
MarLIN
Marine Information Network
Information on the species and habitats around the coasts and sea of the British Isles

Hediste diversicolor and Macoma balthica in
littoral gravelly mud

MarLIN – Marine Life Information Network
Marine Evidence–based Sensitivity Assessment (MarESA) Review

 

Dr Heidi Tillin & Dr Matt Ashley

2018-03-22

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for
the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1175]. All terms and the
MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:
Tillin, H.M. & Ashley, M. 2018. [Hediste diversicolor] and [Macoma balthica] in littoral gravelly mud. In
Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key
Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom.
DOI https://dx.doi.org/10.17031/marlinhab.1175.1

The information (TEXT ONLY) provided by the Marine Life Information Network
(MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share
Alike 2.0 UK: England & Wales License. Note that images and other media featured on
this page are each governed by their own terms and conditions and they may or may
not be available for reuse. Permissions beyond the scope of this license are available
here. Based on a work at www.marlin.ac.uk

https://www.marlin.ac.uk/habitats/detail/1175
https://www.marlin.ac.uk
https://www.marlin.ac.uk/termsandconditions
https://www.marlin.ac.uk/


(page left blank)



Date: 2018-03-22 Hediste diversicolor and Macoma balthica in littoral gravelly mud - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/1175 3

 

17-09-2018
Biotope distribution data provided by
EMODnet Seabed Habitats
(www.emodnet-seabedhabitats.eu)

Researched by Dr Heidi Tillin & Dr Matt Ashley  Refereed by Admin

Summary

 UK and Ireland classification

EUNIS 2008 A2.4111
Hediste diversicolor and Macoma balthica in littoral
gravelly mud

JNCC 2015 LS.LMx.GvMu.HedMx.Lim
Hediste diversicolor and Limecola balthica in littoral
gravelly mud

JNCC 2004 LS.LMx.GvMu.HedMx.Mac
Hediste diversicolor and Macoma balthica in littoral
gravelly mud

1997 Biotope

 Description

Sheltered gravelly mud shores, subject to reduced salinity. The infaunal community consists of the
ragworm Hediste diversicolor, as well as the laver spire shell Peringia ulvae and the Baltic tellin
Limecola balthica. The presence of the gravel in the sediment is unlikely to have a large influence on
the infaunal composition, which is driven mainly by the estuarine sandy mud conditions. Coarse
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material on the sediment surface may however enrich the biota with additional epifaunal species
such as barnacles and algae. Given the low sample numbers for this biotope, more records are
needed to confirm the characterizing species list. It is probable that there are broad transition
areas between this biotope, and the corresponding muddy sediment biotope HedMac. The
boundaries may be very indistinct, with HedMx.Mac present in patches of gravelly mud on areas of
mudflat, where the main biotope is HedMac. This biotope has been found alongside its mud
equivalent in the Stour estuary  (Information from Connor et al., 2004; JNCC, 2015).

 Depth range

Strandline, Upper shore, Mid shore, Lower shore

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iHediste+diversicolor/i+and+iMacoma+balthica/i+in+littoral+gravelly+mud
http://scholar.google.co.uk/scholar?q=iHediste+diversicolor/i+and+iMacoma+balthica/i+in+littoral+gravelly+mud
http://www.google.co.uk/search?q=LS.LMx.GvMu.HedMx.Mac
https://mhc.jncc.gov.uk/search/?q=LS.LMx.GvMu.HedMx.Mac
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

The biotope is characterized by the ragworm Hediste diversicolor (JNCC, 2015) and the sensitivity
assessments, therefore, focus on this species and the key factors that structure this biotope and
the characterizing assemblages. The biotope LS.LMx.GvMu.HedMx.Mac is distinguished from
other sub-biotopes by reduced salinity, the presence of the gastropod Hydrobia ulvae and the
bivalve Limecola balthica and the absence or lower abundances of polychaetes and oligochaetes
and the lack of the bivalve Scrobicularia plana. The variant sub-biotopes have been assessed
separately and the sensitivity assessments are presented on the MarLIN website.

 Resilience and recovery rates of habitat

When impacted this biotope may recover through repair of damaged individuals, adult migration
by mobile species and recolonization by pelagic larvae. Resilience of the biological assemblage that
characterises this biotope is assessed as 'High' (within 2 years) for most small-scale disturbances
that do not require habitat recovery. The resilience assessment is based on species biological traits
and examples from experiments and observations of imapcts and recovery from human activities.

The ability of postlarvae, larger juveniles, and adults of the key characterizing species Hediste
diversicolor to swim, burrow and be carried by bedload transport can aid the rapid recolonization of
disturbed sediments (Shull, 1997). Davey & George (1986), found evidence that larvae of Hediste
diversicolor were tidally dispersed within the Tamar Estuary over a distance of 3 km.  Such passive
dispersal alone suggested that recolonization of disturbed sediments was likely to occur rapidly,
depending upon larvae transport pathways.

Generally Hediste diversicolor is reported to reach maturity between one and three years of age,
like other Nereidae, Hediste diversicolor are monotelic, that is, they reproduce only once in their
lifetime and then die (Olive & Garwood, 1981). Mature males crawl around outside in search of a
mature female and discharge sperm through the nephridia, directly outside her burrow. Direct
contact between the sexes is not a necessity. Sperm is drawn into the burrow by females and
fertilized eggs remain inside the burrow protected by the female. Both sexes die shortly after
spawning. The trait to lay and protect eggs within a burrow is likely to increase the time
populations recover from pressures that affect the sediment, such as sediment removal, as both
adults and eggs will be affected. The pelagic larval dispersal phase is short (Scaps, 2002).

Populations appear to show local characteristics in terms of spawning periods. Spawning may be
limited to a short period in spring or extend over the summer. In the Thames Estuary, Dales (1950)
reported specimens growing to maturity within one year, spawning in February, with some
individuals surviving up to 18 months. Mettam et al. (1982), reported that Hediste diversicolor from
the Severn Estuary matured rapidly in the spring and spawned at two years old. Olive & Garwood
(1981), found that females in the Blyth Estuary, Northumberland, were in their second year before
eggs began to appear, so most probably spawned in their third year.

Some examples of recovery of populations in similar habitats to the assessed biotope have been
found.

The effects of a pipeline construction on benthic invertebrates were investigated using a1.
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Before/After impact protocol at Clonakilty Bay, West Cork, Ireland. Benthic invertebrates
were sampled once before the excavation and at one, two, three and six months after the
completion of the work.  An impact was obvious in the construction site in that no live
invertebrates were found at one month after disturbance, but there followed a gradual
recolonization by Hediste diversicolor. At six months after the disturbance, there was no
significant difference in the mean number of total individuals (of all species) per core
sample amongst all study sites, but the apparent recovery in the impacted area was due to
recovery of  Hediste diversicolor and Tubifex spp. (Lewis et al., 2002b).

Bolam et al. (2004) experimentally simulated (in the field) the effect of dredged material2.
emplacement (beach recharge) by manipulating defaunated sediments. Macrofaunal
sampling was carried out after 1 week and after 1, 3, 6 and 12 months. Recolonization
patterns were found to be species specific: abundances of the polychaete Hediste
diversicolor and the gastropod Hydrobia ulvae recovered to ambient levels within one
week.

In general, recovery of Hediste diversicolor populations from impacts appears to be relatively rapid.
Recovery will be enhanced where adult migration (active or passive) can transport adults from
adjacent, unimpacted habitats. Where a large area is severely impacted, however, recovery may
require longer time-scales.

The life history characteristics of Limecola balthica give the species strong powers of recoverability.
Adults spawn at least once a year and are highly fecund (Caddy, 1967). Females are capable of
producing 10,000-30,000 eggs (MES, 2010). There is a planktotrophic larval phase which lasts up
to 2 months (Fish & Fish, 1996) and so dispersal over long distances is potentially possible given a
suitable hydrographic regime. Following settlement, development is rapid and sexual maturity is
attained within 2 years (Gilbert, 1978; Harvey & Vincent, 1989). In addition to larval dispersal,
dispersal of juveniles and adults occurs via burrowing (Bonsdorff, 1984; Guenther, 1991), floating
(Sörlin, 1988) and probably via bedload transport (Emerson & Grant, 1991). It is expected
therefore that recruitment can occur from both local and distant populations. Bonsdorff (1984)
studied the recovery of a Limecola balthica (as Macoma balthica) population in a shallow, brackish
bay in SW Finland following the removal of the substratum by dredging in the summer of 1976.
Recolonization of the dredged area by Limecola balthica began immediately after the disturbance
to the sediment and by November 1976, the Limecola balthica population had recovered to 51
individuals/m². One year later there was no detectable difference in the Limecola balthica
population between the recently dredged area and a reference area elsewhere in the bay. In 1976,
two generations could be detected in the newly established population indicating that active
immigration of adults was occurring in parallel to larval settlement. In 1977, up to six generations
were identified, giving further evidence of active immigration to the dredged area.

Resilience assessment. Biotope resileincee is assessed as ‘High’ (within 2 years), where resistance
is ‘High’, ‘Medium’ or ‘Low’. Resilience is assessed as ‘Medium’ (2-10 years) where, resistance is
‘None’ and habitat recovery may also be required. 

NB: The resilience and the ability to recover from human induced pressures is a combination of the
environmental conditions of the site, the frequency (repeated disturbances versus a one-off event)
and the intensity of the disturbance.  Recovery of impacted populations will always be mediated by
stochastic events and processes acting over different scales including, but not limited to, local
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habitat conditions, further impacts and processes such as larval-supply and recruitment between
populations. Full recovery is defined as the return to the state of the habitat that existed prior to
impact.  This does not necessarily mean that every component species has returned to its prior
condition, abundance or extent but that the relevant functional components are present and the
habitat is structurally and functionally recognizable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential. 

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Medium
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Hediste diversicolor and other important characterizing species are adapted to living within the
intertidal zone where temperatures fluctuate. Some resistance to temperature fluctuations is
achieved by burying within the sediment, which buffers against acute temperature changes over
the tidal cycle. the sensitivity assessment for this pressure is largely based on geographic range as
a proxy for thermal tolerances, laboratory experiements and field observations.

The geographic range of Hediste diversicolor (throughout north-west Europe on the Baltic Sea,
North Sea and along Atlantic coasts to the Mediterranean) suggests that it is tolerant of a range of
temperatures and a temperature increase at benchmark levels is unlikely to have an adverse effect
on UK populations. Hediste diversicolor can tolerate temperatures from below zero under Baltic ice
to high summer temperatures in Black Sea lagoons (>25°C) (Smith, 1977). Hediste diversicolor were
not strongly affected by heat waves in an estuary in north western Portugal, where temperatures
reached 40°C in intertidal pools (higher temperatures than experienced around UK and Irish
coasts) (Dolbeth et al., 2011). Grilo et al., 2011) found that at a Portuguese site, surface deposit
feeders gradually decreased in periods of higher temperatures. However, sub-surface deposit
feeders became dominant for up to three years after heat wave conditions had passed.

Temperature change may adversely affect reproduction of Hediste diversicolor. Bartels-Hardege
and Zeeck (1990) demonstrated that an increase from 12°C and maintenance of water
temperature at 16°C induced reproduction in Hediste diversicolor specimens outside the normal
period of spawning, and without a drop in temperature to simulate winter conditions the spawning
period was prolonged and release of gametes was not synchronized. Poor synchronization of
spawning could result in reduced recruitment, as gametes are wasted and mature specimens die
shortly after gamete release.

In Europe, Limecola balthica occurs as far south as the Iberian Peninsula and hence would be
expected to tolerate higher temperatures than experienced in Britain and Ireland. Oertzen (1969)
recorded that Limecola balthica could tolerate temperatures up to 49°C before thermal numbing of
gill cilia occurred, presumably resulting in death. Ratcliffe et al. (1981) reported that Limecola
balthica from the Humber Estuary, UK, tolerated 6 hours of exposure to temperatures up to 37.5°C
with no mortality. Wilson (1981) show that the lethal temperatures for Limecola balthica change
between seasons as individuals acclimate to seasonal changes. Critical temperatures were studied
for a Limecola balthica population in Dublin Bay, and a summer maximum of 37.5 and winter
maximum of 27.5 were reported (Wilson, 1981).  Tolerances were also reported to change with
height up the shore, which suggested adaptation to prevailing conditions.

Field observations and laboratory experiments showed that Limecola balthica spawns (criterion:

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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50% spent) in spring when the gradual increase of the mean (monthly averaged) water
temperature surpasses 8.3oC. The success of spawning and recruitment is affected by the timing of
the spring phytoplankton bloom and avoidance of the main settlement of the predator Crangon
crangon on intertidal shores (Philippart et al., 2003). A mismatch in spawning cues due to an acute
increase in temperature could result in low recruitment or recruitment failures

Despite apparent adaptation to regional temperature ranges, Barda et al. (2014) studied
populations of Limecola balthica (as Macoma balthica) in the Baltic Sea and found that increased
temperature reduced growth rates. Beukema et al. (2014) also warn that increasing water
temperatures as a result of global warming are likely to shorten the growing season (typically late
winter to early spring) if warmer spring and summer water temperatures are experienced.  Jansen
et al. (2007) suggest that temperature increases in the Spanish coast along the Bay of Biscay over
the past 40 years caused loss of Limecola balthica populations, due to short-term but frequent
exposure to >30° C in the Spanish estuaries, which induced elevated maintenance rates in Limecola
balthica, and ultimately starvation. Repeated recruitment failure also occurred after mild winters
in a comparable North Sea location, probably due to enhanced survival of predators(Beukema,
1992, Schueckel & Kroencke, 2013; Beukema et al., 2001).  As a result, Jansen et al. (2007) predict
the southern limit of the species will progressively shift north if temperatures continue to rise.

Indirect effects are also possible. Higher temperatures have been implicated in the proliferation of
trematode parasites which have caused mass mortalities in the snail Hydrobia ulvae (Jensen &
Mouritsen, 1992), which is often abundant in this biotope.

Sensitivity assessment. Typical surface water temperatures around the UK coast vary, seasonally
from 4-19°C (Huthnance, 2010).  Limecola balthica may retreat north as a result of long-term
warming and climate change (a change that exceeds the pressure benchmark). However, at the
pressure benchmark, the important characterizing species Hediste diversicolor and Limecola balthica
are likely to survive a 5°C increase in temp for one month period, or 2°C for one year, although
reproductive activities may be impacted. For instance, without colder winters spawning may not
be synchronised and so recruitment would be reduced. A resistance of ‘High’, a resilience of ‘High’
(as longer lived later maturing species are present) and a sensitivity of ‘Not sensitive’ have been
assigned.

Temperature decrease
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

A decrease in temperature has been shown to be indirectly beneficial to Hediste diversicolor, as case
studies report a reduction in numbers of the species’ predators. For instance, a severe winter in the
Wadden Sea in 1995/1996 saw an increased abundance of Hediste diversicolor coincident with a
reduction in the numbers of Carcinus maenus and Crangon crangon (Armonies et al., 2001). A similar
increase in abundance was noted in the same area between 1978 and 1987 after a series of cold
winters (mean Hediste diversicolor density increased from 24/m² to 151/m² respectively )
(Beukema, 1990). Decreased temperatures throughout the year may, however, limit reproduction.
Bartels-Hardege & Zeeck (1990) induced spawning in the laboratory, in specimens of Hediste
diversicolor from tidal flats of the Jadebusen (North Sea), outside the normal spawning period of
early spring. Temperatures were not lowered to simulate winter conditions but maintained at
16°C. Mature specimens appeared after four weeks and released gametes after a further four
weeks according to a semilunar cycle. Reproduction was sustained for a period of four months.
Such an extended spawning was witnessed on the Jadebusen following an unusually warm winter.
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Spawning occurred from February until May and was less synchronized. In contrast, the same
population spawned within two months (February - March) following lower winter temperatures
in another year. They concluded that not only a threshold temperature was important for
synchronized spawning but the timing of the rise in temperature following winter was also a
significant factor (Bartels-Hardege & Zeeck, 1990). A reduced rise in temperature is likely to limit
this factor.

The geographical distribution of Limecola balthica suggests that it is very tolerant of low
temperature. The species occurs in the Gulfs of Finland and Bothnia where the sea freezes for
several months of the year (Green, 1968). It must, therefore, resist much lower temperatures than
it experiences in Britain and Ireland. Furthermore, Limecola balthica was apparently unaffected by
the severe winter of 1962/3, which severely affected  many other bivalve species (Crisp, 1964),
and De Wilde (1975) noted that Limecola balthica (as Limecola balthica) kept at 0°C maintained a
high level of feeding activity. It is likely, therefore, that in seas around the UK and Ireland,Colder
winter temperatures have been shown to benefit Limecola balthica population dynamics.
Recruitment success increased following colder winters and repeated recruitment failure has
occurred after mild winters in comparable North Sea location (Beukema, 1992, Schueckel &
Kroencke, 2013; Beukema et al., 2001). In Friedrichskoog, Germany, König (1943) found a high
accumulation of dead Cerastoderma edule biomass after a severe winter 1936/1937 but high
numbers of Limecola balthica (80,000 individuals/m²) spat in following years (winter 1939). Winter
water surface temperatures in the Wadden Sea (Netherlands) have increased 1.5°C since the
1980s (Oost et al., 2009). During milder winters greater body weight loss and production of fewer
and smaller eggs has been observed in Limecola balthica (van der Meer et al., 2003). It is noted in the
literature however, that reduced recruitment success during milder winters may also be due to
increased predation as juvenile Crangon crangon have shown increased abundance in relation to
milder winters (Beukema & Dekker, 2005).  Limecola balthica would resist decreases in
temperature at the pressure benchmark level.

Sensitivity assessment. The important characterizing species, Hediste diversicolor and Limecola
balthica,  show limited impacts and, potentially, benefits to abundance and recruitment from
decreases in temperature. Therefore, a 5°C decrease in temp for one month period, or 2°C for one
year is likely to have limited negative impact on all characterizing species in the biotope, within
British and Irish seas. Hence, resistance is assessed as ‘High’, resilience is assessed as ‘High’, and
sensitivity as ‘Not Sensitive’.

Salinity increase (local) High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The sub-biotope LS.LMx.GvMu.HedMx.Mac occurs in reduced salinity (18-30 ppt).  The available
evidence (summarised below) suggests that the characterizing species are tolerant of an
increase to full salinity.  The restriction of this biotope to variable or reduced salinity is most likely
due to the requirement for shelter from wave action rather than salinity regime.

As higher salinity examples of sheltered muddy gravels tend to be more species rich than lower
salinity, upper estuarine habitats (Maddock, 2008), it is likely that an increase in salinity at the
pressure benchmark will lead to an increase in species richness. An increase at the pressure
benchmark may, therefore, lead to the development of the variant sub-biotope
LS.LMx.GvMu.HedMx.Scr that occurs in full salinity, or be reclassified as LS.LMX.GvMu.HedMx.

Hediste diversicolor is a euryhaline species, able to tolerate a range of salinities from fully marine
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 seawater down to 5 psu or less (Barnes, 1994).  Limecola balthica is found in brackish and fully
saline waters, although it is more common in brackish waters (Clay, 1967b). Seitz (2011) found
that the distribution of Limecola balthica across a salinity gradient between a minimum and
maximum of 8.8psu to 19 psu in Cheaspeake Bay was not influenced by salinity. Instead, resource
availability was the principal influence on Limecola balthica. McLusky & Allan (1976) reported
that Limecola balthica (as Macoma balthica) failed to grow at 41 psu. It is likely
that Macoma balthica would be tolerant of an increase in salinity category to fully marine but
further increases to >40‰ would be likely to affect growth and condition.

Hylleberg (1975) also found that under controlled conditions of salinity ranging from 10 to 30ᵒ⁄ₒₒ
and temperatures ranging from 5 to 35° C, Hydrobia ulvae has maximal egestion at the combination
of high salinity (30ᵒ⁄ₒₒ) and high temperature (30° C). The species would be likely to show high
resistance to an increase in salinity from the reduced and variable conditions the biotope occurs
within. 

Sensitivity assessment. Hediste diversicolor and other characterizing species are likely to tolerate
increased salinity levels above the reduced and variable levels encountered in this sub-biotope.
Biotope resistance is, therefore, assessed as ‘High’ and resilience as ‘High’ (by default) and the
biotope is considered to be ‘Not sensitive’.  It should be noted that the biotope classification may
change from this sub-biotope to another within the LS.LMX.GvMu.HedMx group.

Salinity decrease (local) Low High Low
Q: High A: Medium C: Medium Q: High A: Low C: Medium Q: High A: Medium C: Medium

The biotope occurs in reduced (18-30 ppt)  (JNCC, 2015).  The decrease in salinity assessed at the
benchmark is to low salinity (<18 ppt). The available evidence (summarised below) suggests that
the characterizing species are tolerant of a short-term decrease to low salinity but it is likely that
for species such as Limecola balthica long-term reductions would lead to mortality.

The key characterizing species Hediste diversicolor is known to tolerate low salinities below 18-24
psu and it has been shown to replace Arenicola marina in areas influenced by freshwater runoff or
input (e.g. the head end of estuaries) (Barnes; 1994; Hayward, 1994). Lower salinities (<8 psu) can,
however, have an adverse effect on Hediste diversicolor reproduction (Ozoh & Jones, 1990; Smith
1964). Fertilization in Hediste diversicolor is adapted to high salinity but not to low salinity below
7.63‰ (Ozoh & Jones, 1990). A decrease in salinity at the benchmark pressure (reduction to
<18‰ ) may negatively impact recruitment and abundance if the dilution is close to that threshold.

McLusky & Allan (1976) conducted salinity survival experiments with Limecola balthica (as Macoma
balthica) over a period of 150 days. Survival times declined with decreased salinity. At 12 psu
specimens survived 78 days, whilst specimens at 8.5 psu survived 40 days. Some specimens of
Limecola balthica survived 2.5 days at 0.8 psu, which was apparently due to the animal’s ability to
clamp its valves shut in adverse conditions. McLusky & Allan (1976) also reported that Limecola
balthica failed to grow (increase shell length) at 15 psu. Limecola balthica is found in brackish and
fully saline waters (Clay, 1967b) so may tolerate a state of flux. Its distribution in combination with
the experimental evidence of McLusky & Allan (1976) suggests that Limecola balthica is likely to be
resistant to  decreased salinity over a short period. A decline in salinity in the long-term may have
implications for the species viability in terms of growth, and the distribution of the species may
alter as specimens at the extremes retreat to more favourable conditions. Metabolic function
should, however, quickly return to normal when salinity returns to original levels. Decreased
salinity may also affect the ability of Limecola balthica to tolerate contaminants such as heavy
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metals (see Bryant et al., 1985 & 1985a). Usually, contaminants become more toxic at low salinity
(Langston, W.J. pers comm.).

Muus (1967) revealed that Hydrobia ulvae did not crawl into water with a salinity lower than 9ᵒ⁄ₒₒ.
Hylleberg (1975) also found that under controlled conditions of salinity ranging from 10 to 30ᵒ⁄ₒₒ
and temperatures ranging from 5 to 35°C, shows that Hydrobia ulvae has maximal egestion at the
combination of high salinity (30ᵒ⁄ₒₒ) and high temperature (30° C).

Oligochaete dominated biotopes are recorded from a range of salinity regimes from full
(LS.LSa.MoSa.Ol; LS.LSa.MoSa.Ol.FS), variable (SS.SMu.SMuVS.CapTubi) reduced
(SS.SMu.SMuVS.CapTubi; LS.LMu.UEst.Tben ) and low (SS.SMu.SMuVS.LhofTtub) habitats
(JNCC,2015). In very low salinities from <15 to 0 ‰ species such as Limnodrilus spp. and Tubifex
tubifex are found (Giere & Pfannkuche, 1982).  A decrease in salinity at the pressure benchmark
would probably result in replacement by oligochaete species more tolerant of lower salinities such
as Limnodrilus hoffmeisteri and Tubifex tubifex that characterize the low salinity biotope
SS.SMu.SMuVS.LhofTtub. Numerous studies suggest that Baltidrilus costata tolerates a wide range
of salinities from 1‰ to 28‰ (Giere & Pfannkuche, 1982 and references therein), suggesting that
this species is likely to still be present in the biotope.

Sensitivity assessment. It is considered likely that a decrease in salinity at the pressure benchmark
will lead to some species replacement by polychaetes and oligochaetes more tolerant of low
salinity. Hediste diversicolor and oligochaetes are likely to remain but Limecola balthica is likely to
reduce in low salinity conditions. A similar biotope could remain where salinities were close to 18
ppt but a severe reduction in salinity would probably lead to loss of the biotope. Resistance is
therefore assessed as ‘Low’.  Resilience (following restoration of typical conditions)  is ‘High’ and
sensitivity is assessed as ‘Low’. It should be noted that resistance would be lower, and sensitivity
greater, where salinity was reduced to a level close to freshwater.

Water flow (tidal
current) changes (local)

Medium High Low
Q: Low A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

Hediste diversicolor characteristically inhabits littoral mudflats predominantly of clay (particles < 4
µm), silt (4-63 µm) and to a lesser extent, very fine sand (63-125 µm) (Jones et al., 2000). Highest
abundances occur in very weak (negligible) to weak < 1 knot (<0.5 m/sec.) currents. These
conditions are provided by this biotope, which occurs in extremely sheltered gravelly mud to
gravelly sandy mud from the strandline to the lower shore.

The type direction and speed of the currents control sediment deposition within an area. Finer
sediment will fall to the substratum in weaker currents. An increase in water flow rate could
entrain and maintain particles in suspension and erode the mud. As a result the scouring and
consequent redistribution of components of the substratum would alter the extent of suitable
habitat available to populations of Hediste diversicolor and other species in the biotope that prefer
finer sediment. Recovery of Hediste diversicolor would be influenced by the length of time it would
take for the potential habitat to return to a suitable state for recolonization by adult and juvenile
specimens from adjacent habitats, and the establishment of a breeding population. Recolonization
may take between one and three years, as populations differ in reaching maturity (Dales, 1950;
Mettam et al., 1982; Olive & Garwood, 1981), from the time that the habitat again becomes suited
to the species.

Increased water flow rate is likely to influence the sediment characteristics in this biotope,
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primarily by re-suspending and preventing deposition of finer particles (Hiscock, 1983). Coarser
sediments are likely to remain in areas of strongest flow velocity (where finer particles have been
re-suspended). Species such as Pygospio elegans and other opportunist polychaetes that tolerate
coarser particle size will possibly become established. Limecola balthica is likely to experience
greater impact from increased water flow as the species thrives in low energy environments, such
as the extremely sheltered areas that characterize the biotope (Tebble, 1976). Higher current
velocity (18 cm/s 0.18 m/s) recorded in flume experiments conducted in the Isle of Sylt (North Sea)
led to juvenile Limecola balthica being washed out of the sediment (Zuhlke & Reise, 1994). Green
(1968) reported that, towards the mouth of an estuary where sediments became coarser and
cleaner, Limecola balthica was replaced by another tellin species, Tellina tenuis.

Sensitivity assessment. Limecola balthica may be reduced if juveniles are washed from the
substratum. Loss of mud content in some areas is possible under increased waterflow and would
lead to replacement by another species but this is unlikely at the pressure benchmark levels. An
increase in flow velocity may alter sediments, resistance has been assessed as ‘Medium’,
recoverability is assessed as ‘High’ and sensitivity is, therefore ‘Low’. The biotope is not considered
sensitive to a reduction in water flow at the pressure benchmark as typically fine sediments
require much lower velocities to sttle than they do to be re-suspended.

Emergence regime
changes

High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

The biotope LS.LMx.GvMu.HedMx.Mac, occurs from the strandline to the lower shore (JNCC,
2015) and changes in emergence are unlikely to affect the biotope where it remains within an
intertidal habitat.

Hediste diversicolor inhabits a burrow within the sediment which may be up to 0.3 m deep. The
species retreats within the burrow during periods of exposure, protecting it from desiccation
although increased emergence may cause a decline in the abundance of Hediste diversicolor at the
upper limits of the intertidal zone, as they may become stressed by desiccation if the substrata
begin to dry and are prone to more extremes of temperature. Hediste diversicolor is sufficiently
mobile to gradually retreat back to damper substrata. Gogina et al. (2010) analysed patterns of
benthic community distribution related to selected environmental parameters, including depth, in
the western Baltic Sea with depths ranging from 0 m to 31 m. Hediste diversicolor displayed a
preference for low-saline regions shallower than 18 m. Increased depth had the largest negative
effect of all factors influencing distribution and abundance decreased with greater dept) Gogina et
al. (2010).

Limecola balthica occurs in the upper regions of the intertidal (Tebble, 1976) and is, therefore, likely
to be tolerant of prolonged emergence. It is a bivalve and can close tightly by contraction of the
adductor muscle, storing moisture inside the shell. The silty sediments in which the species lives
have a high water content and are therefore resistant to desiccation. Furthermore, Limecola
balthica is mobile and able to relocate in the intertidal by burrowing (Bonsdorff, 1984) or floating
(Sörlin, 1988). It would be expected to react to an increase in emergence by migrating down the
shore to its preferred position. There may be an energetic cost to this migration but it is not
expected that mortality would result. Limecola balthica should quickly recover from the energetic
cost of relocation. Limecola balthica occurs in the intertidal and sublittorally down to depths of 190
m (Olafsson, 1986), although is more abundant intertidally.  Hence, it would be expected to resist a
decrease in emergence regime. However, a case study, predicting changes in biomass of Limecola
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balthica in the Humber estuary, UK (western North Sea) under expected sea level rise conditions
displayed negative impacts. Coastal squeeze from sea level rise would produce steeper and more
homogenous beach face profiles. Limecola balthica was predicted to be lower on steeper beach
faces and biomass of Limecola balthica was predicted to decrease (Fujii & Raffaelli, 2008). 

Sensitivity assessment. The biotope and characterizing species are found at a range of shore
heights and are considered relatively resistant to changes in emergence which do not alter the
extent of the intertidal. An increase in emergence is likely to decrease the upper shore extent of
Hediste diversicolor dominated biotopes at the land-ward extent of the intertidal as desiccation
increases. A decrease in emergence under the benchmark pressure  is likely to extend the upper
extent of the biotope as the species recolonize or migrate to favourable conditions. Biotope
resistance is, therefore, assessed as ‘High’, recoverability is assessed as ‘High’ (by default) and the
biotope is considered to be 'Not sensitive'.

Wave exposure changes
(local)

High High Not sensitive
Q: High A: Medium C: Medium Q: High A: High C: High Q: High A: Medium C: Medium

This biotope occurs in wave sheltered areas, where estimated wave categories range from
sheltered, very sheltered and extremely sheltered (JNCC, 2015). The key characterizing species
Hediste diversicolor is infaunal, inhabiting a burrow in which it seeks refuge from predators and may
partially emerge to seek and capture food. An alteration of factors within the environment that
increases wave exposure could cause erosion of the substrata and consequently, loss of habitat.

Wave action stimulates Limecola balthica to start burrowing and individuals have been shown to
continue burrowing for a longer period of time than in still water (Breum, 1970).  Limited
zoobenthic biomass was recorded in areas exposed to strong currents and wave action (Beukema,
2002), limiting food availability, however impacts from this pressure at the benchmark levels may
be low for this biotope, as the biotope is limited to sheltered or extremely sheltered locations.
Increases in wave action may therefore remain within the limits of the species tolerance but
factors such as sediment redistribution may alter the physical biotope. Where less sheltered
conditions occur the sub biotope LS.LMx.GvMu.HedMx.Mac is likely to dominate as this variant
occurs in the least sheltered conditions.

Sensitivity assessment. Resistance to a change in nearshore significant wave height >3% but <5%
of the two main characterizing species Hediste diversicolor and Limecola balthica is ‘High’, given that
the biotope occurs in very sheltered locations and an increase in nearshore significant wave height
of >3% but <5% would continue to result in sheltered conditions which are within the species
tolerance limits. At the highest benchmark pressure (5% increase) the species exhibit ‘High’
resistance through their traits to live relatively deep in the sediment. Resilience (recoverability) is
also ‘High’ giving a Sensitivity of ‘Not Sensitive’. 

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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This pressure is Not assessed but evidence is presented where available. The following review
discusses impacts at higher concentrations than the pressure benchmark.

In Hediste diversicolor the acute toxicity is dependent on the rate of uptake of the metal, since this
determines the speed with which the lethal dose is built up. The rate of intake is important because
this determines whether the organism's detoxification mechanisms can regulate internal
concentrations. The resistance of Hediste diversicolor is thought to be dependent on a complexing
system which detoxifies the metal and stores it in the epidermis and nephridia (Bryan &
Hummerstone, 1971; McLusky et al. 1986).

Hediste diversicolor has been found successfully living in estuarine sediments contaminated with
copper ranging from 20 µm Cu/g in low copper areas to >4000 µm Cu/g where mining pollution is
encountered e.g. Restronguet Creek, Fal Estuary, Cornwall (Bryan & Hummerstone, 1971).
Attempts to change the tolerance of different populations of Hediste diversicolor to different
sediment concentrations of copper have shown that it is not readily achieved suggesting that
increased tolerance to copper has a genetic basis (Bryan & Hummerstone, 1971; Bryan & Gibbs,
1983).

Crompton (1997) reviewed the toxic effect concentrations of metals to marine invertebrates
Annelid species, such as Hediste diversicolor were found to be at risk if metals exceeded the
following concentrations during 4-14 days of exposure: >0.1 mg Hg l-1, > 0.01 mg Cu l-1, > 1 mg Cd
l-1, >1 mg Zn l-1,>0.1 mg Pb l-1, >1 mg Cr L-1, >1 mg As l-1 and >10 mg Ni l-1. In general, for estuarine
animals heavy metal toxicity increases as salinity decreases and temperature increases (McLusky
et al., 1986). For example, Fernandez & Jones (1990) calculated 96 hour LC50 Zinc values for
Hediste diversicolor at four salinities 5, 10, 17.5 and 30 psu at 12°C. The 96 hour LC50 at 17.5 psu

and 12°C was 38 mg Zn l-1, while at 5 and 10 psu it was 7 and 19 mg Zn l-1 respectively. Toxicity
decreased with increasing salinity. When salinity remained constant at 17.5 psu, but temperature
varied, the following 96 hour LC 50 values for Zinc were recorded: 40 mg Zn l-1 at 6°C, 32 mg Zn l-1

at 12°C and 9.1mg Zn l-1 at 20°C. Toxicity increased with increasing temperature. Accumulation of
zinc was also greater at the lowest salinities and when the temperature was highest at 20°C. In a
parallel experiment, the presence of sediment was found to reduce toxicity and body accumulation
of zinc in Hediste diversicolor. Recovery of this species would be influenced by the length of time it
would take for the potential habitat to return to a suitable state (e.g. factors such as the decline of
bioavailable metals within the marine environment), recolonization by adult and juvenile
specimens from adjacent habitats, and the establishment of a breeding population. Since juveniles
remain in the infauna throughout their development selection for metal tolerance can be expected
to be operative from an early stage (Bryan & Gibbs, 1983).

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available. The following review
discusses impacts at higher concentrations than the pressure benchmark.

The 1969 West Falmouth (America) spill of Grade 2 diesel fuel documents the effects of
hydrocarbons in a sheltered habitat (Suchanek, 1993). The entire benthic fauna including Hediste
diversicolor was eradicated immediately following the spill and remobilization of oil that continued
for a period > 1 year after the spill, contributed to much greater impact upon the habitat than that
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caused by the initial spill. Effects are likely to be prolonged as hydrocarbons incorporated within
the sediment by bioturbation will remain for a long time owing to slow degradation under anoxic
conditions. Oil covering the surface and within the sediment will prevent oxygen transport to the
infauna and promote anoxia as the infauna utilize oxygen during respiration. Although Hediste
diversicolor is tolerant of hypoxia and periods of anoxia, a prolonged absence of oxygen will result
in the death of it and other infauna. McLusky (1982) found that petrochemical effluents released
from a point source to an estuarine intertidal mudflat, caused severe pollution in the immediate
vicinity. Beyond 500 m distance the effluent contributed to an enrichment of the fauna in terms of
abundance and biomass similar to that reported by Pearson & Rosenberg (1978) for organic
pollution, and Hediste diversicolor was found amongst an impoverished fauna at 250 m from the
discharge.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available. The following review
discusses impacts at higher concentrations than the pressure benchmark.

Reports of the effects of synthetic chemicals on Hediste diversicolor illustrate that the intolerance
of the species is highly dependent upon the molecular structure of the chemical, which determines
the chemicals properties and use. For example:

Collier & Pinn (1998) observed significant differences in both the abundance and biomass1.
of a benthic community from the Ythan Estuary, Scotland, experiencing contamination by
Ivermectin. Ivermectin is the 22,23-dihydro derivative of avermectin ß which has been
shown to be highly efficient in the treatment of sea lice. Hediste diversicolor was the most
intolerant species to Ivermectin in the benthic community studied. A rapid decline in both
abundance and total biomass of Hediste diversicolor occurred within 7 days and with
increasing concentration. An Ivermectin concentration of 8.0 mg m² caused 100%
mortality within 14 days. Davies et al., (1998) modelled factors influencing the
concentration of Ivermectin reaching the seabed which ranged from 2.2 to 6.6 mg m². The
upper limit of this range was only slightly less than the concentrations found to be toxic by
Collier & Pinn (1998) and Black et al. (1997). Davies et al.(1998) concluded that there was
a significant risk to benthic organisms within a radius of 50 m of salmon farms utilizing
Ivermectin and that Ivermectin could accumulate (half life of Ivermectin in marine
sediments > 100 days) within the sediment beyond a single treatment and reach toxic
levels.
In contrast, Craig & Caunter (1990) examined the effects of the organosilicon compound,2.
Polydimethylsiloxane (PDMS) in sediment on Hediste diversicolor. PDMS fluids are less
dense than water and insoluble and form a discrete layer on the surface of the water. In an
intertidal environment PDMS fluids are deposited upon the sediment surface at low tide
and into contact with Hediste diversicolor. In laboratory tests, exposure to 10,000 mg
PDMS per kg of sediment caused no deaths over 96 hours, and exposure to 1,000 mg
PDMS per kg of sediment caused no deaths of Hediste diversicolor after 28 days.

Recovery of ​Hediste diversicolor would be influenced by the length of time it would take for the
potential habitat to return to a suitable state (e.g. factors such as the rate of decay of the synthetic
chemical within the marine environment), recolonization by adult and juvenile specimens from
adjacent habitats, and the establishment of a breeding population. This may take between one and
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three years, as populations differ in reaching maturity (Dales, 1950; Mettam et al., 1982; Olive &
Garwood, 1981), from the time that the habitat again becomes suited to the species.

Radionuclide
contamination

No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Beasley & Fowler (1976) and Germain et al., (1984) examined the accumulation and transfers of
radionuclides in Hediste diversicolor from sediments contaminated with americium and plutonium
derived from nuclear weapons testing and the release of liquid effluent from a nuclear processing
plant. Both concluded that the uptake of radionuclides by Hediste diversicolor was small. Beasley &
Fowler (1976) found that Hediste diversicolor accumulated only 0.05% of the concentration of
radionuclides found in the sediment. Both also considered that the predominant contamination
pathway for Hediste diversicolor was from the interstitial water. However, there is insufficient
information available on the biological effects of radionuclides to comment further upon the
intolerance of this species to radionuclide contamination.

Hutchins et al. (1998) described the effect of temperature on bioaccumulation by Limecola balthica
of radioactive americium, caesium and cobalt, but made no comment on the intolerance of the
species.

Further, direct assessments of impacts at the benchmark pressure on benthic communities, and
this biotope in particular were not found.

Sensitivity assessment. No evidence. Insufficient evidence was available to complete and
assessment.

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The habitats which Hediste diversicolor inhabits tend to have lower oxygen levels than other
sediments. Hediste diversicolor is resistant to moderate hypoxia (Diaz & Rosenberg, 1995). Vismann
(1990) demonstrated a mortality of only 15% during a 22 day exposure of Hediste diversicolor at
10% oxygen (ca. 2.8 mg O2 per litre). Hediste diversicolor is active at the sediment/water interface
where hydrogen sulphide concentrations increase during periods of hypoxia. Vismann (1990) also
demonstrated that the high tolerance of Hediste diversicolor to hypoxia in the presence of sulphide
is enabled by elevated sulphide oxidation activity in the blood. Hediste diversicolor may also exhibit
a behavioural response to hypoxia by leaving the sediment (Vismann, 1990) in the presence of
sulphide. After 10 days of hypoxia (10% oxygen saturation) with sulphide (172-187 µmM) only
35% of Hediste diversicolor had left the sediment compared to 100% of Nereis virens. Laboratory
experiments in the absence of sediments, found that Hediste diversicolor could survive hypoxia for
more than 5 days and that it had a higher tolerance to hypoxia than Nereis virens, Nereis succinea
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and Nereis pelagica (Theede, 1973; Dries & Theede, 1974; Theede et al., 1973). Juvenile Hediste
diversicolor survived hypoxic conditions for 4 days in laboratory conditions and combined hypoxia
and increased sulphide (1 mmo1 1-') for 3 days (Gamenick et al., 1996). Post larvae Hediste
diversicolor were the only life stage to show les tolerance to hypoxia, surviving for only 14 hr
(Gamenick et al., 1996).

Limecola balthica appears to be relatively tolerant of de-oxygenation. Brafield & Newell (1961)
frequently observed that, in conditions of oxygen deficiency (e.g. less than 1 mg O2/l), Limecola
balthica (as Macoma balthica)  displayed survivability of low oxygen concentrations and shell
growth continued (Jansson et al., 2015). Although, sub-lethal effects of hypoxia have been
identified as individual Limecola balthica moved upwards to fully expose itself on the surface of the
sand or buried at shallower depths, leaving them at greater risk of predation (Long et al., 2014).
Specimens lay on their side with the foot and siphons retracted but with valves gaping slightly
allowing the mantle edge to be brought into full contact with the more oxygenated surface water
lying between sand ripples. In addition, Limecola balthica was observed under laboratory conditions
to extend its siphons upwards out of the sand in to the overlying water when water was slowly
deoxygenated with a stream of nitrogen. The lower the oxygen concentration became the further
the siphons extended.

This behaviour, an initial increase in activity stimulated by oxygen deficiency, is of interest because
the activity of lamellibranchs is generally inhibited by oxygen deficient conditions (Brafield &
Newell, 1961). Dries & Theede (1974) reported the following LT50 values for Limecola balthica (as
Macoma balthica) maintained in anoxic conditions: 50 - 70 days at 5°C, 30 days at 10°C, 25 days at
15°C and 11 days at 20°C. Theede (1984) reported that Limecola balthica to resist extreme oxygen
deficiency was mainly due to anaerobic metabolism. Limecola balthica is, therefore very tolerant of
hypoxia, although it may react by reducing metabolic activity and predation risk may increase.
Metabolic function should quickly return to normal when oxygen levels are resumed and so
recovery is expected.

The characterizing oligochaetes and polychaetes within the biotope that display tolerance to
hypoxia include Tubificoides benedii and Capitella capitata, while Pygospio elegans is highly sensitive
to hypoxia (Gogina et al., 2010). Exposure to dissolved oxygen concentration of less than or equal
to 2 mg/l for 1 week is likely to limit Pygospio elegans abundance, whilst having limited impact on
Tubificoides benedii and Capitella capitata populations.

Corophium volutator is highly sensitive to hypoxia and suffers 50% mortality after just 4 hours in
hypoxic conditions, or in 2 hours if there is rapid build-up of sulphide (Gamenick et al., 1996). These
conditions often occur in estuaries where drifting macroalgae (such as Fucus sp.) settle on the
mudflats in small patches.

Oligochaete species vary in their tolerance of hypoxia and associated high sulphide levels. Most
enchytraeids and naidids are sensitive to hydrogen sulphide and hypoxia while tubificids are often
more resistant (Giere, 2006).

Tubificoides benedii has a high capacity to tolerate anoxic conditions, its extreme oxygen tolerance 
is based on an unusually low respiration rate (Giere et al., 1999).  Respiration rates of Tubificoides
benedii measured at various oxygen concentrations showed that aerobic respiration is maintained
even at very low oxygen concentrations (Giere et al., 1999). Birtwell & Arthur (1980) showed that

Tubificoides benedii could tolerate anoxia in the Thames Estuary (LT50 = 58.8 hours at 20oC, 26.6

hours at 25oC  and 17.8 hours at 30oC in experiments with worms acclimated to 20oC.)
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Tolerance experiments by Gamenick et al.  (1996) found that Baltidrilus costata  (as Heterochaeta
costata) was not affected by hypoxic conditions for at least 3 days but the addition of sulphide
91.96 mmol/litre) caused mortality after 1 day (Gamenick et al., 1996)

Sensitivity assessment. Resistance to exposure to dissolved oxygen concentration of less than or
equal to 2 mg/l for 1 week is assessed as ‘High’ for the characterizing species Hediste diversicolor
and Limecola balthica. It is important to consider that other species that are common or abundant in
the biotope may be impacted by decreased dissolved oxygen, such as Pygospio elegans and
decreases in abundance of these species are likely. As this biotope is found in intertidal habitats
oxygen levels will be recharged during the tidal cycle lowering exposure to this pressure for
Pygospio elegans. Based on the reported tolerances for anoxia and intertidal habitat, biotope
resistance is assessed as ‘High’ resilience is assessed as ‘High’ (by default) and the biotope is
considered to be ‘Not sensitive’ at the benchmark level

Nutrient enrichment High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This pressure relates to increased levels of nitrogen, phosphorus and silicon in the marine
environment compared to background concentrations.  The benchmark is set at compliance with
WFD criteria for good status, based on nitrogen concentration (UKTAG, 2014).  Primary
production in the biotope will be limited to microalagae at the sediment surface, rather than
macroalgae. Changes in primary production as a result of changes in nutrient enrichment are,
therefore, not considered likely to directly alter the biotope.

Aberson et al. (2016) found nutrient enrichment promotes surface deposit feeding
in Hediste diversicolor, over suspension feeding and predation. At sewage-polluted sites in three
estuaries in  SE  England Hediste diversicolor mainly consumed microphytobenthos, sediment
organic matter and filamentous macroalgae Ulva  spp. At cleaner  sites  Hediste diversicolor relied
more on suspension feeding and consumption of Spartina anglica (Aberson et al., 2016). Whilst
suggesting adaptability to nutrient enrichment this behaviour will increase predation risk.

Nutrient enrichment favours the growth of opportunistic green macro-algae blooms which can
cause declines in some species and increases in others (Raffaelli, 2000). Evidence (Beukema, 1989;
Reise et al., 1989; Jensen, 1992) suggested a doubling in the abundance of Hediste diversicolor in the
Dutch Wadden Sea, accompanied by a more frequent occurrence of algal blooms that were
attributed to marine eutrophication. Algae may be utilized by Hediste diversicolor in its omnivorous
diet, so some effects of nutrient enrichment may be beneficial to this species. However, evidence
for the effects of algal blooms stimulated by nutrient enrichment on Hediste diversicolor is not
consistent. Raffaelli (1999) examined a 30 year data base to examine the effect of nutrient
enrichment on an estuarine food web in Aberdeenshire, Scotland. This study displayed impacts to
species characterizing the biotope from development of algal mats, the density and distribution of
which was related to nutrient. In areas where algal biomass was greatest reduced invertebrate
densities were recorded. Densities of Limecola balthica and Hediste diversicolor were lower in 1990
compared to 1964 at sites where macro-algal mats increased over the same period. Conversely,
densities were on average higher in the upper reaches where macroalgal mats were generally
absent before 1990 (Raffaelli, 1999). 

Sensitivity assessment.  The benchmark is relatively protective and is not set at a level that would
allow blooms of green algae on the sediment, based on this consideration and based on the lack of
primary producers structuring the biotope, resistance is assessed as 'High' and resilience as 'High'
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(by default), so that the biotope is assessed as 'Not sensitive'.

 

Organic enrichment High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Hediste diversicolor was classed for the Marine Biotic Index as being indifferent to, tolerating or
proliferating under organic enrichment conditions while  Limecola balthica was recorded as
senstive to organic enrichment by Borja et al., (2000). However, case studies suggest that Limecola
balthica populations are resistent to mild enrichment. Limecola balthica (as Macoma balthica) have
been shown experimentally to be able to resist periods of up to 9 weeks under algal cover, their
long siphon allowing them to reach oxygenated water, although other bivalves decreased in
abundance (Thiel et al., 1998). Organic enrichment from waste-water discharge in the Dutch
Wadden Sea resulted in positive effects on Limecola balthica abundance, biomass, shell growth and
production. These effects were concluded to be due to increased food supply (Madsen & Jensen,
1987). 

Sensitivity assessment. At the benchmark levels, a resistance of ‘High’ as the main characterizing
species Hediste diversicolor is tolerant of organic enrichment and an input at the pressure
benchmark is considered unlikely to lead to gross pollution effects and impacts on  Limecola
balthica. A resilience of ‘High’ is assigned (by default) and the biotope is assessed as ‘Not sensitive’.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’. Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope and sub-biotopes is only found in sediment, in particular, gravelly sandy mud or
gravelly mud (JNCC, 2015). The burrowing organisms characterizing this biotope, including Hediste
diversicolor, and Limecola balthica would not be able to survive if the substratum type was changed
to either a soft rock or hard artificial type.  Consequently, the biotope would be lost altogether if
such a change occurred. 

Sensitivity assessment. Biotope resistance is assessed as ‘None’, resilience is ‘Very low’ (as the
change at the pressure benchmark is permanent) and biotope sensitivity is ‘High’.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Physical change (to
another sediment type)

Low Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The benchmark for this pressure refers to a change in one Folk class.  The pressure benchmark
originally developed by Tillin et al. (2010) used the modified Folk triangle developed by Long
(2006) which simplified sediment types into four categories: mud and sandy mud, sand and muddy
sand, mixed sediments and coarse sediments.  The change referred to is, therefore, a change in
sediment classification rather than a change in the finer-scale original Folk categories (Folk,
1954).  At the pressure benchmark a change in sediment to sandy mud and muddy sand and
muds and increased coarse sediment content (to gravels or sands) is considered. The biotope
occurs in gravelly mud and the variant sub biotopes show some variation in species communities
and sediment type (JNCC, 2015) so changes in proportion of finer or coarser sediments may lead
to some biotope reversions between the sub-biotopes.

Decrease of gravel content is likely to lead to change to comparable mud dominated1.
biotopes. Where LS.LMx.GvMu.HedMx.Mac occurs it is commonly found with patches of
mud and there are broad transition areas between the biotop
LS.LMu.MEst.HedMac, Hediste diversicolor and Limecola balthica in littoral sandy mud). A
change to finer sediemnts is therefore likely to lead to biotope reclassification but some of
the key characterizing species, including Hediste diversicolor  may remain. 
An increase in gravel and a change to clean sands or coarse sediments is likely to have a2.
more significant effect as sediment cohesion and ability to retain organic matter and
water is reduced altering habitat suitability for burrowing polychaetes and amphipods
and deposit feeders.

Hediste diversicolor is infaunal and is reliant upon a muddy/sandy sediment in which to burrow.
 Hediste diversicolor has been identified in other intertidal sediments including gravels, clays and
even turf (Clay, 1967; Scaps, 2002), although abundance may be reduced in these
habitats. Limecola balthica is likely to tolerate increased gravel content as sediment was not shown
to affect burrowing (Tallqvist, 2001), however, growth, shell size and body mass were greatest in
higher sand content sediment and lower in higher gravel content sediments (Azouzi et al. 2002),
suggesting long-term health and abundance may be affected by a permanent increase in  gravel
content. Conde et al. (2011) compared recruitment of Scrobicularia plana to excavated and un-
excavated control plots (expected to enhance the deposition of bivalve spat if the settlement of
bivalves was the result of a passive process) at different shore levels in Portugal. Juveniles were
found to avoid excavated plots, showing significantly higher abundance in control plots. The data
strongly suggested that recruited bivalves actively avoid unsuitable substrata, including an
increased gravel fraction.

Sensitivity assessment. An increase in mud content is likely to lead to a change to comparable mud
dominated biotopes. Case studies display decreasing abundance with increased gravel content of
Hediste diversicolor and reduced growth rates of Limecola balthica. Abundance of polychaetes is
likely to depend on each species tolerance of increasing gravel content, with species, such as
Pygospio elegans, that can exploit the conditions increasing in abundance) but other species
decreasing in abundance. Resistance to a change in one Folk class is assessed as ‘Low’ as changes in
sediment will alter the biotope character although some characterizing species may remain.
Resilience is assessed as ‘Very Low’ as a change at the benchmark is permanent. The sensitivity of
the biotope overall is, therefore, considered to be ‘High’.
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Habitat structure
changes - removal of
substratum (extraction)

None High Medium

Q: High A: High C: High Q: High A: High C: Medium Q: High A: High C: Medium

The substratum of this biotope consists of gravelly sandy mud or gravelly mud (Conner et al.,
2004).  The characterizing infaunal species, including burrow into the sediment, to depths not
exceeding 30 cm.  The process of extraction is considered to remove all biological components of
the biotope group in the impact footprint and the sediment habitat.

Sensitivity assessment. Resistance to extraction of substratum to 30 cm across the entire biotope
is assessed as ‘None’ based on expert judgment but supported by the literature relating to the
position of these species on or within the seabed and literature on impacts of dredging and bait
digging activities (see penetration and disturbance pressure).  At the pressure benchmark the
exposed sediments are considered to be suitable for recolonization almost immediately following
extraction.  Recovery will be mediated by the scale of the disturbance and the suitability of the
sedimentary habitat, biotope resilience is assessed as 'High' (based on recolonization by adults and
pelagic larvae) and biotope sensitivity is assessed as 'Medium'.

Abrasion/disturbance of
the surface of the
substratum or seabed

Medium High Low

Q: High A: High C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

Muddy sediments, in general, tend to be cohesive although high levels of water content will reduce
this and destabilise sediments. Sediment cohesion provides some sediment stabilisation to resist
erosion following surface disturbance. The characterizing species associated with this biotope are
infaunal and hence have some protection against surface disturbance, although siphons of Limecola
balthica may project above the sediment surface. Surface compaction can collapse burrows and
reduce the pore space between particles, decreasing penetrability and reducing stability and
oxygen content (Sheehan, 2007).  Trampling (3 times a week for 1 month) associated with bait
digging reduced the abundance and diversity of infauna (Sheehan, 2007; intertidal muds and
sands). Damage to siphons would require repair. The snail Hydroia ulvae is present on the surface
and abrasion may result in burial or damage to this species. 

Sensitivity assessment. Resistance is assessed as ‘Medium', as abrasion is unlikely to affect high
numbers of infaunal burrowing species such as the key characterizing species  Hediste
diversicolor and the oligochaetes, but bivalves, tube dwelling polychaetes and Hydrobia ulvae may
be reduced in abundance. Resilience is assessed as 'High' and biotope sensitivity is assessed as
'Low'.

Penetration or
disturbance of the
substratum subsurface

Low High Low

Q: High A: High C: Medium Q: High A: High C: Medium Q: High A: High C: Medium

As the characterizing species are burrowing species, the impact from damage to the sub-surface
sea bed would be greater than damage to the sea bed surface only (see abrasion pressure). A
number of studies have assessed the impacts of activities resulting in penetration and disturbance
of sediments on the characterizing species in similar habitats. The characterizing species have
some protective traits such as infaunal life habit, with deeper burrowing species less exposed. The
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shells of Limecola balthica provide some protection. Hydrobia ulvae crawl on the sediment and
are likely to be vulnerable to penetration and disturbance of the sediment.

Ferns et al. (2000) studied effects of harvesting of cockles and reported a decline in muddy sands of
Hydrobia ulvae when a mechanical tractor towed harvester was used in a cockle fishery. Hydrobia
ulvae were significantly depleted for >100 days after harvesting (the limit of the study monitoring
timeline).

The effects of  pipeline construction on benthic invertebrates were also investigated using a
Before/After impact protocol at Clonakilty Bay, West Cork, Ireland. Benthic invertebrates were
sampled once before the excavation and at one, two, three and six months after the completion of
the work. Invertebrate samples were dominated by Hediste diversicolor, Scrobicularia plana and
Tubifex spp. An impact was obvious in the construction site in that no live invertebrates were found
at one month after disturbance, but there followed a gradual recolonisation by Hediste diversicolor.
At six months after the disturbance there was no significant difference in the mean number of total
individuals (of all species) per core sample amongst all study sites, but the apparent recovery in the
impacted area was due to two taxa only, Hediste diversicolor and Tubifex spp. (Lewis et al., 2002).

Sensitivity assessment.  Resistance of the biotope is assessed as ‘Low’, although the significance of
the impact for the bed will depend on the spatial scale of the pressure footprint.  Resilience is
assessed as ‘High’, and sensitivity is assessed as ‘Low’.

Changes in suspended
solids (water clarity)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Changes in light penetration or attenuation associated with this pressure are not relevant to
Hediste diversicolor and Limecola balthica biotopes. As the species live in the sediment they are also
likely to be adapted to increased suspended sediment (and turbidity). However, alterations in the
availability of food or the energetic costs in obtaining food or changes in scour could either
increase or decrease habitat suitability for the characterizing species.

Hediste diversicolor characteristically inhabits estuaries where turbidity is typically higher than
other coastal waters. Changes in the turbidity may influence the abundance of phytoplankton
available as a food source that may be attained through filter feeding. Hediste diversicolor utilizes
various other feeding mechanisms and, at the benchmark level, the likely effects of a change in one
rank on the WFD scale are limited.

Sensitivity assessment. The following sensitivity assessment relies on expert judgement, utilising
evidence of species traits and distribution and therefore confidence has been assessed as low.
Resistance is ‘High’ as no significant negative effects are identified and potential benefits from
increased food resources may occur. Resilience is also ‘High’ as no recovery is required under the
likely impacts. Sensitivity of the biotope is, therefore, assessed as ‘Not Sensitive’.

Smothering and siltation
rate changes (light)

Medium High Low
Q: High A: High C: Medium Q: High A: High C: High Q: High A: High C: Medium

The degree to which the characterizing species are able to resist this pressure depends primarily
on species mobility, ability to survive within sediment without contact with the surface and ability
to escape from the over-burden. Factors that affect the ability to regain the surface include grain
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size (Maurer et al., 1986), temperature and water content (Chandrasekara & Frid, 1998).

Mobile polychaetes have been demonstrated to burrow through thick layers of deposits.
Powilleit et al., (2009) studied the response of the polychaete Nephtys hombergii to
smothering. This species successfully migrated to the surface of 32-41 cm deposited sediment
layer of till or sand/till mixture and restored contact with the overlying water.   While crawling
upward to the new sediment surfaces burrowing velocities of up to 20 cm/day were recorded
for Nephtys hombergii. Similarly, Bijkerk (1988, results cited from Essink 1999) indicated that the
maximal overburden through which species could migrate was 60 cm through mud for Nephtys and
90 cm through sand. No further information was available on the rates of survivorship or the time
taken to reach the surface.

Laboratory experiments have shown that the snail Hydrobia ulvae can rapidly resurface through
5cm thick fine deposits, although this ability is reduced where deposited sediments contain little
water (Chandrasekara & Frid, 1998). Field experiments where 10 cm of sediment were placed on
intertidal sediments to investigate the effects of the beneficial use of dredged materials found that
the abundance of Hydrobia ulvae had returned to ambient levels within 1 week (Bolam et al., 2004).

Limecola balthica is able to burrow both vertically and horizontally through the substratum. It is
likely that Limecola balthica is not sensitive to smothering by a layer of sediment 5 cm thick as it is a
mobile species able to burrow upwards and surface from a depth of 5 - 6 cm (Brafield & Newell,
1961; Brafield, 1963; Stekoll et al., 1980). Turk and Risk (1981) investigated the effect of
experimentally induced sedimentation (through fences and boxes that induced sediment
deposition on intertidal mudflats in the Bay of Fundy), of 1-3.5 cm at a rate of 1.9-10.2 cm/month.
The results showed that Limecola balthica was generally unaffected.

Sensitivity assessment. As the exposure to the pressure is for a single discrete event, resistance is
assessed as ‘Medium’ as some species associated with the biotope such as Streblospio shrubsolii,
Corophium volutator and Pygospio elegans may decline but the biotope is likely to be recognizable
within a week due to repositoing and migration of mobile species. Resilience is assessed as ‘High’
and sensitivity is assessed as ‘Low. 

Smothering and siltation
rate changes (heavy)

Low High Low
Q: High A: High C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Studies have found that beach ‘replenishment’ or ‘nourishment’ that involves the addition of
sediments on beaches can have a number of impacts on the infauna (Peterson et al.,
2000; Peterson et al., 2006). Impacts are more severe when the sediment added differs
significantly in grain size or organic content from the natural habitat (Peterson et al., 2000).

Hediste diversicolor inhabits depositional environments. It is capable of burrowing to depths of up
to 0.3 m and reworking sub-surface modifications of its burrow through fine clays and sand. Smith
(1955) found no appreciable difference in the population of a Hediste diversicolor colony which had
been covered by several inches of sand through which the worms tunnelled. Mobile polychaetes
have been demonstrated to burrow through thick layers of deposits. Powilleit et al., (2009) studied
the response of the polychaete Nephtys hombergii to smothering. This species successfully
migrated to the surface of 32-41 cm deposited sediment layer of till or sand/till mixture and
restored contact with the overlying water.   While crawling upward to the new sediment surfaces
burrowing velocities of up to 20 cm/day were recorded for Nephtys hombergii. Similarly, Bijkerk
(1988, results cited from Essink 1999) indicated that the maximal overburden through which
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species could migrate was 60 cm through mud for Nephtys and 90 cm through sand. No further
information was available on the rates of survivorship or the time taken to reach the surface.

Witt et al. (2004) identified an increase in Limecola balthica (as Macoma balthica) abundance in areas
of disposal of dredge waste spoil, possibly due to nutrient input at the disposal site. This suggests
Limecola balthica responds opportunistically to this pressure.

Sensitivity assessment. Deposition of up to 30 cm of fine material is likely to provide different
impacts for the different species characterizing the biotope. Overall, although the characterizing
species may have some resistance to this to this pressure, populations are likely to be reduced.
Resistance to initial smothering is ‘Low’ Resilience is ‘High’ and biotope sensitivity is assessed as
‘Low’.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Examples of the impact of specific marine litter, including cigarette butts and micro-plastics are
also considered..

Litter, in the form of cigarette butts has been shown to have an impact on ragworms. Hediste
diversicolor showed increased burrowing times, 30% weight loss and a  >2 fold increase in DNA
damage when exposed to water with toxicants (present in cigarette butts) in quantities 60 fold
lower than reported from urban run-off (Wright et al., 2015). This UK study suggests health of
infauna populations are negatively impacted by this pressure.

Studies of other characterizing species in relation to micro plastics were not available. However,
studies of sediment dwelling, sub surface deposit feeding worms, showed negative impacts from
ingestion of micro plastics. For instance, Arenicola marina ingests micro-plastics that are present
within the sediment it feeds within. Wright et al. (2013) carried out a lab study that displayed
presence of micro-plastics (5% UPVC) significantly reduced feeding activity when compared to
concentrations of 1% UPVC and controls. As a result, Arenicola marina showed significantly
decreased energy reserves (by 50%), took longer to digest food, and as a result decreased
bioturbation levels which would be likely to impact colonisation of sediment by other species,
reducing diversity in the biotopes the species occurs within. Wright et al. (2013) also present a case
study based on their results, that in the intertidal regions of the Wadden Sea, where Arenicola
marina is an important ecosystem engineer, Arenicola marina could ingest 33 m² of micro-plastics a
year.

Sensitivity assessment. Marine litter in the form of cigarette butts or micro plastics may impact
the health of populations of characterizing species. Significant impacts have been shown in
laboratory studies but impacts at biotope scales are still unknown. Evidence and confidence in the
assessment is limited and this pressure is 'Not assessed'.

Electromagnetic changes No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

There is no evidence on effects of electric and magnetic fields on the characterizing
species. Electric and magnetic fields generated by sources such as marine renewable energy
device/array cables may alter behaviour of predators and affect infauna populations. Evidence is
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limited and occurs for electric and magnetic fields below the benchmark levels, confidence in
evidence of these effects is very low.

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Species within the biotope can probably detect vibrations caused by noise and in response may
retreat in to the sediment for protection. However, at the benchmark level the community is
unlikely to be sensitive to noise and this therefore is ‘Not relevant’.

Introduction of light or
shading

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

There is little  direct evidence of effects of changes in incident light on the characterizing species of
this biotope.  The key characterizing species, ​Hediste diversicolor and Limecola balthica live in the
sediment and do not rely on light levels directly to feed or find prey so limited direct impact is
expected. More general changes to the productivity of the biotope may, however, occur. Beneath
shading structures there may be changes in microphytobenthos abundance. Littoral mud and sand
support microphytobenthos on the sediment surface and within the sediment. Mucilaginous
secretions produced by these algae may stabilise fine substrata (Tait & Dipper, 1998), shading will
prevent photosynthesis leading to death or migration of sediment microalgae altering sediment
cohesion and food supply to higher trophic levels. The impact of these indirect effects is difficult to
quantify.

Sensitivity assessment. Based on the direct impact, biotope resistance is assessed as ‘High’ and
resilience is assessed as ‘High’ (by default) and the biotope is considered to be ‘Not sensitive’.

Barrier to species
movement

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Barriers that reduce the degree of tidal excursion may alter larval supply to suitable habitats from
source populations. Conversely, the presence of barriers at brackish waters may enhance local
population supply by preventing the loss of larvae from enclosed habitats to environments, which
are unfavourable, reducing settlement outside of the population.Barriers may also act as stepping
stones for larval supply over greater distances (Adams et al., 2014).

If a barrier (such as a tidal barrier) incorporated renewable energy  devices such as tidal energy
turbines, these devices may affect hydrodynamics and so migration pathways for larvae into and
out of the biotope (Adams et al., 2014). Evidence on this pressure is limited.

The trait of Hediste diversicolor to lay and protect eggs within a burrow is likely to limit the impact
of barriers to movement on populations. The ability of postlarvae, larger juveniles, and adults of
Hediste diversicolor to swim, burrow and be carried by bedload transport can aid the rapid
recolonization of disturbed sediments (Shull, 1997).  Davey & George (1986), found evidence that
larvae of Hediste diversicolor were tidally dispersed within the Tamar Estuary over a distance of 3
km. A barrier to movement is likely to limit colonization outside the enclosed area, but increase
populations within the enclosed area  
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Sensitivity assessment. Resistance to this pressure is assessed as 'High' and resilience as 'High' by
default. This biotope is therefore considered to be 'Not sensitive'.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

‘Not relevant’ to seabed habitats.  NB. Collision by interaction with bottom towed fishing gears
and moorings are addressed under

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Characterizing species have limited, visual perception, this pressure is therefore considered 'Not
relevant'.

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Important characterizing species within this biotope are not cultivated or translocated. This
pressure is therefore considered ‘Not relevant’ to this biotope group.

Introduction or spread of
invasive non-indigenous
species

Low Very Low High

Q: High A: High C: High Q: Low A: NR C: NR Q: Low A: Low C: Low

Intertidal mixed sediments may be colonized by a number of invasive non-indigenous species.
Invasive species that alter the character of the biotope or that predate on characterizing species
are most likely to result in significant impacts. Intertidal flats may be colonized by the invasive non-
indigenous species Crepidula fornicata and the pacific oyster Magallana gigas. The two species have
not only attained considerable biomasses from Scandinavian to Mediterranean countries but have
also generated ecological consequences such as alterations of benthic habitats and communities
and food chain changes (OSPAR, 2009b).

In the Wadden Sea, the Pacific oyster Magallana gigas has colonized intertidal flats (Smaal et al.,
2005). This species consumes pelagic larvae reducing recruitment (Smaal et al., 2005).   The most
severe effects are likely to occur from impacts on sediment, where Magallana gigas create reefs on
sedimentary flats that will prevent recruitment of juveniles and will restrict access of infauna to
the sediment-water interface impacting respiration and feeding of the associated bivalves Limecola
balthica. Burrowing infauna such as  the characterizing species Hediste diversicolor may persist
within sediments but the overall character of the mixed sediment biotope would be altered.In the
Wadden Sea,

Sensitivity assessment. Intertidal gravelly muds may be exposed to invasive species which can

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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alter the character of the habitat (primarily Crepidula fornicata at the sublittoral fringe and
Magallana gigas) leading to re-classification of this biotope. The biotope is considered to have ‘Low’
resistance and ‘Very low’ recovery (unless invasive species are removed). Biotope sensitivity is,
therefore, assessed as ‘High’.

Introduction of microbial
pathogens

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

No evidence was returned by literature searches on the effect on the key characterizing species,
Hediste diversicolor of introduction of relevant microbial pathogens or metazoan disease vectors to
an area where they are currently not present. Biotope resistance is, therefore, assessed as
'High',  resilience is assessed as 'High' and the biotope is classed as 'Not sensitive' to the
introduction of microbial pathogens. Confidence in this assessment is low as the evidence base is
very limited.

 

Removal of target
species

Low High Low
Q: High A: High C: Medium Q: High A: Medium C: High Q: High A: Medium C: High

The sedimentary biotope and characterizing and associated species may be disturbed and
damaged by static or mobile gears that are targeting other species. These direct, physical impacts
are assessed through the abrasion and penetration of the seabed pressures. The sensitivity
assessment for this pressure considers any biological/ecological effects resulting from the removal
of target species on this biotope. Ragworms, Hediste diversicolor are targeted by recreational and
commercial bait diggers. The extent of the impact will depend on the fishing / removal method and
spatial extent. 

Populations of Hediste diversicolor are dominated by females; males may constitute up to 40% of
the population but several reports suggest that the proportion of males is frequently lower (< 20%)
(see Clay, 1967c). The sexes are externally indistinguishable except when approaching maturation
and during spawning (see reproduction and adult general biology).  Consequently extraction e.g. by
bait digging, of 50% of the specimens from within an area is likely to remove more females than
males. A reduction in the female proportion of the population prior to spawning could reduce
recruitment to the population. The mechanical action of the digging, even if the worms were not
actually taken, may also cause some damage to the bodies. Recovery is dependent on the
reproductive success and survival of the remaining population and colonization by adults from
unaffected areas.

Sensitivity assessment. The key, characterizing species Hediste diversicolor may be targeted and
their removal will alter the character of the biotope. Due to potential impacts on Hediste
diversicolor populations, in particular females, biotope resistance is assessed as ‘Low’. Biotope
resilience is assessed as ‘High’ and biotope sensitivity is assessed as ‘Low’. 

Removal of non-target
species

Low High Low
Q: Low A: NR C: NR Q: High A: Medium C: Medium Q: Low A: Low C: Low

Direct, physical impacts are assessed through the abrasion and penetration of the seabed
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pressures, while this pressure considers the ecological or biological effects of by-catch. Species in
these biotopes, including the characterizing species, may be damaged or directly removed by static
or mobile gears that are targeting other species (see abrasion and penetration pressures). Loss of
these species would alter the character of the biotope resulting in re-classification, and would alter
the physical structure of the habitat resulting in the loss of the ecosystem functions such as
secondary production performed by these species.

Digging for Hediste diversicolor for bait is likely to cause significant loss or mortality of the key
characterizing species and may result in mortality or damage of the bivalve Limecola balthica.

Sensitivity assessment: Loss of the characterizing species of this biotope is likely to occur as by-
catch.  Thus, the biotope is considered to have a resistance of 'Low' to this pressure and to have
'High' resilience, resulting in the sensitivity being judged as 'Low'.
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