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Boulder shore backed by low cliffs (SLR.Bllit)
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Summary

 UK and Ireland classification

EUNIS 2008 A2.431
Barnacles and Littorina spp. on unstable eulittoral mixed
substrata

JNCC 2015 LR.FLR.Eph.BLitX
Barnacles and Littorina spp. on unstable eulittoral mixed
substrata

JNCC 2004 LR.FLR.Eph.BLitX
Barnacles and Littorina spp. on unstable eulittoral mixed
substrata

1997 Biotope LR.SLR.FX.Blit
Barnacles and Littorina littorea on unstable eulittoral mixed
substrata

 Description

The eulittoral zone, particularly the mid shore zone, of sheltered to extremely sheltered mixed
substrata shores is often characterized by flat banks or scards of cobbles and pebbles (on
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sediment) which are either too small or unstable to support a seaweed community. The boulders
and larger cobbles are usually colonised by the barnacles Semibalanus balanoides or in areas with
variable salinity Elminius modestus and often dense aggregations of the winkles Littorina littorea and
Littorina saxatilis are present as well. Between the cobbles and pebbles the mussel Mytilus edulis
occasionally occurs, but always at low abundance. Juvenile crabs Carcinus maenas and gammarids
may occur between and underneath the pebbles and cobbles. Brown seaweeds are rare, although
the wrack Fucus vesiculosus may occasionally occur on larger cobbles and small boulders in the mid
and upper shore zones. Ephemeral green seaweeds such as Ulva intestinalis may also be present.
Shallow pools and patches of standing water may occur in low-lying areas and may contain
amphipods and filamentous green seaweeds. Due to the unstable nature of the substratum the
diversity and density of flora and fauna is characteristically low (Information from Connor et al.,
2004; JNCC, 2015).

 Depth range

Mid shore

 Additional information

None entered

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.jncc.gov.uk/marine/biotopes/biotope.aspx?biotope=JNCCMNCR00000770
http://www.google.co.uk/search?q=Barnacles+and+iLittorina/i+spp.+on+unstable+eulittoral+mixed+substrata
http://scholar.google.co.uk/scholar?q=Barnacles+and+iLittorina/i+spp.+on+unstable+eulittoral+mixed+substrata
http://www.google.co.uk/search?q=LR.FLR.Eph.BLitX
https://mhc.jncc.gov.uk/search/?q=LR.FLR.Eph.BLitX
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Habitat review

 Ecology

Ecological and functional relationships

The SLR.BLlit biotope is found in a range of wave exposures. In exposed locations
disturbance is high creating small scale succession events so that only fast growing
opportunistic algal species such as Ulva are able to grow. However, the abundance of
green algae in the biotope is low because of the grazing activity of Littorina littorea which
occur in high abundance. In sheltered locations the substrata is more stable and fucoid
sporelings may settle but are removed by the grazing activity of limpets and Littorina
littorea. Thus, because of the impact of disturbance and/or grazing, algal cover is very low
in the whole range of exposure in which the biotope is found.
The pebble and cobble beaches of SLR.BLlit have a poor fauna in comparison to open
shore locations on bedrock, presumably as a result of siltation and the instability of the
substratum. There is a covering of barnacles on the cobbles and pebbles and on larger
stable boulders and rock Patella vulgata is present in high abundance. Littorina littorea,
which is tolerant of muddy and silty conditions, can be found in large aggregations and
often cluster on the tops of small stones. Although Mytilus edulis is less common on
cobbles and pebbles than on larger boulders or bedrock, the species may serve to enhance
the stability of the substratum.
Algal cover in the biotope is low and limited mostly to opportunistic green species such as
Ulva spp. and Ulva spp.
In extremely sheltered locations, even the smallest stones are relatively stable but remain
unoccupied by algal sporelings so that barnacles settle (Lewis, 1964; Raffaelli & Hawkins,
1999).
Littorina littorea is often the dominant grazing gastropod on the lower shore eating soft
macrophytes and microalgae. Experiments in Helgoland (Janke, 1990) suggest that
Littorina grazing can exclude the green alga Ulva and reduce the settlement and growth of
Fucus species. Cover by opportunistic species like Ulva may be kept in check by littorinid
grazing.
A dense covering of barnacle species is effective in limiting the efficiency of limpet grazing
which adversely affects limpet growth. Bulldozing by grazing limpets may cause high post-
settlement mortality of barnacles (Jenkins et al., 2000).
The crab Carcinus maenas is a predator of young Littorina littorea.
The characterizing species of the sediment beneath the pebbles and cobbles are infaunal
such as the obligate deposit feeding Arenicola marina.

Seasonal and longer term change

Rocky shore communities are often highly variable in time, due to the combined influences of
physical disturbance, competition, grazing, predation and variation in recruitment. Barnacle
dominated rocky shores demonstrate dynamic temporal changes, mediated by relatively random
events such as recruitment intensity, and the abundance of grazers and predators (Hawkins et al.,
1992; Raffaelli & Hawkins, 1999). Settlement of Semibalanus balanoides takes place in the spring
and Chthamalus spp. in the summer and autumn. Seasonal fluctuations in the abundance of Ulva
spp. may also be seen.

https://www.marlin.ac.uk/species/detail/1371
https://www.marlin.ac.uk/species/detail/1328
https://www.marlin.ac.uk/species/detail/1421
https://www.marlin.ac.uk/species/detail/1497
https://www.marlin.ac.uk/species/detail/1402
https://www.marlin.ac.uk/species/detail/1376
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Habitat structure and complexity

Habitat complexity in this biotope is relatively limited in comparison to some rocky shore biotopes.
However, the mixed nature of pebbles and cobbles, boulders, rocks and coarse sediment does
create some complexity. Larger cobbles and boulders provide substratum and shelter for a variety
of species such as small crabs and gammarid amphipods. Beneath boulders and the largest cobbles
and pebbles (if free of sediment) underboulder communities may be present. Smaller pebbles and
cobbles will be too small and too unstable (e.g. subject to overturn) for some encrusting species to
persist.

Productivity

In the absence, or low abundance, of macroalgae, production in this biotope is mostly secondary
production by suspension and deposit feeders. Primary production will be limited to microalgae
growing on rock surfaces. Detrital input will be important for the suspension feeding barnacles and
mussels. Rocky shores can make a contribution to the food of many marine species through the
production of planktonic larvae and propagules which contribute to pelagic food chains. In general
rocky shore communities are highly productive and are an important source of food and nutrients
for members of neighbouring terrestrial and marine ecosystems (Hill et al., 1998). However, in the
SLR.BLlit biotope, faunal species may not attain the same biomass that may be found on stable
rocky substrata on the open coast, so secondary productivity is likely to be lower.

Recruitment processes

Most species present in the biotope possess a planktonic stage (gamete, spore or larvae) which
float in the plankton before settling and metamorphosing into the adult form. This strategy allows
species to rapidly colonize new areas that become available such as in the gaps often created by
storms. Thus, for organisms such as those present in this biotope, it has long been evident that
recruitment from the pelagic phase is important in governing the density of populations on the
shore (Little & Kitching, 1996). Both the demographic structure of populations and the
composition of assemblages may be profoundly affected by variation in recruitment rates.

Littorina littorea can breed throughout the year but the length and timing of the breeding
period are extremely dependent on climatic conditions. Also, estuaries provide a more
nutritious environment than the open coast (Fish, 1972). Sexes are separate, and
fertilisation is internal. Littorina littorea sheds egg capsules directly into the sea. Egg
release is synchronized with spring tides and occurs on several separate occasions. In
estuaries, the population matures earlier in the year and maximum spawning occurs in
January (Fish, 1972). Fecundity value is up to 100,000 for a large female (27mm shell
height) per year. Female fecundity increases with size. Larval settling time or pelagic
phase can be up to six weeks. Males prefer to breed with larger, more fecund females
(Erlandsson & Johannesson, 1992). Parasitism by trematodes may cause sterility in
Littorina littorea.
Barnacle settlement and recruitment can be highly variable because it is dependent on a
suite of environmental and biological factors, such as wind direction and success depends
on settlement being followed by a period of favourable weather. Long-term surveys have
produced clear evidence of barnacle populations responding to climatic changes. During
warm periods Chthamalus spp. Predominate, whilst Semibalanus balanoides does better
during colder spells (Hawkins et al., 1994). Release of Semibalanus balanoides larvae takes
place between February and April with peak settlement between April and June. Release
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of larvae of Chthamalus montagui takes place later in the year, between May and August.
Recruitment of Patella vulgata fluctuates from year to year and from place to place.
Fertilization is external and the larvae is pelagic for up to two weeks before settling on
rock at a shell length of about 0.2mm. Winter breeding occurs only in southern England, in
the north of Scotland it breeds in August and in north-east England in September.
Mytilus edulis recruitment is dependant on larval supply and settlement, together with
larval and post-settlement mortality. Recruitment in many Mytilus sp. populations is
sporadic, with unpredictable pulses of recruitment (Seed & Suchanek, 1992). Mytilus sp. is
highly gregarious and final settlement often occurs around or in-between individual
mussels of established populations.
The infaunal polychaete Arenicola marina has high fecundity and the eggs develop
lecithotrophically within the sediment or at the sediment surface. There is no pelagic
larval phase and the juveniles disperse by burrowing. Recruitment must occur from local
populations or by longer distance dispersal of postlarvae in water currents or during
periods of bedload transport.
Ulva is a rapidly growing opportunistic species which can colonize bare substrata soon
after it is created.

Time for community to reach maturity

No specific information was found concerning time taken for the community to reach maturity.
However, the characterizing species of the SLR.BLlit biotope are widespread, highly fecund and
quick to grow and mature and so the community would be expected to reach maturity within 5
years. For example, Bennell (1981) observed that barnacles that were removed when the surface
rock was scraped off in a barge accident at Amlwch, North Wales returned to pre-accident levels
within 3 years. However, barnacle recruitment can be very variable because it is dependent on a
suite of environmental and biological factors, such as wind direction, so populations may take
longer to recruit to suitable areas. Littorina littorea is widespread and often common or abundant.
Littorina littorea is an iteroparous breeder with high fecundity that lives for several (at least 4)
years. Breeding can occur throughout the year and larvae form the main mode of dispersal. The
planktonic larval stage is long (up to 6 weeks) although larvae do tend to remain in waters close to
the shore. Most of the other species in the biotope have planktonic larvae and so should colonize
suitable areas. Therefore, it seems likely that the biotope would reach maturity within five years.
However, in newly created substrata, initial absence of grazing prosobranchs may allow first green,
then brown algae to grow and dominate the shore until removed by scour or old age. In such cases
the establishment of SLR.Bllit may take longer than five years.

Additional information

None

 Preferences & Distribution

Habitat preferences

Depth Range Mid shore

Water clarity preferences Data deficient

Limiting Nutrients Data deficient

https://www.marlin.ac.uk/glossarydefinition/waterclarity
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Salinity preferences Full (30-40 psu), Variable (18-40 psu)

Physiographic preferences

Biological zone preferences Eulittoral

Substratum/habitat preferences Cobbles, Pebbles, Sand

Tidal strength preferences No information

Wave exposure preferences Extremely sheltered, Sheltered, Very sheltered

Other preferences Unstable substrata

Additional Information

This biotope is found in a range of wave exposure regimes from exposed to extremely sheltered.

 Species composition

Species found especially in this biotope

Rare or scarce species associated with this biotope

-

Additional information

None
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

The description of this biotope and information on the characterizing species is taken from
Connor et al., (2004). The biotopes LR.FLR.Eph.EphX and LR.FLR.Eph.BLitX are very similar in
terms of the species present and the habitats they occur in. The significant difference between
these two variants is that the abundance of associated species (barnacles and littorinds) is greater
in LR.FLR.Eph.BLitX and ephemeral green and red algae are present only in low abundances.
Connor et al., (2004) suggest that LR.FLR.Eph.EphX may be a summer variation of
LR.FLR.Eph.BLitX, in which ephemeral algal growth has exceeded the capacity of the grazing
molluscs. The biotope is found on mixed substrata (pebbles and cobbles overlying sand or mud)
where physical disturbance from sand abrasion, sediment instability or variable salinity, prevents
the development of a longer-lived biological assemblage, such as the fucoid dominated biotopes,
more typical of stable rocky shores or mixed substrata. The LR.FLR.Eph.BLitX biotope is
characterized by flat banks or scards of cobbles and pebbles (on sediment) which are either too
small or unstable to support a seaweed community. The boulders and larger cobbles are usually
colonized by the barnacles Semibalanus balanoides or in areas with variable salinity Elminius
modestus and often dense aggregations of the winkles Littorina littorea and Littorina saxatilis are
present as well and sometimes Mytilus edulis, at low densities.  Macroalgae may be present but at
low densities due to the instability of the sediment. The mobile species may structure the
assemblage through grazing on algae e.g. littorinids, or through predation on grazers, e.g. Carcinus
maenas.  Grazing by Littorina littorea can produce dramatic effects on both the algal assemblage
(Lubchenco, 1978, 1983; Robles, 1982; Albrecht, 1998) and habitat structure (Bertness, 1984) of
the intertidal zone.

The sensitivity assessments are based on the barnacles and littorinids which are considered to be
the key characterizing species for this biotope; the littorinids are also considered to be a key
structuring species through grazing. The sensitivity assessments also consider the general habitat
characteristics of physically disturbed mixed substrata.  The substratum mobility within this
biotope may, however, be the key factor structuring the biotope. Where storms or wave action
frequently move boulders and cobbles the scour and abrasion may crush and remove species or
may result in them being in an unfavourable position. Barnacles and macroalgae that are present
on an overturned boulder would be unable to feed or photosynthesise and would die.

 Resilience and recovery rates of habitat

Where individuals are removed from a small area, littorinids may recolonize from surrounding
patches of habitat where they are present.  The recovery of the attached species Semibalanus
balanoides, Mytilus edulis and the ephemeral algae will depend on recolonization by waterborne
propagules.  The characterizing and associated species are all common and widespread and
reproduce annually producing pelagic larvae that can disperse over long distances. It is therefore
likely that larval supply to impacted areas will provide high numbers of potential recruits.
 However, a range of factors, including species interactions, determine the rate of successful
recruitment of juveniles to the population. 

Semibalanus balanoides brood egg masses over autumn and winter and release the nauplii larvae
during spring or early summer, to coincide with phytoplankton blooms on which the larvae feed. A
range of local environmental factors, including surface roughness (Hills & Thomason, 1998), wind
direction (Barnes, 1956), shore height, wave exposure (Bertness et al., 1991) and tidal currents
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(Leonard et al., 1998) have been identified, among others, as affecting the settlement
of Semibalanus balanoides. Biological factors such as larval supply, competition for space, presence
of adult barnacles (Prendergast et al., 2009) and the presence of species that facilitate or inhibit
settlement (Kendall et al., 1985, Jenkins et al., 1999) also play a role in recruitment.  Mortality of
juveniles can be high but highly variable, with up to 90 % of Semibalanus balanoides dying within ten
days, therefore successful recruitment may be episodic (Kendall et al., 1985). 

Barnacles are often quick to colonize available gaps, although a range of factors, as outlined above,
will influence whether there is a successful episode of recruitment in a year to re-populate a shore
following impacts. Bennell (1981) observed that barnacles that were removed when the surface
rock was scraped off in a barge accident at Amlwch, North Wales returned to pre-accident levels
within 3 years. Petraitis & Dudgeon (2005) also found that Semibalanus balanoides quickly
recruited (present a year after and increasing in density) to experimentally cleared areas within
the Gulf of Maine, that had previously been dominated by Ascophyllum nodosum However, barnacle
densities were fairly low (on average 7.6 % cover) as predation levels in smaller patches were high
and heat stress in large areas may have killed a number of individuals (Petraitis et al., 2003).
Following creation of a new shore in the Moray Firth, Semibalanus balanoides did not recruit in large
numbers until 4 years after shore creation (Terry & Sell, 1986). 

Littorina littorea reproduces annually over an extended period, the egg capsules are shed directly
into the sea. Egg release is synchronized with spring tides and occurs on several separate
occasions. In estuaries, the population matures earlier in the year and maximum spawning occurs
in January (Fish, 1972). A large female (27 mm shell height) may produce up to 100,000 egg
capsules per year. Larval settling time or pelagic phase can be up to six weeks conferring high
dispersal potential in the water column.

Resilience assessment.  No evidence for recovery rates were found specifically for this biotope. 
Due to sediment instability this biotope is subject to frequent disturbance and the associated
species assemblage is impoverished, consisting of few species that can either resist disturbances or
recover rapidly through mortality or larval supply. The age structure of populations of the
associated species is likely to be skewed towards young individuals due to high levels of mortality
from disturbances.  Most species, with the exception of littorinids are present at low abundances. 
Grazing by littorinids is a key factor structuring this biotope and their removal could lead to
blooms of ephemeral algae (Ulva spp.) and biotope reclassification to LR.FLR.Eph.EphX. Biotope
recovery to the normal state is considered to be rapid and resilience is assessed as ‘High’ (within 2
years) for all levels of resistance (None, Low, Medium and High).

NB: The resilience and the ability to recover from human induced pressures is a combination of the
environmental conditions of the site, the frequency (repeated disturbances versus a one-off event)
and the intensity of the disturbance.  Recovery of impacted populations will always be mediated by
stochastic events and processes acting over different scales including, but not limited to, local
habitat conditions, further impacts and processes such as larval-supply and recruitment between
populations. Full recovery is defined as the return to the state of the habitat that existed prior to
impact.  This does not necessarily mean that every component species has returned to its prior
condition, abundance or extent but that the relevant functional components are present and the
habitat is structurally and functionally recognizable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential.  

 Hydrological Pressures
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 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Intertidal species are exposed to extremes of high and low air temperatures during periods of
emersion. They must also be able to cope with sharp temperature fluctuations over a short period
of time during the tidal cycle. In winter air temperatures are colder than the sea, conversely in
summer air temperatures are much warmer than the sea. Species that occur in the intertidal are
therefore generally adapted to tolerate a range of temperatures, with the width of the thermal
niche positively correlated with the height of the shore that the animal usually occurs at
(Davenport & Davenport, 2005).

The median upper lethal temperature limit in laboratory tests on Littorina saxatilis and Littorina
littorea  collected in the summer at Great Cumbrae, Scotland), was approximately 35 oC (Davenport
& Davenport, 2005). Semibalanus balanoides collected from the same shores had similarly high
thermal tolerance, with summer collected individuals having a median upper lethal limit of
approximately 35oC.

In laboratory experiments Littorina littorea collected from the Kiel Fjord in Germany and kept in
tanks at  temperatures 5oC above the seawater temperatures from the collection area  (Kiel fjord,
Germany) for 5 months (temperatures in laboratory ranged from 13-23oC) did not die although
some decreases in shell strength were observed (Landes & Zimmer, 2012).

Although adults may be able to withstand acute and chronic increases in temperature at the
pressure benchmark, increased temperatures may have sub-lethal effects on the population
through impacts on reproduction. The distribution of the key characterizing species, Semibalanus
balanoides is ‘northern’ with their range extending to the Arctic circle. Populations in the southern
part of England are relatively close to the southern edge of their geographic range. Long-term time
series show that successful recruitment of Semibalanus balanoides is correlated to sea
temperatures (Mieszkowska, et al., 2014) and that due to recent warming its range has been
contracting northwards. Temperatures above 10 to 12oC inhibit reproduction (Barnes, 1957,
1963; Crisp & Patel, 1969) and laboratory studies suggest that temperatures at or below 10oC for
4-6 weeks are required in winter for reproduction, although the precise threshold temperatures
for reproduction are not clear (Rognstad et al., 2014). Observations of recruitment success
in Semibalanus balanoides throughout the South West of England, strongly support the hypothesis
that an extended period (4-6 weeks) of sea temperatures <10oC is required to ensure a good
supply of larvae (Rognstad et al., 2014, Jenkins et al., 2000). During periods of high reproductive
success, linked to cooler temperatures, the range of barnacles has been observed to increase, with
range extensions in the order of 25 km (Wethey et al., 2011), and 100 km (Rognstad et al., 2014). 
Increased temperatures are likely to favour chthamalid barnacles or Austrominius modestus in the
sheltered variable salinity biotopes rather than Semibalanus balanoides (Southward et al. 1995). 

Most of the other species within the biotope are eurythermal (e.g. ephemeral algae and Mytilus
edulis) and are also hardy intertidal species that tolerate long periods of exposure to the air and
consequently wide variations in temperature. In addition, most species are distributed to the north
of south of the UK and unlikely to be adversely affected by long-term temperature changes at the
benchmark level. 

 Sensitivity assessment. Adult Semibalanus balanoides and Littorina littorea are considered likely to

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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be able to tolerate an acute or chronic increase in temperature at the pressure benchmark,
however, if an acute change in temperature occurred in autumn or winter it could disrupt
reproduction in Semibalanus balanoides while a chronic change could alter reproductive success if it
exceeded thermal thresholds for reproduction. The effects would depend on the magnitude,
duration and footprint of the activities leading to this pressure. However, barnacle populations are
highly connected, with a good larval supply and high dispersal potential (Wethey et al., 2011,
Rognstad et al., 2014).   The littorinids reproduce throughout the year and are not considered
sensitive at the pressure benchmark. Resistance of the characterizing species is therefore assessed
as ‘High’ and resilience as ‘High’ (by default). This biotope is, therefore, considered to be ‘Not
sensitive’ at the pressure benchmark. Sensitivity to longer-term, broad-scale perturbations such as
increased temperatures from climate change would however be greater, based on the extent of
impact and the reduction in larval supply.

Temperature decrease
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Many intertidal species are tolerant of freezing conditions as they are exposed to extremes of low
air temperatures during periods of emersion. They must also be able to cope with sharp
temperature fluctuations over a short period of time during the tidal cycle. In winter air
temperatures are colder than the sea, conversely in summer air temperatures are much warmer
than the sea. Species that occur in the intertidal are therefore generally adapted to tolerate a
range of temperatures, with the width of the thermal niche positively correlated with the height of
the shore that the animal usually occurs at (Davenport & Davenport, 2005).

The tolerance of Semibalanus balanoides collected in the winter (and thus acclimated to lower
temperatures) to low temperatures was tested in the laboratory. The median lower lethal
temperature tolerance was -14.6 oC (Davenport & Davenport, 2005). A decrease in temperature at
the pressure benchmark is therefore unlikely to negatively affect this species. The same series of
experiments indicated that median lower lethal temperature tolerances for Littorina
saxatilis and Littorina littorea were -16.4 and -13 oC respectively. In experiments Littorina
littorea were able to tolerate temperatures down to -8 °C for 8 days (Murphy, 1983). In colder
conditions an active migration may occur down the shore to a zone where exposure time to the air
(and hence time in freezing temperatures) is less

The distribution of the key characterizing species Semibalanus balanoides is 'northern' with their
range extending to the Arctic circle. Over their range they are therefore subject to lower
temperatures than in the UK, although distributions should be used cautiously as an indicator of
thermal tolerance (Southward et al., 1995).   Long-term time series show that recruitment success
is correlated to lower sea temperatures (Mieszkowska et al., 2014). Due to warming temperatures
its range has been contracting northwards. Temperatures above 10 to 12 oC inhibit reproduction
(Barnes, 1957, 1963; Crisp & Patel, 1969) and laboratory studies suggest that temperatures at or
below 10 oC for 4-6 weeks are required in winter for reproduction, although the precise threshold
temperatures for reproduction are not clear (Rognstad et al., 2014).  

The associated species Mytilus edulis and Ulva spp. are eurytopic, found in a wide temperature
range and in areas which frequently experience freezing conditions and are vulnerable to ice scour
(Seed & Suchanek, 1992). 

Sensitivity assessment. Based on the wide temperature tolerance range of Littorina littorea and
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other littorinids it is concluded that the acute and chronic decreases in temperature described by
the benchmark would have limited effect.  Similarly, based on global temperatures and the link
between cooler winter temperatures and reproductive success, Semibalanus balanoides is also
considered to be unaffected at the pressure benchmark. A decrease in temperature will
favour Semibalanus balanoides over other barnacle species (Southward et al. 1995). Other species in
the biotope also show low intolerance to decreases in temperate. long-term chronic temperature
decreases may reduce growth. Therefore, a benchmark decrease in temperature is likely to result
in sub-lethal effects only and this biotope is considered to have ‘High’ resistance and ‘High
resilience (by default) to this pressure and is, therefore, considered to be ‘Not sensitive’. 

Salinity increase (local) High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The biotope occurs in habitats subject to full and variable salinity (Connor et al., 2004). In the
laboratory, Semibalanus balanoides was found to tolerate salinities between 12 and 50 psu (Foster,
1970). Young Littorina littorea inhabit rock pools where salinity may increase above 35 psu. Thus,
these key characterizing species may be able to tolerate some increase in salinity.  Resistance from
a change to variable to full salinity is therefore assessed as ‘High’ and resilience is assessed as
‘High’ so that the biotope is ‘Not sensitive’.

Salinity decrease (local) High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The biotope occurs in subject to full and variable salinity (Connor et al., 2004). Evidence on salinity
tolerances was found for the characterizing barnacle species. Semibalanus balanoides are tolerant
of a wide range of salinity and can survive periodic emersion in freshwater, e.g. from rainfall or
freshwater run-off, by closing their opercular valves (Foster, 1971b). They can also withstand large
changes in salinity over moderately long periods of time by falling into a "salt sleep" and can be
found on shores (example from Sweden) with large fluctuations in salinity around a mean of 24
(Jenkins et al., 2001). In areas of permanently reduces salinity the Australian barnacle Austrominius
(formerly Elminius) modestus may be favoured, as this species is more tolerant of lower salinities
and is found further up estuaries than other barnacles (Gomes-Filho et al., 2010).

Littorina littorea is found in waters of full, variable and reduced salinities (Connor et al., 2004) and
so populations are not likely to be highly intolerant of decreases in salinity at the pressure
benchmark.

Similarly, most of the associated species (e.g. Mytilus edulis) are found in a wide range of salinities
and are probably tolerant of variable or reduced salinity.  A prolonged reduction in salinity, e.g. to
reduced salinity (18-30 ppt) is likely to reduce the species richness of the biotope due to loss of
some intolerant invertebrates. However, the dominant species will probably survive and the
integrity of the biotope is likely to be little affected although some reduction in abundance may
occur and this may be followed by an increase in ephemeral algae.

Sensitivity assessment. Based on reported distributions and the results of experiments to assess
salinity tolerance thresholds and behavioural and physiological responses in  Littorina
littorea and Semibalanus balanoides it is considered that the benchmark decrease in salinity (from
full to variable or variable to reduced) would not result in mortality of Littorina littorea  and
Semibalanus balanoides is judged to tolerate a change in salinity from full to variable but that a
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change from variable to reduced salinity may reduce habitat suitability and lead to replacement by
Austrominius modestus. This replacement would not alter the character of the biotope.  Resistance
is therefore assessed as 'High' and resilience as 'High', based on no effect to recover from and the
biotope is considered to be 'Not sensitive'.  

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

The biotope is characteristic of areas sheltered from wave exposure that are subject to tidal
streams. Growth and reproduction of Semibalanus balanoides is influenced by food supply and
water velocity (Bertness et al., 1991). Laboratory experiments demonstrate that barnacle feeding
behaviour alters over different flow rates but that barnacles can feed at a variety of flow speeds
(Sanford et al., 1994). Flow tank experiments using velocities of 0.03, 0.07 and 0.2 m/s showed that
a higher proportion of barnacles fed at higher flow rates (Sanford et al., 1994). Feeding was passive,
meaning the cirri were held out to the flow to catch particles; although active beating of the cirri to
generate feeding currents occurs in still water (Crisp & Southward, 1961). Field observations at
sites in southern New England (USA) that experience a number of different measured flow speeds,
found that Semibalanus balanoides from all sites responded quickly to higher flow speeds, with a
higher proportion of individuals feeding when current speeds were higher. Barnacles were present
at a range of sites, varying from sheltered sites with lower flow rates (maximum observed flow
rates <0.06- 0.1 m/s), a bay site with higher flow rates (maximum observed flows 0.2-0.3 m/s) and
open coast sites (maximum observed flows 0.2-0.4 m/s). Recruitment was higher at the site with
flow rates of 0.2-0.3 m/s (although this may be influenced by supply) and at higher flow
microhabitats within all sites. Both laboratory and field observations indicate that flow is an
important factor with effects on feeding, growth and recruitment in Semibalanus
balanoides (Sanford et al., 1994; Leonard et al., 1998), however, the results suggest that flow is not a
limiting factor determining the overall distribution of barnacles as they can adapt to a variety of
flow speeds.

Littorina littorea is found in areas with water flow rates from negligible to strong, although
populations exposed to different levels of flow may have adapted to local conditions. Increases in
water flow rates above 6 knots ( 3 m/s) may cause snails in less protected locations (e.g. not in
crevices etc.) to be continually displaced into unsuitable habitat so that feeding may become sub-
optimal. Thus, populations of Littorina littorea are likely to reduce.  Shell morphology within
littorinids varies according to environmental conditions. In sheltered areas shell apertures are
small to inhibit predation where Carcinus maenas is more prevalent while in exposed areas the foot
surface is larger to allow greater attachment and the shell spire is lower to reduce drag (Raffaelli
1982; Crothers, 1992).

Sensitivity assessment.  Based on the available evidence the characterizing species  Littorina
littorea and Semibalanus balanoides are able to adapt to high flow rates and the biotope is,
therefore, considered to be 'Not sensitive' to an increase in water flow. A decrease in water flow
may have some effects on recruitment and growth, but this is not considered to be lethal at the
pressure benchmark and resistance is therefore assessed as 'High' and resilience as 'High' by
default. Changes in water flow may, however have impacts on the mixed substrata biotope.
Reductions in flow may lead to increased deposition of silts and alter the sediment character,
littorinids are found on sediments and may survive some deposition but barnacles would incur
extra energetic costs filtering and clearing feeding apparatus. An increase in water flow at the
pressure benchmark may re-suspend and remove sand particles which are less cohesive than mud
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particles. In sites with mobile cobbles and boulders increased scour results in lower densities
of Littorina spp. compared with other, local sites with stable substratum (Carlson et al.,
2006).Where these are protected by banks of cobbles and pebbles that protect the underlying
sediment and reduce flow through friction the biotope will remain unchanged. The level of impact
will depend on site specific hydrodynamic and sediment conditions. Biotope resistance to changes
in water flow that do not alter the substrata is assessed as ‘High’ and resilience as ‘High’ (by
default) so that the biotope is assessed as ‘Not sensitive’

Emergence regime
changes

Low High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Emergence regime is a key factor structuring this (and other) intertidal biotopes.  Records suggest
that, typically, above this biotope is either the biotope dominated by ephemeral green seaweeds
(LR.FLR.Eph.EphX), or, if it is found in the upper shore region, salt marsh species such
as Salacornia and Spartina sp. Below are biotopes dominated by the wracks Fucus serratus or Fucus
vesiculosus.

Increased emergence may reduce habitat suitability for characterizing species through greater
exposure to desiccation and reduced feeding opportunities for the barnacles to feed when
immersed.   The mobile species present within the biotope, including the shore crab Carcinus
maenas and the littorinids would be able to relocate to preferred shore levels. An increase in
emergence that reduced habitat suitability for the grazing littorinids would allow blooms of
ephemeral Ulva spp. to develop altering the classification of the biotope to LR.FLR.Eph.EphX.

Decreased emergence would reduce desiccation stress and allow the attached suspension feeding
barnacles more feeding time. Predation pressure on mussels, littorinids and barnacles is likely to
increase where these are submerged for longer periods and to prevent colonisation of lower
zones. Semibalanus balanoides was able to extend its range into lower zones when protected from
predation by the dogwhelk, Nucella lapillus (Connell, 1961) indicating that predation is a key
factor setting the lower limit for this species.  Competition from large fucoids and red algal turfs
can also prevent Semibalanus balanoides from extending into lower shore levels (Hawkins, 1983).
Decreased emergence is likely to lead to the habitat becoming more suitable for the lower shore
species generally found below the biotope, leading to replacement, although the stability of the
sediment will mediate the development of fucoid biotopes.

Sensitivity assessment.   This biotope occurs on the mid-shore and will be sensitive to increased
and decreased emergence. As emergence is a key factor structuring the distribution of animals and
macroalgae on the shore, resistance to a change in emergence (increase or decrease) is assessed as
‘Low’. Recovery is assessed as ‘High’, (following habitat recovery) and sensitivity is, therefore,
assessed as 'Low'.

Wave exposure changes
(local)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

No direct evidence was found to assess the sensitivity of this biotope to changes in wave exposure
at the pressure benchmark. This biotope is recorded from locations that are judged to range from
sheltered and moderately sheltered to extremely sheltered (Connor et al., 2004). The degree of
wave exposure influences wave height, as in more exposed areas with a longer fetch waves would
be predicted to be higher. As this biotope occurs across three wave exposure categories, this was
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therefore considered to indicate, by proxy, that biotopes in the middle of the wave exposure range
would tolerate either an increase or decrease in significant wave height at the pressure
benchmark.

An increase in wave action, exceeding the pressure benchmark, may however alter the character
of the biotope. The cobbles and pebbles in the biotope are likely to move much more as a result of
increased wave oscillation. The characterizing and associated species would probably accrue
damage from abrasion and scour and barnacles trapped on the undersides of overturned pebbles
would be unable to feed or respire. In sites with mobile cobbles and boulders increased scour
results in lower densities of Littorina spp. compared with other, local sites with stable substratum
(Carlson et al., 2006). Littorina littorea regularly have to abandon optimal feeding sites in order to
avoid wave-induced dislodgement. This will result in a decreased growth rate (Mouritsen et al.,
1999). Increases in wave exposure above the pressure benchmark will probably cause a decrease
in population size of Littorina littorea and Semibalanus balanoides.

Sensitivity assessment. The natural wave exposure range of this biotope is considered to exceed
changes at the pressure benchmark and this biotope is considered to have 'High' resistance and
'High' resilience (by default), to this pressure (at the benchmark).  

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Contamination at levels greater than the benchmark may impact this biotope. However, barnacles,
may tolerate fairly high level of heavy metals in nature, for example they possess metal
detoxification mechanisms and are found in Dulas Bay, Anglesey, where copper reaches
concentrations of 24.5 µg/l, due to acid mine waste (Foster et al., 1978; Rainbow, 1984). Bryan
(1984) suggested that gastropods are also rather tolerant of heavy metals. Littorina littorea is
tolerant of high TBT levels (Oehlmann et al., 1998) and has been found to be well suited for TBT
effect monitoring because the species exists in sufficient numbers for sampling even in regions
where a relatively high level of contamination exists. It is often present in areas where the very
TBT sensitive dogwhelk Nucella lapillus has disappeared. Although imposex is rare in Littorina
littorea strong TBT-toxication may affect a population significantly by reducing reproductive ability
(Deutsch & Fioroni, 1996) through the development of intersex. Intersex is defined as a change in
the female pallial oviduct towards a male morphological structure (Bauer et al., 1995). However,
only sexually immature and juvenile individuals of Littorina littorea are able to develop intersex.
Also, owing to the reproductive strategy of Littorina littorea, which reproduces by means of pelagic
larvae, populations do not necessarily become extinct as a result of intersex (Casey et al., 1998)
and so recoverability is good. It may take some time for the toxicant to be eliminated from the
system and conditions to return to normal.

Littorina littorea has been suggested as a suitable bioindicator species for some heavy metals in the
marine environment. Bryan et al. (1983) suggests that the species is a reasonable indicator for Ag,
Cd, Pb and perhaps As. It is not found to be a reliable indicator for other metals because of some
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interactions between metals and regulation of some, such as Cu and Zn (Langston & Zhou
Mingjiang, 1986).

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Littoral barnacles (e.g. Semibalanus balanoides) have a high resistance to oil (Holt et al., 1995) but
may suffer some mortality due to the smothering effects of thick oil (Smith, 1968).

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Synthetic compound contamination, at levels greater than the benchmark, is likely to have a
variety of effects depending the specific nature of the contaminant and the species group(s)
affected. Barnacles have a low resilience to chemicals such as dispersants, dependant on the
concentration and type of chemical involved (Holt et al., 1995).

Radionuclide
contamination

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence was found.

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

Semibalanus balanoides can respire anaerobically, so they can tolerate some reduction in oxygen
concentration (Newell, 1979). When placed in wet nitrogen, where oxygen stress is maximal and
desiccation stress is low, Semibalanus balanoides have a mean survival time of 5 days (Barnes et al.,
1963). Littorina littorea have a high tolerance for low oxygen conditions and can easily survive 3-6
days of anoxia  (Storey et al., 2013). In addition, Littorina littorea, is an air breather when emersed,
so can respire during the tidal cycle.

Sensitivity assessment. The key characterizing species, littorinids and Semibalanus
balanoides are considered to be ‘Not Sensitive’ to de-oxygenation at the pressure benchmark. The
experiments cited as evidence (Storey et al., 2013 and Barnes et al.,1963) exceed the duration
and/or magnitude of the pressure benchmark and do not take into account the environmental
mitigation of deoxygenation occurring in this biotope.  Biotope resistance is therefore assessed as
‘High’ and resilience as ‘High’ (no effect to recover from), resulting in a sensitivity of 'Not sensitive'.
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Nutrient enrichment High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: Low A: Low C: Low

No direct evidence was found to assess this pressure. A slight increase in nutrient levels could be
beneficial for barnacles and mussels by promoting the growth of phytoplankton levels and
therefore increasing zooplankton levels. However, Holt et al. (1995) predict that smothering of
barnacles by ephemeral green algae is a possibility under eutrophic conditions. 

Littorina littorea occurs on all British and Irish coasts, including lower salinity areas such as this
estuarine biotope where nutrient loading is likely to be higher than elsewhere. Higher nutrient
levels may benefit the algal substrata and food used by the snail. In situations with nutrient
enrichment, primary productivity in terms of biofilms and/ or green algae will generally be
enhanced, which may supply more food or more nutrient rich food. This can reduce the browsing
distances and periods of Littorina, reducing times spent searching for food (Diaz et al. 2012). After
five months of nutrient addition in experimental mesocosms, Littorina abundance and biomass had
increased compared to controls. Enriched mesocosms experiments were treated with 32 lM
inorganic nitrogen (N) and 2 lM inorganic phosphorus (P) above the background levels in the
Oslofjord continuously in the period April–September 2008. These nutrient addition levels are
similar to concentrations recorded in eutrophic areas locally (Kristiansen & Paasche, 1982; cited in
Diaz et al. 2012) and globally (Cloern, 2001; cited in Diaz et al. 2012).

Sensitivity assessment. The pressure benchmark is set at a level that is relatively protective and
based on the evidence and considerations outlined above the biological assemblage is considered
to be 'Not sensitive' at the pressure benchmark. Resistance and resilience are therefore assessed
as 'High'.

Organic enrichment High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Organic enrichment may lead to eutrophication with adverse environmental effects including
deoxygenation, algal blooms and changes in community structure (see nutrient enrichment and de-
oxygenation).   The biotopes occurs in tide swept or wave exposed areas (Connor et al., 2004)
preventing a build up of organic matter, so that the biotope is considered to have a low risk of
organic enrichment at the pressure benchmark. Little evidence was found to support this
assessment, Cabral-Oliveira et al., (2014), found that filter feeders such as Mytilus sp. and the
barnacle Chthamalus montagui were more abundant at sites closer to a sewage treatment works, as
they could utilise the organic matter inputs as food. 

Sensitivity assessment. Little empirical evidence was found to support an assessment
for Semibalanus balanoides and none for Littorina littorea within this biotope.  As organic matter
particles in suspension or re-suspended could potentially be utilised as a food resource by filter
feeders present within the biotope (Cabral-Oliveira et al., 2014), overall resistance of the biological
assemblage within the biotope is considered to be 'High' and resilience was assessed as 'High', so
that this biotope is judged to be 'Not sensitive'. 
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 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope is characterized by the hard rock substratum provided by the boulders and cobbles to
which the key characterizing species barnacles, limpets and littorinids and the other associated
species can firmly attach. Littorinids are found on a variety of shores, including sedimentary so a
change in type may not significantly affect this species. A change to a sedimentary substratum
would, however, significantly alter the character of the biotope. Changes in substratum type can
also lead to indirect effects. For example, Shanks & Wright (1986) observed that limpet mortalities
were much higher at sites where the supply of loose cobbles and pebbles were greater, leading to
increased abrasion through wave action 'throwing' rocks onto surfaces, a similar effect would be
predicted for barnacles and other animals within the biotope. The biotope is considered to have
'No' resistance to this pressure based on a change to a soft sediment substratum, resilience is Very
low (the pressure is a permanent change) and sensitivity is assessed as High. Although no specific
evidence is described, confidence in this assessment is ‘High’, due to the incontrovertible nature of
this pressure.

Physical change (to
another sediment type)

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to biotopes occurring on bedrock or on mixed substrata consisting of boulders,
cobbles and pebbles.

Habitat structure
changes - removal of
substratum (extraction)

None High Medium

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Extraction of the boulders, cobbles and pebbles on which this biotope occurs would remove the
characterizing species and their habitat. Resistance is assessed as 'None' and resilience (following
habitat recovery) is assessed as 'High'. Sensitivity is therefore assessed as 'Medium'.

Abrasion/disturbance of
the surface of the
substratum or seabed

Medium High Low

Q: High A: High C: Medium Q: High A: Medium C: High Q: High A: Medium C: Medium

The key characterizing and associated species within this biotope typically occur on the rock
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surfaces where they will be exposed to abrasion. Although barnacles and littorinids are protected
by hard shells or plates, abrasion may damage and kill individuals or detach these. All removed
barnacles would be expected to die as there is no mechanism for these to reattach. Although
littorinids may be able to repair shell damage, broken shells while healing will expose the individual
to more risk of desiccation and predation.  Evidence for the effects of abrasion are provided by a
number of experimental studies on trampling (a source of abrasion) and on abrasion by wave
thrown rocks and pebbles.

The effects of trampling on barnacles appears to be variable with some studies not detecting
significant differences between trampled and controlled areas (Tyler-Walters & Arnold, 2008).
However, this variability may be related to differences in trampling intensities and abundance of
populations studied. The worst case incidence was reported by Brosnan & Crumrine (1994) who
reported that a trampling pressure of 250 steps in a 20x20 cm plot one day a month for a period of
a year significantly reduced barnacle cover at two study sites. Barnacle cover reduced from 66 %
to 7 % cover in 4 months at one site and from 21 % to 5 % within 6 months at the second site.
Overall barnacles were crushed and removed by trampling. Barnacle cover remained low until
recruitment the following spring. Long et al. (2011) also found that heavy trampling (70 humans
/km/hrs) led to reductions in barnacle cover. 

Single step experiments provide a clearer, quantitative indication of sensitivity to direct abrasion.
Povey & Keough (1991) in experiments on shores in Mornington peninsula, Victoria, Australia,
found that in single step experiments 10 out of 67 barnacles, (Chthamlus antennatus about 3mm
long),  were crushed.

In sites with mobile cobbles and boulders increased scour results in lower densities of Littorina spp.
compared with other, local sites with stable substratum (Carlson et al., 2006).

Sensitivity assessment. The impact of surface abrasion will depend on the footprint, duration and
magnitude of the pressure. Based on evidence from the step experiments and the relative
robustness of these species, resistance, to a single abrasion event is assessed as ‘Medium’ and
recovery as ‘High’, so that sensitivity is assessed as ‘Low’.  Resistance will be lower (and hence
sensitivity greater) to abrasion events that exert a greater crushing force than the trampling
examples the assessment is based on).

Penetration or
disturbance of the
substratum subsurface

Low High Low

Q: High A: Low C: NR Q: High A: High C: High Q: High A: Low C: Low

The cobbles and pebbles in the biotope are likely to move as a result of penetration and/or sub
surface disturbance. The characterizing and associated species would probably accrue damage
from abrasion and scour and barnacles and littorinids trapped on the undersides of overturned
pebbles would be unable to feed or respire. In sites with mobile cobbles and boulders increased
scour results in lower densities of Littorina spp. compared with other, local sites with stable
substratum (Carlson et al., 2006). 

Sensitivity assessment.  This biotope is considered to have 'Low' resistance and 'High' resilience,
to this pressure and sensitivity is therefore assessed as 'Low'.
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Changes in suspended
solids (water clarity)

Medium High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Intertidal biotopes will only be exposed to this pressure when submerged during the tidal cycle
and thus have limited exposure. Siltation, which may be associated with increased suspended
solids and the subsequent deposition of these is assessed separately (see siltation pressures). This
mixed substrata biotope occurs in estuaries in sheltered conditions where levels of suspended
sediments are likely to be raised from riverine inputs and from re-suspension of sediments within
the biotope. The level of suspended solids depends on a variety of factors including: substrate type,
river flow, tidal height, water velocity, wind reach/speed and depth of water mixing (Parr et al.
1998). Transported sediment including silt and organic detritus can become trapped in the system
where the river water meets seawater. Dissolved material in the river water flocculates when it
comes into contact with the salt wedge pushing its way upriver. These processes result in elevated
levels of suspended particulate material with peak levels confined to a discrete region (the
turbidity maximum), usually in the upper-middle reaches, which moves up and down the estuary
with the tidal ebb and flow.

A change in suspended solids at the pressure benchmark is likely to refer to changes on the UK
TAG scale (2014) from intermediate (10-100 mg/l to medium turbidity (100-300 mg/l) or high
turbidity (>300 mg/l). Increased suspended sediment may reduce growth rates in barnacles due to
the energetic costs of cleaning sediment particles from feeding apparatus. Elminius modestus is
more tolerant of turbidity than Semibalanus balanoides and may become the dominant barnacle.
However, this will not alter the nature of the biotope. Littorina littorea is found in turbid estuaries
where suspended sediment levels are high.

Sensitivity assessment. This biotope is not considered sensitive to decreased suspended
sediments. An increase in suspended solids may increase the level of scour and deposition in this
sheltered biotope and inhibit larval settlement. Increased suspended solids may reduce feeding
rates of Semibalanus balanoides, although this may be compensated where the increased load of
solids is due to organic matter inputs. Biotope resistance to an increase is assessed as 'Medium'
and resilience as ‘High’ (following habitat recovery) so that the biotope is considered to have 'Low'
sensitivity.

Smothering and siltation
rate changes (light)

Low High Low
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

More direct evidence to assess this pressure was found for the characterizing species Littorina
littorea, than Semibalanus balanoides. However, the lower limits of Semibalanus
balanoides (as Balanus balanoides) appear to be set by levels of sand inundation on sand-affected
rocky shores in New Hampshire (Daly & Mathieson, 1977), suggesting that this species is sensitive
to the deposition of relatively coarse sediments, although whether this is due to repeated scour
events removing juveniles rather than siltation effects (i.e. smothering, prevention of feeding) is
not clear.

Littorina littorea through grazing and bulldozing actions may directly aid the removal of silts and
sediments and remove the algal films that may accumulate silts (Bertness, 1984). On a protected
New England rocky beach, Bertness (1984) showed how accumulation of sediments, due to the
removal of the snail Littorina littorea changed the character of the habitat to one more typical of
sedimentary habitats, with a decrease in the abundance of organisms characteristic of hard-
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bottom habitats, such as barnacles and encrusting algae (cited from Airoldi et al. 2003).
Chandrasekara & Frid (1998) specifically tested the siltation tolerance of Littorina littorea. Burial to
5 cm caused mortality within 24 hours at simulated summer and winter temperatures if the snails
could not crawl out of the sediment (Chandrasekara & Frid, 1998). If the sediment is well
oxygenated and fluid (as with high water, high silt content) a few snails (1-6 out of 15 in the
experiment, depending on temperature, sediment and water content) may be able to move back up
through 5 cm of sediment (Chandrasekara  & Frid, 1998).  Approximately half of the test
individuals could not regain the surface from 1 cm of burial except in the most favourable
conditions (low temperatures, high water, high silt when a majority (10 out of 15) of the test cohort
surfaced. Field observations support the findings that Littorina littorea are generally unable to
survive smothering. Albrecht & Reise (1994) observed a population of Littorina littorea in a sandy
bay near the Sylt island in the North Sea. They found that the accretion of mud within Fucus
strands and subsequent covering of Littorina by the sediment resulted in them suffocating and a
significant reduction in their abundance.

Sensitivity assessment. Semibalanus balanoides is found permanently attached to hard substrates
and is a suspension feeder. This species, therefore, has no ability to escape from silty sediments
which would bury individuals and prevent feeding and respiration.   However, no direct evidence
for sensitivity to siltation was found. Resistance to siltation is assessed as ‘Low’ for  Littorina littorea
based primarily on observations and experiments of Airoldi & Hawkins, (2007) and Chandrasekara
& Frid, (1998), who demonstrated negative effects at deposit thicknesses at or far lower than the
pressure benchmark.  Within this sheltered biotope wave action or water flows are unlikely to
rapidly mobilise and remove deposits alleviating the effect of smothering.  Even small deposits of
sediments are likely to result in local removal of littorinids. Biotope resistance is assessed as ‘Low’
based on the characterizing species. Resilience is assessed as ‘High’ and sensitivity is therefore
considered to be ‘Low’.  Repeated deposition events, coupled with changes in water flow and wave
action may lead to the establishment of Ulva spp. that trap sediments, this would significantly alter
the character of the biotope.

Smothering and siltation
rate changes (heavy)

None High Medium
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

More direct evidence to assess this pressure was found for the characterizing species Littorina
littorea, than Semibalanus balanoides. However, the lower limits of Semibalanus
balanoides (as Balanus balanoides) appear to be set by levels of sand inundation on sand-affected
rocky shores in New Hampshire (Daly & Mathieson, 1977), suggesting that this species is sensitive
to the deposition of relatively coarse sediments, although whether this is due to repeated scour
events removing juveniles rather than siltation effects (i.e. smothering, prevention of feeding) is
not clear.

The evidence for siltation effects on the characterizing species, Littorina littorea and Patella vulgata
is outlined above for ‘light’ deposition. In summary, experiments by Chandrasekara & Frid, (1998)
and Airoldi & Hawkins (2007) , supported by field observation, indicate that Littorina littorea would
be unable to escape from sediment deposits of 30cm thickness and would rapidly die.

Sensitivity assessment. Sensitivity to this pressure will be mediated by site-specific hydrodynamic
conditions and the footprint of the impact. Where a large area is covered sediments may be shifted
by wave and tides rather than removed. Semibalanus balanoides is found permanently attached to
hard substrates and is a suspension feeder. This species, therefore, has no ability to escape from
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silty sediments which would bury individuals and prevent feeding and respiration.  Even small
deposits of sediments are likely to result in local removal and death of littorinids. Resistance to
siltation at the benchmark level is assessed as ‘None’ for Littorina littorea based primarily on the
observations and experiments of Chandrasekara & Frid (1998), who demonstrated negative
effects at deposit thicknesses far lower than the pressure benchmark.  Within this sheltered
biotope wave action or water flows are unlikely to rapidly mobilise and remove deposits alleviating
the effect of smothering.   Biotope resistance is assessed as ‘None’ based on the characterizing
species. Resilience is assessed as ‘High’ and sensitivity is therefore considered to be ‘Medium’.  

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Thompson et al., (2004) demonstrated that Semibalanus balanoides, kept in aquaria, ingested
microplastics within a few days. However, the effects of the microplastics on the health of exposed
individuals have not been identified. There is currently no evidence to assess the level of impact. 

Electromagnetic changes No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence.

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant. Wave action on exposed shores is likely to generate high levels of underwater noise.
Other sources are not considered likely to result in effects on the biotope.

Introduction of light or
shading

No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No direct evidence to assess this pressure was found for the key characterizing species Patella vulgata and
the littorinids. As both species occur on open rock and in crevices and under Fucus canopies they are
considered tolerant of a range of light conditions. Semibalanus balanoides sheltered from the sun grew
bigger than unshaded individuals (Hatton, 1938; cited in Wethey, 1984), although the effect may
be due to indirect cooling effects rather than shading. Light levels have, however been
demonstrated to influence a number of phases of the reproductive cycle in Semibalanus balanoides. 
In general light inhibits aspects of the breeding cycle. Penis development is inhibited by light
(Barnes & Stone, 1972) while Tighe-Ford (1967) showed that constant light inhibited gonad
maturation and fertilization. Davenport & Crisp (unpublished data from Menai Bridge, Wales, cited
from Davenport et al., 2005) found that experimental exposure to either constant darkness, or 6 h
light: 18 h dark photoperiods induced autumn breeding in Semibalanus. They also confirmed that
very low continuous light intensities (little more than starlight) inhibited breeding. Latitudinal
variations in timing of the onset of reproductive phases (egg mass hardening) have been linked to
the length of darkness (night) experienced by individuals rather than temperature (Davenport et
al., 2005). Changes in light levels associated with climate change (increased cloud cover) were
considered to have the potential to alter timing of reproduction (Davenport et al., 2005) and to
shift the range limits of this species southward. However, it is not clear how these findings may
reflect changes in light levels from artificial sources, and whether observable changes would occur
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at the population level as a result. There is, therefore, 'No evidence' on which to base an
assessment.

Barrier to species
movement

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

No direct evidence was found to assess this pressure. As the larvae of the key characterizing
species Patella vulgata, Semibalanus balanoides and Littorina littorea are planktonic and are
transported by water movements, barriers that reduce the degree of tidal excursion may alter
larval supply to suitable habitats from source populations. However the presence of barriers may
enhance local population supply by preventing the loss of larvae from enclosed habitats.  The
associated macroalgae and Littorina saxatilis have either limited dispersal or produce crawl away
juveniles rather than pelagic larvae (direct development). Barriers and changes in tidal excursion
are not considered relevant to these species as dispersal is limited. As the key characterizing
species are widely distributed and have larvae capable of long distance transport, resistance to this
pressure is assessed as 'High' and resilience as 'High' by default. This biotope is therefore
considered to be 'Not sensitive'. 

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant’ to seabed habitats.  NB. Collision by grounding vessels is addressed under surface
abrasion. 

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant.

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

No evidence (NEv) No evidence (NEv) No evidence (NEv)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The characterizing species, Semibalanus balanoides and Littorina littorea and other common rocky
shores species within the biotope, with the exception of Mytilus edulis which occurs in low
densities, are not subject to translocation or cultivation. Commercial cultivation of Mytilus
edulis involves the collection of juvenile mussel ‘seed’ or spat (newly settled juveniles ca 1-2cm in
length) from wild populations, with subsequent transportation around the UK for re-laying in
suitable habitats. As the seed is harvested from wild populations from various locations the gene
pool will not necessarily be decreased by translocations.  Movement of mussel seed has the
potential to transport pathogens and non-native species (see sensitivity assessments for Mytilus
edulis bed biotopes). A review by Svåsand et al. (2007) concluded that there was a lack of evidence
distinguishing between different Mytilus edulis populations to accurately assess the impacts of
hybridisation with the congener Mytilus galloprovincialis and in particular how the gene flow may be

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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affected by aquaculture.  Therefore, it cannot be confirmed whether farming will have an impact
on the genetics of this species beyond a potential for increased hybridisation.

Sensitivity assessment. No direct evidence was found regarding the potential for negative impacts
of translocated mussel seed on wild Mytilus edulis populations.  While it is possible that
translocation of mussel seed could lead to genetic flow between cultivated beds and local wild
populations, there is currently no evidence to assess the impact (Svåsand et al., 2007).  Hybrids
would perform the same ecological functions as Mytilus edulis so that any impact relates to genetic
integrity of a bed alone.  This impact is considered to apply to all mussel biotopes equally, as the
main habitat forming species Mytilus edulis is translocated.  Also, given the uncertainty in
identification of the species, habitats or biotopes that are considered to be characterized
by Mytilus edulis may in fact contain Mytilus galloprovincialis, their hybrids or a mosaic of the three.
Presently, there is no evidence of impact resulting from genetic modification and translocation
on Mytilus edulis beds in general or the clumps that characterize this biotope.  

Introduction or spread of
invasive non-indigenous
species

High High Not sensitive

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope is considered to be most vulnerable to invasive non-indigenous species that can out-
compete the characterizing species and associated assemblage for space or those species that will
predate on the characterizing species.

In terms of space occupation, the Australasian barnacle, Austrominius modestus, the Pacific oyster,
Magallana gigas and the tunicates, Botrylloides diegensis, Corella eumyota may be most likely to occur
in this biotope. The non-native crab Hemigrapsus sanguineus has recently been recorded in the UK
(Sweet & Sewell, 2014) and has the potential to be a significant predator of intertidal
invertebrates.  Significant reductions in common shore crab abundance and mussel density have
been reported where the Asian shore crab has achieved high densities in mainland Europe (Sweet
& Sewell, 2014).  However, Brousseau & Goldberg (2007) found that even at high crab densitites
the effects of predation on density of Semibalanus balanoides were limited as continued
recruitment offset predation.

The Australasian barnacle Austrominius (previously Elminius) modestus was introduced to British
waters on ships during the second world war. However, its overall effect on the dynamics of rocky
shores has been small as Austrominius modestus has simply replaced some individuals of a group of
co-occurring barnacles (Raffaelli & Hawkins, 1999).  Austrominius modestus can tolerate lower
salinities than the native barnacle Semibalanus balanoides (Gomes-Filho, et al., 2010) and may
dominate this biotope, however this is not considered to lead to a significant change in biotope
character or function. 

Dense aggregations of Magallana gigas on a former mussel bed showed increased abundance and
biomass of Littorina littorea in the Wadden Sea (Markert et al. 2010).  However, Eschweiler and
Buschbaum (2011) found that juvenile Littorina littorea could carry Magallana gigas and Crepidula
fornicata as epibionts. Body dry weight of snails without oyster overgrowth was twice as high
compared to winkles covered with oysters. Also crawling speed of snails with oyster epigrowth
was significantly slowed down and about ten times lower than in unfouled periwinkles.
Additionally, oyster epibionts caused a strong decrease in reproductive output. In laboratory
experiments, egg production of fouled Littorina littorea was about 100-fold lower than in affected
individuals. Field surveys in different years and habitats demonstrated that up to 10% of
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individuals occurring on epibenthic bivalve beds and up to 25% of snails living on sand flats may be
fouled by Crassostrea gigas.

Although the results of studies of feeding preferences for Sargassum muticum over native
macroalgae vary, Littorina littorea does feed on this species so shoreline colonization by this species
would mean that food was still available (Withers et al. 1975).  Littorina littorea also grazes on
degraded or stressed Didemnum vexillem individuals (Valentine et al., 2007) and Codium fragile ssp.
tomentosoides (Schiebling et al., 2008), so gains some benefit from the presence of these species.
However, the mobility of the substratum, the variable salinity and the lack of tidepools may inhibit
the colonization of this biotope by invasive, non-indigenous macroalgae.

A number of INIS that can settle and occupy hard substratum may threaten this biotope in the
future if they become established. The tunicates Didemnum vexillum and Asterocarpa humilis, the
hydroid Schizoporella japonica and the bryozoan Watersipora subatra (Bishop, 2012c; Bishop,
2015a; Wood, 2015) are currently only recorded from artificial hard substratum in the UK and it is
not clear what their established range and impacts in the UK would be.

Sensitivity assessment. Overall, there is little evidence of this biotope being adversely affected by
non-native species. Resistance Is therefore assessed as ‘High’ and recovery as ‘High’ (by default) so
that the biotope is assessed as ‘Not sensitive’. Changes in the identities, distribution or abundance
of INIS may require this assessment to be updated. 

Introduction of microbial
pathogens

Medium High Low
Q: High A: Low C: Low Q: High A: Low C: Medium Q: High A: Low C: Low

The characterizing species, littorinids and Semibalanus balanoides are considered to be subject to
persistent, low levels of infection by pathogens and parasites. Barnacles are parasitised by a
variety of organisms and, in particular, the cryptoniscid isopod Hemioniscus balani, in which heavy
infestation can cause castration of the barnacle.  At usual levels of infestation these are not
considered to lead to high levels of mortality.  Parasitism by trematodes may cause sterility in
Littorina littorea. Littorina littorea are also parasitized by the boring polychaete, Polydora ciliata and
Cliona sp, which weakens the shell and increases crab predation (Stefaniak et al., 2005).

Sensitivity assessment. Based on the characterizing species and the lack of evidence for
widespread, high-levels of mortality due to microbial pathogens the biotope is considered to have
'High' resistance to this pressure and therefore 'High' resilience (by default), the biotope is
therefore considered to be 'Not sensitive'. 

Removal of target
species

Low High Low
Q: High A: High C: High Q: High A: High C: NR Q: High A: High C: Low

Littorinids are one of the most commonly harvested species of the rocky shore. Large scale
removal of Littorina littorea may allow a proliferation of opportunistic green algae, such as Ulva, on
which it preferentially feeds. The community structure within the biotope is likely to be altered but
some individuals are likely to remain.

Experiments designed to test the effects of harvesting by removing individuals at Strangford
Lough found that there was no effect of experimental treatments (either harvesting or simulated
disturbance) on Littorina littorea abundance or body size over a 12 week period (Crossthwaite et al.
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2012). This suggests that these animals are generally abundant and highly mobile; thus, animals
that were removed were quickly replaced by dispersal from surrounding, un-harvested areas.
However, long-term exploitation, as inferred by background levels of harvest intensity, did
significantly influence population abundance and age structure (Crossthwaite et al. 2012). A
broadscale study of harvesting in Ireland using field studies and interviews with wholesalers and
pickers did suggest that some areas were over harvested but the lack of background data and
quantitative records make this assertion difficult to test (Cummins et al., 2002).

Sensitivity assessment. In general collectors will be efficient at removing this species, resistance is
therefore assessed as ‘Low’ (removal is not considered to be total as smaller individuals may
escape), recovery is assessed as ‘High’ based on above evidence (Crossthwaite et al., 2012), so that
sensitivity is assessed as ‘Low’. This assessment refers to a single collection event, long-term
harvesting over wide spatial scales will lead to greater impacts, with lower resistance and longer
recovery times. Intense harvesting of littorinids, would be likely to result in enhanced algal growth
although the mobility of the boulders and cobbles may counteract the development of all but
ephemeral, opportunistic algae.

Removal of non-target
species

Low High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Removal of the characterizing littorinids and barnacles would alter the character of the biotope.
Removal of these species may result in the proliferation of ephemeral green algae, altering the
classification of the biotope to the LR.FLR.Eph.Ulv biotope.

Sensitivity assessment.  Removal of a large percentage of the characterizing species would alter
the character of the biotope, so that it was bare rock. Resistance is therefore assessed as ‘Low’ and
recovery as ‘High’, so that sensitivity is assessed as ‘Low’.
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