

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

An acorn barnacle (*Balanus crenatus*)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

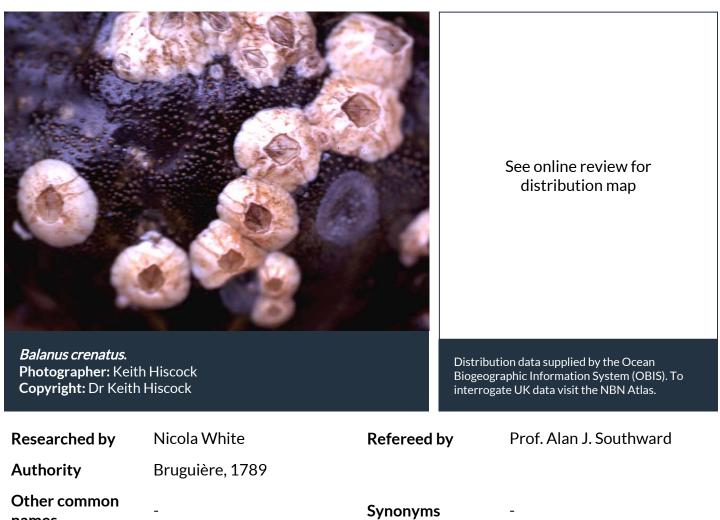
Nicola White

2004-05-17

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1381]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:


White, N. 2004. *Balanus crenatus* An acorn barnacle. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1381.1

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

names

Summary

Description

Balanus crenatus is one of the most common sublittoral barnacles in Britain. It has six shell plates and grows up to 25 mm in diameter. The upper edge of the shell plates are usually toothed and the shell is inclined to one end when viewed in profile. It usually lives for around 18 months.

0 **Recorded distribution in Britain and Ireland**

All coasts of Britain & Ireland, and offshore in the North Sea and Celtic Sea.

9 **Global distribution**

Northeast Atlantic from the Arctic to the west coast of France as far south as Bordeaux; east and west coasts of North America and Japan.

🖌 Habitat

Balanus crenatus is primarily a sublittoral species that can sometimes be found under stones or overhangs on the lower shore. Balanus crenatus colonizes cobbles, shells, bedrock, molluscs and artificial substrata. It is found at a wide range of wave exposures and it can tolerate salinities as low as 14 psu.

↓ Depth range

Data deficient

Q Identifying features

- Shell wall of 6 grey white plates.
- Up to 25 mm diameter.
- Opercular aperture a broad diamond shape.
- Upper edge of shell plates toothed.
- Shell inclined to one end when viewed in profile.
- Shell base calcareous.
- Tissue inside opercular aperture with yellow and purple stripes.

<u><u></u> Additional information</u>

No text entered

✓ Listed by

% Further information sources

Search on:

Biology review

≣	Taxonomy		
	Order	Sessilia	Sessilia
	Family	Balanidae	
	Genus	Balanus	
	Authority	Bruguière, 1789	
	Recent Synonyms	-	
Ş	Biology		
	Typical abundance	Moderate density	
	Male size range		
	Male size at maturity		
	Female size range	Small(1-2cm)	
	Female size at maturity		
	Growth form		
	Growth rate	4.4mm/month	
	Body flexibility	None (less than 10 degrees)	
	Mobility		
	Characteristic feeding method	Active suspension feeder, Passive su feeder	Ispension
	Diet/food source		
	Typically feeds on	Zooplankton and other organic part detritus and phytoplankton.	icles of a suitable size, such as
	Sociability		
	Environmental position	Epifaunal	
	Dependency	Independent.	
	Supports	None	
	Is the species harmful?	Data deficient	

<u>m</u> Biology information

Balanus crenatus has a calcareous base, while *Semibalanus balanoides* has a membranous base. **Feeding**

Balanus crenatus feeds by extending thoracic appendages called cirri out from the shell to filter zooplankton from the water. In the absence of any current, the barnacle rhythmically beats the cirri. When a current is present *Balanus crenatus* holds the cirri fully extended in the current flow. Barnacles feed most during spring and autumn when plankton levels are highest. Little if any feeding takes place during winter, when barnacles rely on stored food reserves. Feeding rate is important in determining the rate of growth.

Moulting

Barnacles need to moult in order to grow. Frequency of moulting is determined by feeding rate and temperature. Moulting does not take place during winter when phytoplankton levels and temperatures are low.

Size:

Balanus crenatus is hermaphroditic and grows up to 25mm in diameter.

Habitat preferences

Physiographic preferences	Open coast, Offshore seabed, Strait / sound, Sea loch / Sea lough, Ria / Voe, Estuary, Enclosed coast / Embayment
Biological zone preferences	Lower eulittoral, Lower infralittoral, Sublittoral fringe, Upper infralittoral
Substratum / habitat preferences	Artificial (man-made), Bedrock, Cobbles, Gravel / shingle, Large to very large boulders, Pebbles, Small boulders
Tidal strength preferences	Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.), Very Strong > 6 knots (>3 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences	Exposed, Extremely exposed, Extremely sheltered, Moderately exposed, Sheltered, Very exposed, Very sheltered
Salinity preferences	Full (30-40 psu), Low (<18 psu), Reduced (18-30 psu), Variable (18-40 psu)
Depth range	Data deficient
Other preferences	No text entered
Migration Pattern	Non-migratory / resident

Habitat Information

Balanus crenatus is a widespread species that occurs at quite high latitudes in the Arctic. It colonizes a wide range of substrata, attaching to any hard substrata, molluscs and their dead shells (Southward, pers. comm.), often as an initial colonizing species. Densely packed colonies occur particularly in areas exposed to strong tidal streams where few other epifauna survive. It can also be found attached to carapaces of the Norway lobster or Dublin Bay prawn (*Nephrops norvegicus*) and other crustaceans.

Balanus crenatus may have been misidentified as *Solidobalanus fallax* in shallow waters lying to the south of the UK. The deep water record of Gruvel (noted in Southward, 1998) is an error (Southward, pers. comm.). *Balanus crenatus* and *Solidobalanus fallax* colonize different substrates and also occur in different temperatures. *Solidobalanus fallax* occurs in warmer water on shells, false corals, seaweeds and other soft substrata, including plastic bags and synthetic netting (Southward, pers. comm.).

𝒫 Life history

Adult characteristics

Reproductive type	Permanent (synchronous) hermaphrodite
Reproductive frequency	Annual episodic
Fecundity (number of eggs)	No information
Generation time	<1 year
Age at maturity	4 months
Season	February - September

Life span	1-2 years		
Larval characteristics			
Larval/propagule type Larval/juvenile development Duration of larval stage Larval dispersal potential	- Lecithotrophic 11-30 days Greater than 10 km		
Larval settlement period	Insufficient information		

Life history information

- *Balanus crenatus* is an obligate cross-fertilizing hermaphrodite. Nauplii larvae are released from the barnacle between February and September, with peaks in April and late summer when phytoplankton levels are highest. However, release is not synchronised with the spring algal bloom, unlike *Semibalanus balanoides*.
- Nauplii larvae are planktotrophic and develop in the surface waters. They pass through six
 nauplii stages before eventually developing into a cyprid larva. Cyprid larvae are
 specialised for settlement. They drift and swim in the plankton before selecting a suitable
 substratum for settlement and metamorphosis. Peak settlement occurs in April and
 declines until October. Metamorphosis usually takes place within 24 hours of settlement.
- Barnacles grow rapidly except in winter. April-settled individuals may release larvae the same July and reach full size before their first winter. Individuals that settled later reach maximum size by the end of spring the following year (Rainbow, 1984).
- Balanus crenatus has a lifespan of 18 months (Barnes & Powell, 1953). Growth rate varies greatly with the degree of current flow and the presence of silt. Balanus crenatus populations attached to Nephrops norvegicus grew only 2mm in 4 months, whereas populations on rafts grew at 0.2mm per day. This reduction in growth in epizoic populations is attributed to the higher presence of silt and reduction in water currents (Barnes & Bagenal, 1951).

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Substratum Loss	High	High	Moderate	Moderate
<i>Balanus crenatus</i> is permanently substratum loss. The species is a (Kitching, 1937) and it heavily c (Kenny & Rees, 1994). Therefor	an important ea olonized a site I	rly colonizer of s that was dredged	sublittoral rock d for gravel wit	surfaces
Smothering	High	High	Moderate	Low
<i>Balanus crenatus</i> can withstand layer but smothering by 5cm of species is an important early co heavily colonized a site that was Therefore recovery is predicted	sediment would lonizer of sublit s dredged for gr	d prevent feedin toral rock surfac	g and could cau ces (Kitching, 1	use death. The 937) and it
Increase in suspended sediment	Low	High	Low	Low
<i>Balanus</i> species are generally tolerant of moderate siltation but are intolerant of excessive siltation (Holt <i>et al.</i> , 1995). Silt could clog the filter feeding apparatus imposing an energetic cost on clearing the cirri. The reduced growth rate of barnacles living on carapaces of <i>Nephrops norvegicus</i> compared to barnacles growing on rafts has been partly attributed to the increased levels of silt in the immediate vicinity of <i>Nephrops norvegicus</i> (Barnes & Bagenal, 1951). Therefore, <i>Balanus crenatus</i> is reported to have a low intolerance to siltation as growth only would be affected. The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily colonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore recovery is predicted to be high.				
Decrease in suspended sediment				
Dessication	High	High	Moderate	High
Balanus crenatus has more perm loses water quicker and dies so crenatus adults of 6 mm and 11 exposure respectively. Similarly mean survival time of 14.4 hour	oner when expo mm diameter ca y, Barnes <i>et al</i> . (1 s in dry air. An i	osed to air. Foste an withstand 17 1963) recorded t	r (1971) record hours and 40 h hat <i>Balanus cre</i> eriod of desicca	ded that <i>Balanus</i> ours of aerial <i>matus</i> had a

therefore lead to a depression in the upper limit of the species distribution. A decrease in the period of desiccation could lead to an extension of *Balanus crenatus* up the shore. The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily colonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore recovery is predicted to be high.

Increase in emergence regime

Balanus crenatus is vulnerable to desiccation upon aerial exposure. The shell plates are more

High

High

High

Moderate

permeable than other littoral barnacles, therefore it loses water and dies quicker. Foster (1971) recorded that adults of 6 mm and 11 mm diameter can withstand 17 hours and 40 hours of aerial exposure respectively. An increase in the period of emergence would lead to a depression in the upper limit of the species distribution. A decrease in the period of emersion could lead to an extension of Balanus crenatus up the shore. The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily colonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore, recovery is predicted to be high.

Decrease in emergence regime

Increase in water flow rate

Balanus crenatus is found in a very wide range of water flow rates. However, Barnes & Bagenal (1951) found that the growth rate of Balanus crenatus epizoic on Nephrops norvegicus was considerably slower than animals on raft exposed panels. This was attributed to reduced currents and increased silt loading of water in the immediate vicinity of Nephrops norvegicus, so growth rate may be reduced if water flow rate decreases. On return to normal water flow rate the growth rate is predicted to rapidly recover.

Low

High

Low

Very high

Very Low

Moderate

Very Low

Low

Moderate

Low

Decrease in water flow rate

Increase in temperature

Balanus crenatus is a boreal species, and is intolerant of increases in water temperature. In Queens Dock, Swansea where the water was on average 10 °C higher than average due to the effects of a condenser effluent, Balanus crenatus was replaced by the subtropical barnacle Balanus amphitrite. After the water temperature cooled Balanus crenatus returned (Naylor, 1965). It has a peak rate of cirral beating at 20 °C and all spontaneous activity ceases at about 25 °C (Southward, 1955). The species is more tolerant of lower temperatures. Balanus crenatus was unaffected during the severe winter of 1962-63, when average temperatures were 5 to 6 °C below normal (Crisp, 1964). The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily colonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore recovery is predicted to be high.

High

Decrease in temperature

Increase in turbidity

An increase in turbidity could be beneficial for Balanus crenatus, if the suspended particles are composed of organic matter. However, if the suspended particles are inedible, an energetic cost may be imposed on clearing the cirri. A reduction in light penetration could also reduce growth rate of phytoplankton and so limit zooplankton levels, which form the bulk of barnacles food. Barnes & Bagenal (1951) found that growth rate of Balanus crenatus epizoic on the mud-burrowing prawn Nephrops norvegicus was considerably slower than animals on raft exposed panels. This was attributed to reduced currents and increased silt loading of water in the immediate vicinity of Nephrops norvegicus. On return to normal turbidity levels the growth rate of Balanus crenatus would resume quickly.

Decrease in turbidity

Increase in wave exposure

Low

Very high

Very high

Very Low

Balanus crenatus can tolerate all degrees of wave exposure. However, barnacle growth is greatest at exposed locations (Crisp, 1960), so a decrease in wave exposure may reduce

Low

⋣

growth rate of barnacles if no tidal stream is present, by reducing the renewal rate of the water and therefore the food supply. On return to normal wave exposure levels the growth rate would quickly resume.

Decrease in wave exposure

Noise	Tolerant	Not relevant	Not sensitive	Low
Barnacles are unlikely to be sensitive to noise.				
Visual Presence	Tolerant	Not relevant	Not sensitive	Low
Barnacles are unlikely to be ser	nsitive to visual p	presence.		
Abrasion & physical disturbance	Intermediate	High	Low	Low
<i>Balanus crenatus</i> would probably be crushed by a heavy force, such as an anchor landing on it. However, it is small and individuals in fissures and crevices would probably survive. The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily colonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994) so recovery is predicted to be high.				
Displacement	High	High	Moderate	Low
removed. However, the species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily colonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994) so recovery is predicted to be high. Chemical Pressures				
	Intolerance	Recoverability		Confidence
Synthetic compound contamination		High	Moderate	Very low
Barnacles have a low resilience to chemicals such as dispersants, dependant on the concentration and type of chemical involved (Holt <i>et al.</i> , 1995). They are less intolerant than some species (e.g. <i>Patella vulgata</i>) to dispersants (Southward & Southward, 1978) and <i>Balanus crenatus</i> was the dominant species on pier pilings at a site subject to urban sewage pollution (Jakola & Gulliksen, 1987). Hoare & Hiscock (1974) found that <i>Balanus crenatus</i> survived near to an acidified halogenated effluent discharge where many other species were killed, suggesting a high tolerance to chemical contamination. Little information is available on the impact of endocrine disrupters on adult barnacles. Holt <i>et al.</i> (1995) concluded that barnacles are fairly sensitive to chemical pollution, therefore intolerance is reported as high. The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily recolonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994).				

Therefore, recovery is predicted to be high.

Heavy metal contamination Inte

Intermediate High

Low

Barnacles accumulate heavy metals and store them as insoluble granules (Rainbow, 1987). Pyefinch & Mott (1948) recorded a median lethal concentration of 0.19 mg/l copper and 1.35 mg/l mercury, for *Balanus crenatus* over 24 hours. Barnacles may tolerate fairly high level of heavy metals in nature, for example they are found in Dulas Bay, Anglesey, where copper reaches concentrations of 24.5 μ g/l, due to acid mine waste (Foster *et al.*, 1978). The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily recolonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore recovery is predicted to be high.

Low

Low

Hydrocarbon contamination

No information is available on the intolerance of *Balanus crenatus* to hydrocarbons. However, other littoral barnacles generally have a high tolerance to oil (Holt *et al.*, 1995) and were little impacted by the *Torrey Canyon* oil spill (Smith, 1968) so *Balanus crenatus* is probably fairly resistant to oil. The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily recolonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore recovery is predicted to be high.

High

Low

Very low

	lore recovery is pro		iigii.	
Radionuclide contamination		Not relevant		Not relevant
Insufficient information				
Changes in nutrient levels	Intermediate	High	Low	Very low
A slight increase in nutrient levels could be beneficial for barnacles by promoting growth of phytoplankton and therefore increasing food supplies. Indeed, <i>Balanus crenatus</i> was the dominant species on pier pilings, which were subject to urban pollution (Jakola & Gulliksen, 1987). However, a large increase in nutrients could cause barnacles to be killed by the dense overgrowth of ephemeral green algae (Holt <i>et al.</i> , 1995). The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily recolonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore recovery is predicted to be high.				
Increase in salinity	Low	Very high	Very Low	High
When subjected to sudden changes in salinity <i>Balanus crenatus</i> closes its opercular valves so that the blood is maintained temporarily at a constant osmotic concentration. <i>Balanus crenatus</i> can tolerate salinities down to 14 psu if given time to acclimate (Foster, 1970). At salinities below 6 psu motor activity ceases, respiration falls and the animal falls in to a "salt sleep". In this state the animals may survive in fresh water for 3 weeks, enabling them to withstand changes in salinity over moderately long periods (Barnes, 1953).				
Decrease in salinity				
Changes in oxygenation	High	High	Moderate	Very low
Balanus crenatus respires ana When placed in wet nitrogen minimal Balanus crenatus bas	, where oxygen str	ess is maximal	and desiccatio	n stress is

When placed in wet nitrogen, where oxygen stress is maximal and desiccation stress is minimal, *Balanus crenatus* has a mean survival time of 3.2 days (Barnes *et al.*, 1963). It is therefore predicted that the species would not survive low oxygen levels for a week, so intolerance is reported as high. The species is an important early colonizer of sublittoral rock surfaces (Kitching, 1937) and it heavily recolonized a site that was dredged for gravel within 7 months (Kenny & Rees, 1994). Therefore recovery is predicted to be high.

Biological Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Introduction of microbial pathogens/parasites		Not relevant		Not relevant
Insufficient information				
Introduction of non-native species		Not relevant		Not relevant
Insufficient information				
Extraction of this species	Not relevant	Not relevant	Not relevant	Not relevant

NR

 Extraction of other species
 Not relevant
 Not relevant
 Not relevant

 NR

Additional information

Importance review

Policy/legislation

- no data -

\bigstar	Status		
	National (GB) importance	-	Global red list (IUCN) category
NIS	Non-native		
	Native	-	
	Origin	-	Date Arrived -

Importance information

Balanus crenatus is an important initial colonizing species, perhaps obscuring material such as antifouling paint that would be toxic to other species. It is a source of food for *Nucella lapillus* in tidal sounds. Balanus crenatus is also grazed by *Echinus esculentus* and fish species probably nip its cirri. The plates of dead Balanus crenatus are probably an important part of the unique shell gravel banks in the Menai Strait, North Wales.

Bibliography

Barnes, H. & Bagenal, T.B., 1951. Observations on Nephrops norvegicus and an epizoic population of Balanus crenatus. Journal of the Marine Biological Association of the United Kingdom, **30**, 369-380.

Barnes, H. & Powell, H.T., 1953. The growth of Balanus balanoides and B. crenatus under varying conditions of submersion. Journal of the Marine Biological Association of the United Kingdom, **32**, 107-127.

Barnes, H., 1953. The effect of lowered salinity on some barnacle nauplii. Journal of Animal Ecology, 22, 328-330.

Barnes, H., Finlayson, D.M. & Piatigorsky, J., 1963. The effect of desiccation and anaerobic conditions on the behaviour, survival and general metabolism of three common cirripedes. *Journal of Animal Ecology*, **32**, 233-252.

Bassindale, R., 1964. British Barnacles. London: The Linnean Society of London. [Synopses of the British Fauna, no. 14.]

Clarke, G.L., 1947. Poisoning and recovery in barnacles and mussels. *Biological Bulletin, Marine Biological Laboratory, Woods Hole,* **92**, 73-91.

Crisp, D.J. (ed.), 1964. The effects of the severe winter of 1962-63 on marine life in Britain. *Journal of Animal Ecology*, **33**, 165-210. Crisp, D.J., 1960. Factors influencing the growth rate of *Balanus balanoides*. *Journal of Animal Ecology*, **29**, 95-110.

Donahue, W.H., Wang, R.T., Welch, M., & Nicol, J.A.C., 1977. Effects of water-soluble components of petroleum oils and aromatic hydrocarbons on barnacle larvae. *Environmental Pollution*, **13**, 187-202.

Foster, B.A., 1970. Responses and acclimation to salinity in the adults of some balanomorph barnacles. *Philosophical Transactions of the Royal Society of London, Series B*, **256**, 377-400.

Foster, P., Hunt, D.T.E. & Morris, A.W., 1978. Metals in an acid mine stream and estuary. Science of the Total Environment, 9, 75-86.

Hoare, R. & Hiscock, K., 1974. An ecological survey of the rocky coast adjacent to the effluent of a bromine extraction plant. *Estuarine and Coastal Marine Science*, **2** (4), 329-348.

Jakola, K.J. & Gulliksen, B., 1987. Benthic communities and their physical environment to urban pollution from the city of Tromso, Norway. *Sarsia*, **72**, 173-182.

JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

Kendall, M.A., Bowman, R.S., Williamson, P. & Lewis, J.R., 1985. Annual variation in the recruitment of *Semibalanus balanoides* on the North Yorkshire coast 1969-1981. *Journal of the Marine Biological Association of the United Kingdom*, **65**, 1009-1030.

Kenny, A.J. & Rees, H.L., 1994. The effects of marine gravel extraction on the macrobenthos: early post dredging recolonisation. *Marine Pollution Bulletin*, **28**, 442-447.

Kitching, J.A., 1937. Studies in sublittoral ecology. II Recolonization at the upper margin of the sublittoral region; with a note on the denudation of *Laminaria* forest by storms. *Journal of Ecology*, **25**, 482-495.

Mortlock, A.M., Fitzsimons, J.T.R. & Kerkaut, G.A., 1984. The effects of farnesol on the late stage nauplius and free swimming cypris larvae of *Elminius modestus*. *Comparative Biochemistry and Physiology*, **78A**, 345-357.

Naylor, E., 1965. Effects of heated effluents upon marine and estuarine organisms. Advances in Marine Biology, 3, 63-103.

Pyefinch, K.A. & Mott, J.C., 1948. The sensitivity of barnacles and their larvae to copper and mercury. *Journal of Experimental Biology*, **25**, 276-298.

Rainbow, P.S., 1984. An introduction to the biology of British littoral barnacles. Field Studies, 6, 1-51.

Rainbow, P.S., 1987. Heavy metals in barnacles. In *Barnacle biology*. *Crustacean issues 5* (ed. A.J. Southward), 405-417. Rotterdam: A.A. Balkema.

Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

Southward, A.J. & Southward, E.C., 1978. Recolonisation of rocky shores in Cornwall after use of toxic dispersants to clean up the *Torrey Canyon spill. Journal of the Fisheries Research Board of Canada*, **35**, 682-706.

Southward, A.J., 1955. On the behaviour of barnacles. I. The relation of cirral and other activities to temperature. *Journal of the Marine Biological Association of the United Kingdom*, **34**, 403-432.

Southward, A.J., 1998. New observations on barnacles (Crustacea: Cirripedia) of the Azores Region. Arquipelago, 16A, 11-27.

Tighe-Ford, D.J., 1977. Effects of juvenile hormone analogues on larval metamorphosis in the barnacle Elminius modestus Darwin. *Journal of Experimental Marine Biology and Ecology*, **26**, 163-176.

Willemsen, P.R., Overbeke, K. & Suurmond, A., 1998. Repetitive testing of TBTO, Sea-nine 211 and farnesol using *Balanus amphitrite* (Darwin) cypris larvae: variability in larval sensitivity. *Biofouling*, **12**, 133-147.

Wu, R.S.S., Lam, P.K.S. & Zhou, B.S., 1997. Effects of two oil dispersants on phototaxis and swimming behaviour of barnacle larvae. *Hydrobiologia*, **352**, 9-16.

Datasets

Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

Cofnod – North Wales Environmental Information Service, 2018. Miscellaneous records held on the Cofnod database. Occurrence dataset: https://doi.org/10.15468/hcgqsi accessed via GBIF.org on 2018-09-25.

Environmental Records Information Centre North East, 2018. ERIC NE Combined dataset to 2017. Occurrence dataset: http://www.ericnortheast.org.uk/home.html accessed via NBNAtlas.org on 2018-09-38

Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01

Fife Nature Records Centre, 2018. St Andrews BioBlitz 2015. Occurrence dataset: https://doi.org/10.15468/xtrbvy accessed via GBIF.org on 2018-09-27.

Kent Wildlife Trust, 2018. Biological survey of the intertidal chalk reefs between Folkestone Warren and Kingsdown, Kent 2009-2011. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

Lancashire Environment Record Network, 2018. LERN Records. Occurrence dataset: https://doi.org/10.15468/esxc9a accessed via GBIF.org on 2018-10-01.

Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1990 to 1994. Occurrence dataset:https://doi.org/10.15468/aru16v accessed via GBIF.org on 2018-10-01.

Merseyside BioBank., 2018. Merseyside BioBank (unverified). Occurrence dataset: https://doi.org/10.15468/iou2ld accessed via GBIF.org on 2018-10-01.

National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21

South East Wales Biodiversity Records Centre, 2018. SEWBReC Myriapods, Isopods, and allied species (South East Wales). Occurrence dataset: https://doi.org/10.15468/rvxsqs accessed via GBIF.org on 2018-10-02.

South East Wales Biodiversity Records Centre, 2018. Dr Mary Gillham Archive Project. Occurance dataset: http://www.sewbrec.org.uk/ accessed via NBNAtlas.org on 2018-10-02

Yorkshire Wildlife Trust, 2018. Yorkshire Wildlife Trust Shoresearch. Occurrence dataset: https://doi.org/10.15468/1nw3ch accessed via GBIF.org on 2018-10-02.