003). However, causal

linkages between fish farming and eutrophication (Pitta

et al. 2005; Modica et al. 2006) and HABs (Anderson

et al. 2008) are often not clear (Smayda 2004; Gowen

et al. 2012). In some cases (e.g. farming of extractive shell-

fish), mariculture can cause net assimilation of nutrients

leading to deficits (Ferreira et al. 2014), while elsewhere

nutrient emissions may exceed local environmental assimi-

lation capacities (Bouwman et al. 2013). Problems are

likely to be more acute for farms with higher stocking

densities (Sellner et al. 2003; Bouwman et al. 2013). Inten-

sive bivalve cultivation can alter the nitrogen:phosphorus

(N:P) nutrient stoichiometry and change the major N spe-

cies to reduced forms, especially ammonia, as well as par-

ticulate organic nitrogen, and these N forms are preferred

by various harmful algae – predominated by dinoflagel-

lates (e.g. Arzul et al. 2001; Glibert et al. 2014a, but see

Davidson et al. 2012). Conversely, diatoms have also been

shown to decline as a result of nutrient excretion by

bivalves (Lucas et al. 2016). A further concern arises

because of low assimilation efficiencies (typically 30–40%
for N, or less under bloom conditions), such that shellfish

can become point sources of regenerated nutrients. Ben-

thic regeneration of the accumulated faeces and decom-

posing feed can be significant in shallow well mixed

coastal waters (Bouwman et al. 2013).

Disease and use of chemical treatments to control

pathogens and parasites

Infections by pathogens and infestations of parasites, exac-

erbated by aggregations of wild fish around mariculture

installations (Dempster et al. 2004), present a risk to

human and (shell)fish health and have similar financial

impacts to those for HABs (e.g. impacts of white spot virus

on shrimp farming in Southeast Asia ~6 US$ billion/year)

(Lafferty et al. 2015). Consequently a range of antimicro-

bial chemicals and pesticides are licensed for use in mari-

culture, specifically for finfish culture (Johnston & Santillo

2002; Read & Fernandes 2003). Cumulative environmental

exposures to these chemicals can be significant in some

coastal waters (Baker-Austin et al. 2008; Uyaguari et al.

2013) and may exceed environmental quality standards

(EQSs), which can be as low as 1 part in 1 trillion for some

highly potent compounds (Gilliom 2007; Watts et al.

2017). Impacts of antimicrobial chemicals on beneficial

microbes and associated ecosystem services (e.g. nutrient

cycling, water quality and HAB regulation) could be signifi-

cant (Woolhouse & Ward 2013; Watts et al. 2017).

Research on the impacts of chemicals on HAB regulation

has been extremely limited to date and has generally

focused on the effects of pesticides on HABs in freshwater

systems (Relyea 2009; Beketov et al. 2013; Harris & Smith

2015; Staley et al. 2015).

Escapees and introduction of invasive and/or harmful

species

Macro-algal blooms (seaweed blooms) leading to oxygen

depletion, alteration of ecosystem biodiversity and pro-

duction of certain toxins (Anderson 2009) have been

shown to originate from open water suspended culture

systems. For example, significant escapes may occur from

Porphyra culturing spanning more than 40 000 km2 in

some instances in the South China Sea. Bloom-forming

species including sea lettuce (Ulva spp.) and gutweed

(Enteromorpha spp.) can cause major economic loss by

inundating waterways and beaches, leading to widespread

asphyxiation of organisms when the blooms biodegrade

(Liu & Su 2017).

Physical alteration of habitats and hydrodynamic regimes

Reduced hydrodynamic flows are known to lead to reduced

turbulence, which in turn tends to promote the blooming

of dinoflagellate species, including HAB species (Smayda &

Reynolds 2001). Mariculture structures, including longlines

for shellfish and kelp and net pens for finfish can signifi-

cantly change surface current speed and direction, induce

down-welling, increase stratification and reduce water

exchange in sheltered and enclosed bays (Zeng et al. 2015;

Lin et al. 2016; Wartenberg et al. 2017). Expansion of sus-

pended mariculture in Sanggou Bay reduced the average

speed of currents by 40% and the average half-life of water

exchange was prolonged by ~70% (Shi & Wei 2009). It is

also possible that disturbance of sediments by aquaculture

and fishing operations may promote the resuspension of

HAB cysts.

Table 3 Environmental effects of mariculture that can promote HAB

risk

(i) Organic and inorganic nutrient emission versus assimilation;

(ii) Disease and use of preventative chemical agents;

(iii) Escapees and genetic interactions with wild populations;

(iv) Physical alteration of habitats and hydrodynamic regimes;

(v) Increase in HAB transmission (between relay sites) or alteration

of the abundance and composition of plankton communities.

References for (i–iv): Lovatelli et al. (2013), Kapetsky et al. (2013),

Wartenberg et al. (2017).

References for (v): Gibbs (2004), Grant et al. (2007).
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Transmission of HAB species and alteration in the

abundance and composition of plankton communities

Risks of HAB impacts may increase directly with the

future expansion of mariculture, via the movement (relay-

ing) of ‘contaminated’ shellfish stocks and equipment

between sites (H�egaret et al. 2008), including from the

coast to offshore and vice versa, or via regular aquaculture

operations and ballast water transfers (Hallegraeff & Bolch

1991, 1992). Indirect impacts include alteration of the

abundance and composition of plankton communities,

including HAB competitors, parasites and grazers (Roth

et al. 2008; Eckford-Soper et al. 2016). Over-intensifica-

tion of mariculture can also lead to depletion of plank-

tonic larvae (including finfish, shellfish and other

invertebrates) and reduced food availability for wild shell-

fish populations (Gibbs 2004; Ferreira et al. 2014; Pastres

et al. 2018), especially in regions with low primary pro-

ductivity (Gibbs 2004; Grant et al. 2007). This may have

consequences for negative feedback control of the abun-

dance and composition of plankton communities by

native filter feeders.

Detecting and forecasting HAB events

Maximising the profitability and environmental sustain-

ability of mariculture requires surveillance monitoring

and early warning systems, forecast-based financing and

strong risk governance structures (FAO, IFAD, UNICEF,

WFP and WHO, 2018). The following systems are out-

lined in sections ‘In situ monitoring’, ‘Satellite remote

sensing (Earth observation)’ and ‘Predictive modelling’

below.

In situ monitoring

In situ monitoring for HAB species abundance and phy-

cotoxin concentrations in (shell)fish is the principal

method for ‘official control’ monitoring and safeguarding

of food fish safety for human consumption in Europe,

North America, Asia and Australasia. In situ monitoring

is generally conducted via the collection and analysis of

representative field samples; using microscopic analysis

for phytoplankton identification and enumeration, and

using mass spectrometric analysis for phycotoxin identi-

fication and quantitation. The use of autonomous in situ

molecular (qPCR) and flow cytometry methods has also

proved capable of real-time sensing of algal blooms (e.g.

Campbell et al. 2013). These in situ devices can be

located on smart buoys or underwater gliders (Davidson

et al. 2014). Integrative solid-phase adsorption toxin

tracking (SPATT) deployed in the field for the passive

sampling of algal toxins has also been validated recently,

and improved enzyme-linked immuno-sorbent assay

(ELISA)-based methods with lower detection limits for

more toxins have become commercially available for

both screening and routine monitoring purposes (Zhang

& Zhang 2015).

In Europe, routine HAB monitoring (EU Directives

2000/60/EC and 2006/113/EC) is used to quantify HAB

species abundance and phytotoxin levels (Higman et al.

2014). Shellfish toxin concentrations are evaluated against

EU action levels triggering harvesting bans (ASP > 20 mg

Domoic/epi-Domoic acid; PSP > 800 lg STX equivalents

(eq.); Lipophilic toxins (DSP) OA/DTXs/PTXs

together > 160 lg OA eq.; AZAs > 160 lg AZA eq.;

YTXs > 3.75 mg YTX eq. – see Table 2 and underlying text

for expansion of abbreviations), allowing for cross-border

trade of aquaculture products. While individual HABs

and their toxins vary in concentration on a seasonal

basis, HAB events can occur year-round, as can aquacul-

ture harvesting. Responsibility for ‘official control’ resides

with respective statutory authorities within EU member

countries and results are published online for each desig-

nated site. In situ HAB monitoring data can be com-

bined with satellite imagery (Section ‘Satellite remote

sensing (Earth observation)’) and numerical models (Sec-

tion ‘Predictive modelling’) to give a better indication of

HAB risk, as implemented in Ireland (Leadbetter et al.

2018). In some cases, more proactive monitoring can

occur, such as in Scotland where a group of finfish farm-

ers collectively pay for weekly satellite remote sensing

observations of Karenia mikimotoi surface distributions

(Davidson et al. 2016).

In the United States, both the National Oceanic and

Atmospheric Administration (NOAA) and the Environ-

mental Protection Agency (EPA) monitor for, and provide

some indication of, impending HABs. In the Gulf of Mex-

ico, a twice-weekly risk assessment is provided during the

summer-autumn HAB season, based on a regular in situ

monitoring programme (and using meteorological models,

particularly to provide warning of toxic aerosol events, e.g.,

caused by Karenia brevis). The rest of the US coastline is

monitored routinely for HAB events by a volunteer net-

work; the ‘National Phytoplankton Monitoring Network’,

sampling twice monthly. In some locations in the United

States, more intensive programmes are in place, such as the

SoundToxins programme which is funded by NOAA and

Washington Sea Grant and monitors 31 sites on a weekly

basis in Puget Sound in Washington State, or the California

Harmful Algal Bloom Monitoring and Alert Program (Cal-

HABMAP) funded by US Congress and the National Aero-

nautics and Space Administration (NASA; Kudela et al.

2015).
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Across Southeast Asia, some countries operate a regular

programme of shellfish monitoring (e.g. Japan, Indonesia,

Vietnam, Korea), while other countries lack the resources

to have a robust programme or initiate sampling when

blooms are detected (e.g. Laos, Myanmar; Eong & Sulit

2015). In Australasia, monitoring effort varies, with fre-

quent sampling of high risk locations in western Australia

(Dias et al. 2015), but overall being less well sampled and

leading to high instances of human poisonings (Hallegraeff

et al. 2017). In Chile and wider Latin America, after many

intoxication events, a standardised sampling programme

was developed across the region in 2009, although main-

taining the network and regular sampling is dependent on

continued resource availability (Cuellar-Martinez et al.

2018).

In scaling up from regional monitoring to a Global

Ocean Observing System (GOOS) for HABs, it is recog-

nised that there is no universal ‘one-size-fits-all’ solution,

but that communication is key and stakeholders require

affordable, easy to understand, real-time information, for

example, in the form of spatial and temporal risk mapping

(Anderson et al. 2019).

Satellite remote sensing (Earth observation)

The use of satellite remote sensing, alongside in situ sensing

or ground truthing, has wide-scale potential for detecting

increases in potential surface dwelling HAB species or high

concentrations of all surface algae (reviewed by IOCCG,

2014; Davidson et al. 2016) in relation to fisheries and

aquaculture/mariculture (IOCCG, 2009). Images of ocean

colour from visible and infrared spectrum wavelengths can

be correlated statistically with HABs events or in some cases

the HAB species can be observed if they are spectrally dis-

tinct (https://www.shelleye.org/index; https://www.s3euro

hab.eu/en/). For example, correlations have been found

between ocean colour, chlorophyll and algal biomass

(Sourisseau et al. 2016), with some correlations incorporat-

ing the use of artificial neural networks (El-Habashi et al.

2017). K. mikimotoi and K. brevis are both species that

have spectral signatures that allow successful identification

when they are present in large abundances (Kurekin et al.

2014; Shutler et al. 2015; El-Habashi et al. 2017). In gen-

eral, HAB species that are detectable by remote sensing are

those that form significant blooms of >1000 cells/mL at the

sea surface or near-surface (e.g. Karenia mikimotoi, Kurekin

et al. 2014; Karenia brevis, El-Habashi et al. 2017). Satellite

imaging however cannot detect species that form harmful

blooms at greater depths or at low densities of ~100 cells/L

(e.g. Dinophysis spp.) (Reguera et al. 2014). Remote sensing

techniques are also unable to detect HABs when observa-

tion of ocean colour is obscured by cloud cover (Maguire

et al. 2016).

Predictive modelling

Early warning of the onset of HAB events over time scales

of several days, and their likely movement and changing

magnitude (i.e. relative to safe limits), would be highly

beneficial to the mariculture industry, allowing proactive,

rather than reactive, responses to minimise impacts on

businesses, customer confidence or human health (David-

son et al. 2016). Immediate responses may include

advanced (or delayed) harvesting of stock (limited by stor-

age capacity and by supply chain logistics) or deployment

of mitigation measures (Section ‘Analysis of options for

mitigating HAB risk to mariculture’). Longer-term, more

strategic business planning is dependent on knowing when

harvesting bans imposed by HAB outbreaks are likely to

be lifted, in order to better manage business operations,

staffing and supply chains. HAB predictions based on

readily available physical (hydrographical and meteorolog-

ical) data offer a simple, tractable solution for forewarning

mariculture operators in locations where these physical

‘forcing factors’ are principle drivers of HAB initiation.

These physical models are generally better at predicting

HAB initiation than HAB termination, but in any event

forecasting is generally limited to 1 week in advance

(Davidson et al. 2009; Cusack et al. 2016; Schmidt et al.

2018), which corresponds with general extent and accu-

racy of meteorological forecasting (Davidson et al. 2016).

Furthermore, the majority of models, which are driven

predominantly by meteorological and hydrographical pro-

cesses, often ‘over-predict’ HAB duration (Davidson et al.

2016). This is reassuring for human safety, but not so

appealing for businesses desperate for harvesting bans to

be lifted, as soon as it is safe to do so. Hydrophysical

models coupled with HAB population models, which also

incorporate biological and geochemical processes, can

improve HAB predictions, by taking into account life-his-

tory data and environmental and physiological optima for

HAB species (Roelke & Buyukates 2001; McGillicuddy

et al. 2005; Glibert et al. 2014b; Aleynik et al. 2016; Gilli-

brand et al. 2016). Modelling changes in trophic mode

(autotrophy versus mixotrophy) (Lee et al. 2016) and

interactions with other plankters, including HAB parasites

and grazers (Lenes et al. 2013) can also help to improve

predictions of bloom duration. However, increasing

trophic complexity in community and ecosystem models

can lead to reduced resolution of species-specific dynam-

ics, including HAB population dynamics (Flynn & McGil-

licuddy 2018). Other trade-offs in implementing more

elaborate ecosystem models include greater specificity

(spatial limitation) of model predictions and increasing

requirements for input data for model parameterisation,

computational processing power and expert operators

(Butensch€on et al. 2016).
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Combining bio-physical modelling of HABs with satellite

remote sensing data has been used successfully in short-

term national forecasting systems for public health and

aquaculture protection in the US and EU for example

(Kudela et al. 2015; Shutler et al. 2015; Davidson et al.

2016; Ruiz-Villarreal et al. 2016) with the potential for

wider detection of HABs (Anderson et al. 2019). There is

also the potential to extend forecasting of HAB events from

days to several weeks or even months in advance, by track-

ing successional changes in plankton community composi-

tion over time, in conjunction with traditional in situ

monitoring and real-time sensing of impending blooms

(Roelke & Buyukates 2001; Campbell et al. 2013). Inter-an-

nual predictions of HAB trends and the identification of

hotspots prone to recurring HAB events are also highly

beneficial for strategic marine spatial planning, including

for new or expanding mariculture infrastructure. These

longer-term predictions are more circumspect, as the bio-

geographical niches of different HAB genera or species are

likely to shift with a changing climate and/or become more

variable (Callaway et al. 2012; Wells et al. 2015; Global-

HABs, 2017).

Analysis of options for mitigating HAB risk to
mariculture

Options for mitigating HAB impacts to mariculture fall

into three basic categories: (i) spatial and temporal plan-

ning of mariculture operations to avoid or minimise the

risk of HABs; (ii) holistic environmental management

options to minimise local HAB risk around mariculture

farms (e.g. multi-species, multi-trophic, ecosystem-based

options favouring nutrient assimilation and recycling and/

or cultivation of species which are more resistant to, or less

prone to accumulate, HAB toxins); (iii) direct interventions

for controlling the presence or abundance of HAB species

(physical, chemical, biological control options). The advan-

tages of various options in each of these categories and

their state of readiness for application in commercial mari-

culture are discussed below (Sections ‘Spatial and temporal

planning to minimise HAB risk’, ‘Holistic environmental

management options for minimising HAB impacts’ and

‘Direct interventions for controlling HAB impacts’).

Spatial and temporal planning to minimise HAB risk

Spatial planning for new mariculture infrastructure can be

targeted to avoid HAB hotspots, while planning harvesting

outside peak HAB risk periods can be implemented at

already established/licensed mariculture farms, with both

options being informed by existing HAB detection and

forecasting systems (outlined in Section ‘Detecting and

forecasting HAB events’). Development of offshore sites

with significant exposure to tides, wind and wave action

(Drumm 2010; Froehlich et al. 2017; Buck et al. 2018) can

potentially mitigate HAB risks linked to mariculture itself

e.g. elevation of nutrient levels, physical alteration of habi-

tats and hydrodynamics and modification of local plank-

tonic (and benthic) communities (Section ‘Environmental

impacts of mariculture and contribution to HAB risk’).

However, HABs often originate naturally offshore (inde-

pendently from anthropogenic activities) (Whyte et al.

2014; Davidson et al. 2016; D�ıaz et al. 2016; Gobler et al.

2017) and there is some evidence that some HAB species

may present even greater risk here compared to inshore

areas (Trainer et al. 2012). Regulatory policy for sustain-

able offshore aquaculture has only recently been developed

in the United States (NOAA, 2016) and is not yet formu-

lated and published in other countries or continents, such

as New Zealand, Australia and Europe (Froehlich et al.

2017). Emerging guidelines for assuring minimal impacts

from offshore mariculture on water quality and pelagic and

benthic communities relate to: minimum water depths

(twice the depth of mariculture infrastructure) and mini-

mum water flow rates (>0.05 m/s) (Belle & Nash 2008;

Froehlich et al. 2017). In such localities, the probability of

ecological effects on neighbouring natural habitats dimin-

ishes significantly beyond a distance of 90 m (Froehlich

et al. 2017). This distance also provides a nominal guide-

line for the proximity/density of neighbouring offshore

mariculture infrastructure. However, some ecosystem mod-

els predict significant trophic interactions between large

offshore installations and more distant coastal mariculture

sites, indicating wide-ranging implications for nutrient

budgets and biosecurity (spread of microbial pathogens).

These ecological interactions have been modelled and veri-

fied for the large (15 km2) Ria Formosa Mariculture Park

located >3 nm offshore from coastal sites in the Algarve

region of Portugal (Ferreira et al. 2014). Ecological linkages

between extensive mariculture installations and the peri-

odic occurrence of HABs along the Algarve coast have yet

to be established.

Holistic environmental management options for

minimising HAB impacts

Holistic environmental management of HABs addressing

causative factors (e.g. minimising nutrient inputs from land-

based sources and from mariculture itself) or preserving

habitats and ecosystem services that help regulate HABs, may

be simpler, more effective and more environmentally friendly

(WHO, 2003; Wells et al. 2019) than attempting to control

HAB outbreaks directly (Section ‘Direct interventions for

controlling HAB impacts’). For example, nutrient enrich-

ment can be managed through the use of ‘extractive’ shellfish

and macro-algal species. Furthermore, restoration of coastal
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habitats, for example with seagrasses that harbour algicidal

bacteria (Inaba et al. 2019), or cultivation of seaweeds that

secrete algicidal chemicals (Zerrifi et al. 2018), can also help

mitigate against HABs. This follows Ecosystem Approaches

to Fisheries and Aquaculture (EAF/EAA) (Soto & Aguilar-

Manj�arrez 2009; FAO, 2018), which cover three main aspects:

(i) minimising environmental impacts and waste; (ii) sustain-

ing wider ecosystem functions and services; and (iii) promot-

ing human well-being and equity among marine

stakeholders.

(i) Minimising environmental impacts and waste – Shell-

fish and macro-algal culturing can have a positive influence

on the regulation of HABs, either by reduction of high bio-

mass blooms through filter feeding or via nutrient removal

(Stadmark & Conley 2011; Petersen et al. 2014). Nutrient

removal by mariculture, curbing eutrophication, in EU

coastal waters alone is valued at US$20 to 30 billion per

year (Ferreira et al. 2009). Furthermore, mariculture

reduces the exploitation of natural shellfish stocks, which

can also help regulate HABs. For example, overfishing of

shellfish around Long Island, USA, has coincided with the

increased occurrence of Aerococcus anophagefferens brown

tides (Glibert et al. 2005).

(ii) Sustaining wider ecosystem functions and services –
Mariculture farms can provide sheltered nursery habitats

for marine/estuarine organisms, with the potential to

enhance local fisheries and to support biodiversity in neigh-

bouring marine protected areas (Le Gouvello et al. 2017).

Maintaining biodiversity is important, since impoverish-

ment of planktonic species and reduced species succession

have been correlated with increased HAB risk. In some

cases, such community changes can forewarn HAB out-

breaks several months before the detection of the HAB spe-

cies (e.g.Microsystis sp.; Roelke & Buyukates 2001).

(iii) Promoting human well-being and equity among mar-

ine stakeholders – Marine spatial planning is required to

effectively locate mariculture and fisheries conservation

areas and avoid conflicts with other uses of the marine

environment. To facilitate planning, environmental models

can be used to assess nutrient budgets, productivity versus

eutrophication risk, the risk of transmission of pathogens,

pests associated with mariculture (Ferreira et al. 2014; Pas-

tres et al. 2018) and the risk of advection of HABs to mari-

culture sites (Dabrowski et al. 2016; Paterson et al. 2017).

A promising approach for delivering on each of these

EAA/EAF aspects, including the potential to minimise HAB

risk, is integrated multi-trophic aquaculture (IMTA)

(Wartenberg et al. 2017). IMTA employs cultureable ‘ex-

tractive’ species (e.g. suspended bivalve shellfish and

macroalgae, and benthic deposit feeders) to remove/reuse

waste nutrient material discarded from the culturing of

‘fed’ species (finfish and crustaceans) thereby providing a

self-sustaining and more productive food web (Figure 2)

(Soto 2009; Troell et al. 2009; Chopin et al. 2012).

Macroalgae can also play a direct role in inhibiting the

growth of microalgae, including HAB species, through

competition for nutrients (Soto 2009; Holdt & Edwards

2014), inhibitory allelopathy (Tang & Gobler 2011; Ben

Gharbia et al. 2017; Zerrifi et al. 2018), and/or by reducing

light penetration (Zhou et al. 2006; Wang et al. 2007; Yang

et al. 2015).

Further developments in IMTA, including deploying

aquaculture species that are less sensitive to, or less likely to

accumulate, toxins from locally re-occurring HAB species,

are likely to be required to maximise benefits in terms of

mitigating against HAB impacts. The long-term sustainabil-

ity of IMTA for mitigating HAB risk with climate change

also requires further research (Wells et al. 2019). For exam-

ple, China has some of the world’s largest and longest estab-

lished IMTA systems, including a multi-trophic system

established in 1996 in Sanggou Bay, Yellow Sea (Fang et al.

2016). Since 2010, however, Sangou Bay has regularly experi-

enced brown tides of A. anophagefferens (Kong et al. 2012).

Coincidentally, large-scale A. anophagefferens brown tides

extending over 3000 km2 have occurred in the north western

Bohai Sea each year in early summer since 2009 and have

caused significant negative impacts on scallop (Argopecten

irradians) culture (Zhang et al. 2012). Other HAB species

including Karenia mikimotoi and Prorocentrum donghaiense

also continue to form annual blooms in nearshore waters of

the Yellow Sea and neighbouring East China Sea (Li et al.

2009), with K. mikimotoi causing substantial losses to mari-

culture from 2005 to 2015 (Liu & Su 2017).

Direct interventions for controlling HAB impacts

Physical and chemical control methods can remove HABs

efficiently and are used operationally as a last resort in mar-

iculture, but they can be costly, lack specificity to HABs,

and are generally less effective in coastal situations in com-

parison with enclosed or semi-enclosed aquatic systems.

Alternatively, biological control methods can be potentially

more specific for individual HAB species, minimising

impact on other non-target species, but they are more diffi-

cult to constrain in non-enclosed systems and have not

progressed beyond laboratory or field trials for mariculture

applications (reviewed in NOAA, 2015; Sellner & Rensel

2018; Sun et al. 2018; Gallardo-Rodr�ıguez et al. 2019).

Physical control methods include the use of barriers or

skirts, for example, around fish net pens and/or the

removal of HAB cells by water column mixing, filtering,

flocculation, settlement, sediment burial and dredging, or

HAB cell lysis using ultrasound (Sellner & Rensel 2018).

Water column mixing using water or air pumping systems

leads to disruption of thermal stratification and impair-

ment of algal buoyancy or alteration of their daily
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migration patterns, removing them from the photic zone

and preventing photosynthesis. Direct cell removal from

the water column can be achieved by hydrodynamic separa-

tion, centrifugation, pump filtration, plankton net trawling

or membrane filtration. A measure which has proven effec-

tive for HAB control in the open sea has been the use of

clays to induce bloom flocculation. As considerable quanti-

ties of clay are needed, from 100 to 400 g/m2 (Park et al.

2013), physical resuspension of local sediments or importa-

tion on ships are a practical solutions. Subsequent floccula-

tion, sinking and burial of HAB cells and/or cysts can be

followed by dredging and physical or chemical treatment

before discharging the sediments back to the removal site

(NOAA, 2015; Sellner & Rensel 2018). Potential drawbacks

include the removal of non-harmful algae. More efficient

flocculation can be achieved by spraying the sea surface

with modified clays containing inorganic (e.g. aluminium

sulphate or polyaluminium chloride) or organic (e.g. poly-

acrylamide or chitosan) modifiers, which can be up to 100

times more efficient in adsorbing HAB cells (and other

plankters) than natural clay sediments. This enables a

reduction in application levels and time windows – reduc-

ing the risk of clay build-up and helping to reduce impacts

on non-blooming (non-HAB) species (reviewed in Gal-

lardo-Rodr�ıguez et al. 2019). Furthermore, modified clays

have been shown to kill HAB cells (Beaulieu et al. 2003),

adsorb and remove extracellular HAB toxins (Pierce et al.

2004; Seger et al. 2015, 2017) and particulate nutrients (Yu

et al. 2017), and to also reduce HAB toxin accumulation in

benthic filter-feeding bivalves (Yu et al. 2017). Conse-

quently, they have been used in Japan (Shirota 1989) and

employed as a standard method for controlling HABs in

China, since 2014 (Yu et al. 2017). A remaining concern,

preventing uptake of these physical control methods in

other countries, is their lack of specificity for controlling

harmful species and possible unknown impacts on other

phytoplankton and the ecosystem as a whole.

More direct chemical treatments for controlling HABs

include the use of natural biosurfactants, biocides or allelo-

chemicals (e.g. biochemical extracts from macroalgae), or

Figure 2 Integrated multi-trophic aquaculture (IMTA). POM – particulate organic matter; DIN – dissolved inorganic nitrogen; F/P-F – faeces/pseudo-

faeces. IMTA incorporating suspended filter-feeding shellfish, and benthic deposit feeding shellfish can reduce the proliferation of HABs and recycle

POM (capable of fuelling HAB growth) associated with ‘fed’ species (finfish and crustaceans). Suspended macroalgae can also reduce the growth of

microalgae, including HAB species, through shading, competition for nutrients (e.g. fine POM and DIN) and inhibitory allelopathy.
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the use of synthetic chemicals, including hydrogen peroxide

and isolated algicidal compounds, or metallic compounds

such as copper sulphate. These various chemicals (metals

and organic compounds) can interfere with HAB cell sur-

vival (algicidal chemicals), growth and reproduction (algi-

static chemicals) through a variety of mechanisms (NOAA,

2015; Gallardo-Rodr�ıguez et al. 2019). Biochemicals are

advantageous in terms of their higher diversity, biodegrad-

ability and, in some cases, specificity and potentially lower

toxicity to the wider environment (Ahn et al. 2003).

Although many effective aqueous algicidal treatments exist,

few are approved for use in open marine systems, due to

environmental concerns, although some have restricted use

in antifouling paints and surface treatments (NOAA, 2015;

Gallardo-Rodr�ıguez et al. 2019). Several biocidal chemicals

have been tested and approved for use in mariculture, for

controlling shellfish and finfish pathogens or parasites

(Johnston & Santillo 2002; Read & Fernandes 2003) and

some of these may be effective in killing some HAB species.

Biological control measures include the application of

microbial (viral, bacterial, fungal and/or protistan) para-

sites that infect HABs and play a significant role in the nat-

ural termination of major blooms (Brussaard 2004;

Chambouvet et al. 2008; Roth et al. 2008; Jones et al. 2011;

Demuez et al. 2015; Pokrzywinskia et al. 2017). Algicidal

and growth inhibitory bacteria and viruses have potential

for controlling HABs, due to their ability to replicate

rapidly and target-specific hosts (Bibak & Hosseini 2013;

Sun et al. 2018). However, it is possible for these parasites

to be too specific, rendering them unable to infect different

genetic strains of HAB species, or adapt to changing envi-

ronmental conditions (Sun et al. 2018; Gallardo-Rodr�ıguez

et al. 2019). Therefore, rather than using single cultured

microbial species, employing a range of microbes may be

more effective. Aggregates (biofilms) immobilised on sub-

strates may be more effective in reducing HAB cell density

by inhibiting HAB cell growth via nutrient uptake and alle-

lochemical secretion, and causing cell lysis (Alex et al.

2014; Sun et al. 2018). Research is needed to quantify the

release of toxins following HAB cell lysis and the potential

for microbes to degrade them. Further research is also

needed to isolate, purify and identify microbial allelochem-

icals/exudates and to demonstrate their efficacy for control-

ling different HAB species and genetic strains, while

incurring minimal effects on non-harmful algae and other

marine organisms, including cultured shellfish and finfish

species (NOAA, 2015, Sun et al. 2018). Other potential bio-

logical interventions include selective breeding of shellfish

with resistance to HAB toxins and using them as HAB

biofilters and bioremediators (NOAA, 2015). Unquantified

biosecurity risks for biological control measures currently

prevent their operational use in controlling HABs at

mariculture sites.

Conclusions and recommendations

Marine aquaculture (mariculture) is playing an increasingly

important role in global food security. One of the most sig-

nificant risks to mariculture expansion, both inshore and

offshore, is the occurrence of Harmful Algal Blooms

(HABs).

Global impacts from HABs on mariculture (due to fin-

fish or shellfish mortality, poisoning of human consumers

and preventative harvesting bans) currently amount to

something in the region of 8 US$ billion/year; however,

HAB risk assessment is not a standard requirement in the

planning and classification of mariculture sites. This is, in

part, because HABs are natural phenomena, and because

risk factors are diverse, varying greatly both spatially and

temporally. For example, HABs may originate offshore, far

from anthropogenic activities, and can be advected over

large distances to other areas conducive for HAB develop-

ment. Further research is required to guide and enable pre-

emptive measures for mitigating HAB risks, including the

strategic siting of mariculture infrastructure and scheduling

of harvests.

Adaptive management of HAB risk, involving the predic-

tion of HAB events and the tactical use of appropriate and

approved physical, chemical and/or biological control mea-

sures, is needed as part of the sustainable development of

mariculture. However, successful application requires

improved understanding on the efficacy and biosafety/

specificity of the available options. There is a need also for

improved understanding on the interactions among physi-

cal forcing factors (meteorological and oceanographical),

and chemical (nutrient) and biological (community) fac-

tors, in order to predict where and when blooms are most

likely to occur. In support of this, research should exploit

the widespread occurrence of HABs, which provides oppor-

tunities for comparative assessments of HAB drivers

around the world, including the extent to which HAB spe-

cies, their population dynamics, and community interac-

tions show similarities in responses within comparable

ecosystem types. There is considerable scope to capitalise

on advances in automation and (bio)sensor (DNA, RNA,

protein and metabolite)-based technologies, with applica-

tions in: real-time, in situ monitoring of HAB population

dynamics; defining physiological processes and underlying

regulatory gene networks linked to growth and/or toxin

production in HAB species; and building robust, mechanis-

tic models for predicting HAB events.

Harmful algal bloom risks are generally perceived to be

higher at coastal sites, which experience nutrient enrich-

ment from agricultural runoff and municipal effluent dis-

charges. Winds and tides can also transport and

accumulate HABs into coastal areas, including sheltered

embayments, where less turbulent and warmer waters are
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conducive for the growth of various HAB species. In these

and other areas with low water exchange rates, mariculture

itself can have a significant influence on HAB risk by affect-

ing local water quality (e.g. nutrient eutrophication levels),

hydrodynamics (artificial structures reducing water circula-

tion) and plankton communities (e.g. through selective fil-

ter feeding by shellfish). More studies are required to

quantify HAB risks against each of the above factors and

their interactions and the degree to which they are influ-

enced by different types of mariculture.

Harmful algal bloom risks associated with nutrient

enrichment and eutrophication (from terrestrial sources

and mariculture itself) may be mitigated by establishing

mariculture sites offshore, away from the coast and/or in

areas with high horizontal water exchange rates and vertical

mixing. Greater understanding is required on how hydro-

dynamic conditions (e.g. influenced by wind, waves, tides)

and bathymetry (water depth) influence dispersal versus

local deposition and resuspension of nutrients and HAB

propagules/cysts.

Further capacity for HAB mitigation is offered by inte-

grated multi-trophic aquaculture (IMTA), which employs

extractive bivalve shellfish and macroalgae alongside fed

finfish and crustaceans, in order to recycle nutrients, thus

maximising productivity and water quality simultaneously.

Macroalgae (in addition to filter-feeding shellfish) can also

have a direct influence on local plankton community com-

position and abundance – via nutrient competition, light

shading and allelochemical mechanisms. Further research is

required to understand how IMTA systems could be fur-

ther optimised for the additional purpose of HAB attenua-

tion, through selection of suitable, resilient finfish, shellfish

and macroalgal species, and appropriate spatial deployment

and stocking densities.

A key remaining question for mariculture, both inshore

and offshore, is ‘How will HAB risk transpire in a future

warmer climate, typified by increased sea surface tempera-

tures and water column stratification, or alternatively in a

future characterised by increased atmospheric energy and

more turbulent waters?’ Climate change is also likely to be

accompanied by HAB range extensions towards the poles.

To address these issues, collaborative effort is needed that

seeks to unify research themes on ‘HABs, climate change

and aquaculture/mariculture’, as exemplified by Global-

HAB, an international programme sponsored jointly by the

Scientific Committee on Oceanic Research (SCOR) and the

Intergovernmental Oceanographic Commission (IOC) of

UNESCO.
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