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= UK and Ireland classification

Laminaria hyperborea with dense foliose red seaweeds on
exposed infralittoral rock
Laminaria hyperborea with dense foliose red seaweeds on
exposed infralittoral rock
Laminaria hyperborea with dense foliose red seaweeds on
exposed infralittoral rock
Laminaria hyperborea with dense foliose red seaweeds on
exposed infralittoral rock

EUNIS 2008 A3.115
JNCC2015 IRHIRKFaR.LhypR
JNCC2004 IRHIRKFaR.LhypR

1997 Biotope IR.EIR.KFaR.LhypR

W Description

Very exposed and exposed upper infralittoral bedrock or large boulders characterized by the kelp
Laminaria hyperborea, beneath which is a dense turf of foliose red seaweeds. Three variations of
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this biotope have been described: the upper infralittoral kelp forest (EIR.LhypR.Ft), the kelp park
below (EIR.LhypR.Pk) and a third type of kelp forest that is characterized by a mixture of Laminaria
hyperborea and Laminaria ochroleuca (EIR.LhypR.Loch). The fauna of EIR.LhypR biotopes are
markedly less abundant than kelp forests in areas of greater wave surge (EIR.LhypFa); sponges,
anemones and polyclinid ascidians may be present, though never at high abundance. Beneath the
understorey of red algae the rock surface is generally covered with encrusting coralline algae.
(Information from the Marine Biotope Classification for Britain and Ireland, Version 97.06: Connor
etal,1997a,b).

| Depthrange
0-5m, 5-10m, 10-20 m
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Habitat review

~

~ Ecology
Ecological and functional relationships

Kelps are major primary producers, up to 90 percent of kelp production enters the detrital food
web and kelp is probably a major contributor of organic carbon to surrounding communities
(Birkett et al. 1998b). Kelp beds are diverse species rich habitats and over 1,800 species have been
recorded in the UK kelp biotopes (Birkett et al., 1998b).

e Sea-urchins graze the undercanopy and understorey algae, including juvenile kelp
sporophytes, together with epiphytes and epifauna on the lower reaches of the laminarian
stipe. Wave action and abrasion between stipes probably knocks urchins off the upper
stipe. Sea urchin grazing may maintain the patchy and species rich understorey
epiflora/fauna by preventing dominant species from becoming established. Vost (1983)
examined the effect of removing grazing Echinus esculentus and found that after 6-10
months the patchiness of the understorey algae had decreased and the species richness
and biomass of epilithic species increased. Strongylocentrotus droebachiensis and
Paracentrotus lividus also graze kelp beds but are less common in the British Isles than
Echinus esculentus. Echinus esculentus grazing probably controls the lower limit of Laminaria
hyperborea distribution in some locations, e.g. in the Isle of Man (Jones & Kain, 1967; Kain
etal., 1975; Kain, 1979).

» >Patella pellucida grazes epiphytes and the kelp tissue directly, forming pits similar to the
home scars of intertidal limpets (see Kain & Svendsen, 1969 for photographs). The older,
laevis form excavates large cavities in the holdfast. This tissue damage weakens the adult
plant and contributes to its loss due to wave action and storms (Kain, 1979; Birkett et al.
1988b). Infestation with Patella pellucida varies between sites and decreases with depth,
e.g. infestation may reach up to 50 % on mature plants in shallow water in the Isle of Man,
whereas <20 % was found (on kelps of any age group and depth) in England and Scotland
(Kain, 1979).

e Laminaria hyperboreais grazed directly by Lacuna vincta in Norway, the individuals forming
deep pits in the lamina (Kain, 1979).

* Kelp fronds, stipes and holdfasts provide substrata for distinct communities of species,
some of which are found only or especially on kelp plants. Kelp holdfasts provide both
substrata and refugia (see Detailed ecology).

e Epiphytes and understorey algae are grazed by a variety of amphipods, isopods and
gastropods, e.g. Littorina spp., Acmaea spp., Haliotis tuberculata, Aplysia and rissoid
gastropods (Birkett et al., 1988b).

» Predators within kelp beds have not been well studied in the UK. Lobsters (Homarus
gammarus), crabs and some fish species (e.g. the wolffish Anarhichas lupus) are known to
consume gastropod and echinoderm grazers. In Scotland, the Eurasian otter Lutra lutra, is
commonly found feeding on fish in kelp beds (see e.g. Kruuk et al, 1990).

* Kelp communities and the interaction between kelp, urchins and predators has been
studied in Nova Scotia, Norway, southern California and the UK (Kain, 1979; Mann, 1982;
Schiel & Foster, 1986; Elner & Vadas, 1990; Vadas & Elner, 1992; Sivertsen, 1997).

* Birkett et al. (1998b) suggest that juveniles of animals present in kelp beds as adults
probably use the habitat as a nursery and unknown numbers of species are likely to use
the habitat during their life cycle. Rinde et al. (1992, cited in Birkett et al., 1998b) state
that Norwegian kelp beds are nurseries for gadoid species.
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Seasonal and longer term change

New blades of Laminaria hyperborea grow in winter between the meristem and the old blade, which
is shed in early spring or summer together with associated species growing on its surface. Larger
and older kelp plants become liable to removal by wave action and storms due to their size and
weakening by grazers such as Patella pellucida. There is therefore likely to be a reduced abundance
of kelps following the winter. Loss of older plants results in more light reaching the understorey,
temporarily permitting growth of algae including Laminaria hyperborea sporelings. Areas of kelp
may become denuded of macroalgae at intervals and the substrata dominated by encrusting
corallines. These areas are often associated with an increase in urchin numbers forming 'fronts' of
small and large urchins that remove large quantities of algae including the kelps themselves
forming 'urchin barrens'. Sea urchin grazing is an important factor in kelp beds and, as part of the
biotope, the following suggested factors affecting sea urchin populations are presented.

e Several predators have been suggested as controlling sea urchin populations e.g. sea
otters, lobsters, crabs or wolffish, however the evidence is equivocal (Mann, 1982; Elner
& Vadas, 1990; Birkett et al., 1998b).

¢ Evidence suggests that sea urchin recruitment is sporadic and may be enhanced by low
temperatures (Birkett et al., 1998b).

¢ Seaurchinrecruitment is also enhanced by the presence of 'urchin barrens' presumably
due to the lack of suspension feeders that would otherwise consume their larvae (Lang &
Mann, 1978).

e Seaurchin diseases, such as 'bald-urchin’ disease, encouraged by high water temperatures
drastically reduce the urchin population (Lobban & Harrison, 1997). However, although
parasitic infections are found in Echinus esculentus, no evidence of sea urchin disease has
been found in the UK.

* Sivertsen (1997) examined grazing of west and north Norwegian coast Laminaria
hyperborea beds by Strongylocentrotus droebachiensis and Echinus esculentus. He concluded
that seven environmental factors contributed to the distribution of kelp beds and
'barrens': depth gradient, latitude, time of sampling, nematode infection (in
Strongylocentrotus droebachiensis), wave exposure, coastal gradient and substratum.

The factors controlling sea urchin populations and 'urchin barrens' in kelp beds is poorly
understood, especially in the UK. However, it is likely that the local urchin population is controlled
by a number of factors that vary between sites and biotopes; including predators, competition for
food with other grazers, variation in sea urchin recruitment, and parasitic infection or disease.

Periodic storms are likely to remove older and weaker plants creating patches cleared of kelp and
increasing the local turbidity. While cleared patches may encourage growth of sporelings or
gametophyte maturation, they may also enhance sea urchin recruitment. No studies of storm
effects in the UK were found, however, Birkett et al. (1998b) cite observations by Dayton et al.
(1992) of the results of an intense storm (possibly the most severe for 200 years) in a giant kelp
forest off Point Loma, San Diego, California. The storm changed the age-specific kelp mortality,
caused the first large-scale mortality in the understory and removed drift algae resulting in intense
local sea urchin grazing and, therefore, reduced kelp recruitment.

Kelp biotopes should be viewed as dynamic systems that exhibit mixed age kelp stands, together
with a patchy distribution of understory flora/fauna and 'urchin barrens'. Kelp communities may
exhibit a 15-20 year cycle between 'urchin barrens' and kelp dominated phases (Elner & Vadas,
1990; Lobban & Harrison, 1997) although such clear cycles have not been observed in Britain and
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Ireland.
Habitat structure and complexity

Kelp forest provides a variety of habitats and refugia in a similar way to terrestrial forests. Kelps
also reduce current flow and their canopy shades the understorey vegetation and substrata
producing a particular microclimate depending on the depth and density of the kelp plants. In kelp
forest (e.g. EIR.LhypR.Ft) the kelp density produces a canopy which excludes up to 90 % of incident
light allowing many deeper water, shade tolerant algae, mainly reds, to invade. In deeper water, as
irradiance decreases, the kelp density decreases forming a kelp park. Kelp beds are patchy and
dynamic with areas devoid of kelp (due to storms, wave surge or grazing) in the process of
expansion or recolonization in different stages of succession. Species diversity changes with depth,
between forest & park, with exposure, substratum and turbidity (Norton etal., 1977; Erwinetal.,
1990; Birkett et al., 1998b). Erwin et al. (1990) noted that species richness increased in the kelp
park (as lower infralittoral and upper circalittoral species overlapped) and was higher in boulder
fields in which sand-scour and substratum heterogeneity provided more niches for colonization.
Kelp beds exhibit a series of stratified habitats, and a patchwork of species depending on the
substratum, light, water flow and exposure.

¢ Planktonic: Spores and larvae from algae and benthic organisms within the bed, as well as
from the surrounding area, probably form an import food source given the number of
suspension feeding organisms in kelp beds

* Nekton: wrasse and pollock have been observed associated especially with kelp forests
and epibenthic predatory or herbivorous fish are also found, e.g. blennies, gobies and
wolffish (Anarhichas lupus).

» Kelp blades support microalgal epiphytes or endophytes such as Pogotrichum filiforme,
Chilionema sp. and Myrionema corunnae which is only found on Laminaria blades, as well as
Patella pellucida and opportunistic hydroids (e.g. Obelia geniculata) and bryozoans (e.g.
Membranipora membranacea).

» The stipes support a diverse fauna and flora, especially foliose red algae (see e.g. Harkin,
1981), depending on age of the stipe, kelp density (stipes in close proximity may abrade
each other) and depth. Epiphytes show greater biomass on the top 10-20 cm of stipe and
exhibit a zonation pattern down the stipe which changes with depth (Birkett et al., 1998b).
Norton et al. (1977) found the greatest biomass at 3m depth near Lough Ine. Whittick
(1983) showed that epiphyte biomass was significantly greater in plants over 5yrs old,
with Palmaria palmata(dulse) dominating the top of the stipe from 1-2m, being replaced by
Ptilota plumosa between 6-10m, while Membranoptera alata and Phycodrys rubens
dominate below 12m or present at lower parts of the stipe. Hiscock & Mitchell (1980) list
15 species of algae associated with kelp stipes in the UK. The stipes also supports
epifaunal bryozoa and hydroids (Norton et al., 1977).

» Holdfasts support a diverse fauna that represents a sample of the surrounding mobile
fauna and crevice dwelling organisms, e.g., polychaetes, small crabs, gastropods, bivalves,
and amphipods. Jones (1971) lists 53 macrofaunal invertebrates in holdfasts and Moore
(1973) reports 389 species from holdfasts collected in the north east coast of Britain. A
useful account of holdfast fauna is given by Hayward (1988).

» The composition of the holdfast fauna has been shown to vary with turbidity (natural and
anthropogenic in origin), between kelp species (due to holdfast architecture and volume),
and with location around the coast of the British Isles (Moore, 1973a&b; Moore, 1978;
Edwards, 1980; Sheppard et al., 1980). Moore (1973a&b) identified groups of species that
were found in most cases, or restricted to either turbid or clear waters. Moore (1978)
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noted that the species diversity of amphipods decreased with increasing turbidity, partly
due to the increased dominance of a few species. Edwards (1980) noted that holdfast
faunain south-west Ireland were numerically dominated by suspension feeders with
decreasing numbers of omnivores and carnivores respectively. Edwards (1980) noted that
holdfasts were dominated by Spirobranchus triqueter in the most turbid sites, although
these were not as turbid as sites examined by Moore (1973 a&b). Sheppard et al. (1980)
examined 35 sites around the Britain Isles and demonstrated a correlation between heavy
metal pollution, turbidity and location. Along the North Sea coast species number and
diversity increased with increased clarity, however where heavy metals were a factor
species number and diversity decreased with increasing heavy metal pollution. They were
able to distinguish groups of species characteristic of all sites, or clear or turbid sties.
Along the west coast both heavy metals and turbidity were important. Where turbidity
and heavy metals increased suspension feeders increased in abundance while other
trophic groups decreased. However, along the south coast longitude was the most
important factor, and they suggested that natural variation in temperature, salinity and
water flow were responsible for variation between holdfast communities (Sheppard et al.,
1980). Moore (1985) also demonstrated that the amphipod fauna varied with water flow
rate (resulting from wave action and currents); for example sites of increased exposure
were dominated by Ampithoe rubricata, Lembos websteri and Jassa falcata whereas Gitana
sarsi, Dexamine thea and Corophium bonnellii flourish in wave sheltered environments.

» Afew meiofaunal species may burrow into kelp tissue, e.g. the nematode Monhystera
disjuncta (Birkett et al., 1998b).

e The understorey flora varies with location, depth, exposure, hydrographic regime,
turbidity and siltation and may be sparse or species rich. Birkett et al. (1998b; Appendix 5)
list 52 common kelp biotope understorey algae in the UK including characterizing species
such us Delesseria sanguinea, Dictyota dichotoma, Phycodrys rubens, Cryptopleura ramosa,
Plocamium cartilagineum, and Callophyllis laciniata.

¢ The benthic fauna varies with depth, exposure, location and substratum, however, no
species are specific to kelp forest. Norton et al. (1977) demonstrate the zonation of 22
epibenthic species. However, many species, both fixed and mobile, are present and
probably under recorded (Birkett et al., 1998b).

Productivity

Kelps are the major primary producers in UK marine coastal waters producing nearly 75 percent of
the net carbon fixed annually on the shoreline of the coastal euphotic zone (Birkett et al., 1998b).
Kelp detritus, as broken plant tissue, particles and dissolved organic material supports soft bottom
communities outside the kelp bed itself. As a result, kelp plants can contribute 2-3 times their own
biomass to the biomass of the coastal ecosystem over one year (Birkett et al., 1998b). The kelps
reduce ambient levels of nutrients, although this may not be significant in exposed sites, but
increase levels of particulate and dissolved organic matter within the bed.

Recruitment processes

Recruitment processes of key characteristic or dominant species are described here. Laminaria
hyperborea produces vast numbers of spores, however they need to settle and form gametophytes
within about 1 mm of each to ensure fertilisation and therefore may suffer from dilution effects
over distance. Gametophytes can survive darkness and develop in the low light levels under the
canopy. However, young sporelings develop slowly in low light. Loss of older plants provides the
opportunity to develop into adult plants. Recruitment in Echinus esculentus is sporadic or annual
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depending on location and may benefit from the presence of 'urchin barrens'. Patella pellucida is an
annual species, larvae settling in the lower eulittoral and juveniles migrating to kelp, via several
algal species, as they grow. (View individual key information reviews for details.) Epifaunal larvae
probably contribute to the plankton of the kelp bed and many are lost to the suspension feeding
epifauna. Kelp beds also provide nurseries for larvae and fish species (see above). Recruitment of
epiphytes and epiflora are dependant on dispersal and settlement of algal spores and survival of
early post-settlement stages. Norton (1992) suggests that spore dispersal in primarily dependant
on currents and eddies. Settlement of algal spores is partly dependant on their motility (if any) and
adhesive properties together with preferences for topography (surface roughness), the chemical
nature of the substratum and water movement (Norton, 1992; Fletcher & Callow, 1992). Vadas et
al. (1992) suggested that survival of early post settlement stages is dependant on grazing, the algal
canopy and turf effects together with desiccation and water motion, and they further suggest that
recruitment is likely to be episodic, variable and to suffer from high mortality of early stages. Kain
(1975) examined recolonization of artificially cleared areas in a Laminaria hyperborea forest in Port
Erin, Isle of Man. Cleared concrete blocks were colonized by Saccorhiza polyschides, Alaria esculenta,
Desmarestia spp., Laminaria hyperborea, Laminaria digitata, Saccharina latissima (studied as Laminaria
saccharina) and un-specified Rhodophyceae at 0.8m. Saccorhiza polyschides dominated within 8
months but had virtually disappeared with 77 weeks to be replaced by laminarians, including Alaria
esculenta. After about 2.5 years, Laminaria hyperborea standing crop, together with an understorey
of red algae (Rhodophyceae), was similar to that of virgin forest. Rhodophyceae were present
throughout the succession increasing from 0.04 to 1.5 percent of the biomass within the first 4
years. Colonizing species varied with time of year, for example blocks cleared in August 1969 were
colonized by primarily Saccharina latissima and subsequent colonization by Laminaria hyperborea
and other laminarians was faster than blocks colonized by Saccorhiza polyschides; within 1 year the
block was occupied by laminarians and Rhodophyceae only. Succession was similar at 4.4m, and
Laminaria hyperborea dominated within about 3 years. Blocks cleared in August 1969 at 4.4m were
not colonized by Saccorhiza polyschides but were dominated by Rhodophyceae after 41 weeks, e.g.
Delesseria sanguineaand Cryptopleura ramosa. Kain (1975) cleared one group of blocks at two
monthly intervals and noted that Phaeophyceae were dominant colonists in spring, Chlorophyceae
(solely Ulva lactuca) in summer and Rhodophyceae were most important in autumn and winter.
Animal species are likely to recruit mainly from the plankton although some species such as
polyclinid tunicates may have only a short lived (2-3 hours) larva (Berrill, 1950). Or no larval stage
(amphipods). Little is known about the reproductive biology and dispersal of some species but
information from clearance experiments (see 'Time for community to reach maturity) suggests
that sponges may be slow to settle.

Time for community to reach maturity

Experimental clearance experiments in the Isle of Man (Kain, 1975; Kain, 1979) showed that
Laminaria hyperborea out-competed other opportunistic species (e.g. Alaria esculenta, Saccorhiza
polyschides and Desmarestia spp.) and returned to near control levels of biomass within 3 years at
0.8 m but that recovery was slower at 4.4m (see above). Studies of the effects of harvesting in
Norway (Svendsen, 1972, cited in Birkett et al., 1998b) showed that kelp biomass returned 3-4
years after harvesting, although the plants were small (about 1m) and the age class was shifted
towards younger plants. Sivertsen (1991, cited in Birkett et al., 1998b), showed that kelp
populations stabilise about 4-5 years after harvesting. Current advice suggests that kelp forest
should be left 7-10 years for kelp and non-kelp species to recover (Birkett et al., 1998b). Detailed
studies in Norway by Rinde et al. (1992, cited in Birkett et al., 1998b) examined recovery of non-
kelp species. The epiphyte community in control areas about 10 years old was richer and more
extensive than on replacement plants in harvested areas. Of the epifauna, Halichondria sp. were
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only found on 10 year old plants and tunicates on plants 6 years post harvesting. Holdfast fauna
was more abundant richer in 10 year old plants in control areas than younger plants in previously
harvested area. Overall his results suggest that full biological recovery, or maturation, may take at
least 10 years.

Additional information

No text entered.

el Preferences & Distribution

Habitat preferences

Depth Range 0-5m, 5-10m, 10-20 m

Water clarity preferences

Limiting Nutrients Nitrogen (nitrates), Phosphorus (phosphates)
Salinity preferences Full (30-40 psu)

Physiographic preferences Open coast

Biological zone preferences Infralittoral

Substratum/habitat preferences Bedrock, Large to very large boulders, Small boulders

Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Weak < 1 knot
(<0.5 m/sec.)

Wave exposure preferences Exposed, Extremely exposed, Very exposed
Other preferences

Tidal strength preferences

Additional Information

Van den Hoek (1982) suggested that the distribution of Laminaria hyperborea, and hence its
associated biotope, was limited by temperatures between the 2 °C winter isotherm in the north
and the 19 °C summer isotherm in the south.

@ Species composition
Species found especially in this biotope

* Helcion pellucidum

e Membranipora membranacea
e Membranoptera alata

e Myrionema corunnae

¢ Obelia geniculata

¢ Palmaria palmata

¢ Phycodrys rubens

Rare or scarce species associated with this biotope
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Additional information

Little work on the rarity of species in kelp biotopes has been compiled (Birkett et al., 1998b). Kelp
beds are diverse species rich habitats and over 1,800 species have been recorded in the UK kelp
biotopes (Birkett et al., 1998b). Birkett et al. (1998b) list species recorded in UK biotope complexes
by the MNCR (Appendix 5) together with common understorey algae and epiphytes (Appendices 4
& 3 respectively).

Holdfast fauna is a particularly species rich part of the biotope but no species have been suggested
as specifically associated with holdfasts and therefore critical to the identity of the biotope.

https://www.marlin.ac.uk/habitats/detail/171



Date: 2015-11-30 Laminaria hyperborea with dense foliose red seaweeds on exposed infralittoral rock - Marine Life Information Network

Sensitivity review

Sensitivity characteristics of the habitat and relevant characteristic species

At high densities, Laminaria hyperborea forms a canopy over infralittoral rock. Beneath the canopy
an understory community grows, typically defined by a red seaweed turf although faunal species
dominate in tide swept and/or wave surged conditions. Grazing by the urchins; Echinus esculentus
and Paracentrotus lividus can also define the biotope and reduce the biomass of Laminaria
hyperborea and understory flora. The abundance of Laminaria hyperborea is determined by light
availability, which decreases with an increase in water depth. Therefore, depth and water clarity
determines the density of Laminaria and hence the distribution of kelp forest (high density kelp)
and park (low density kelp) sub-biotopes.

Kelp biotopes are a major source of primary productivity, and support magnified secondary
productivity within North Atlantic coastal waters (Smale et al., 2013, Brodie et al., 2014). In
Scotland, alone kelp biotopes are estimated to cover 8000 km?* (Walker, 1953), and account for ca
45% of primary production in UK coastal waters (Smale et al., 2013). Therefore kelp biotopes, of
which Laminaria hyperborea is dominant within UK subtidal rocky reefs (Birkett et al., 1998), make a
substantial contribution to coastal primary production in the UK (Smale et al., 2013). Laminaria
hyperborea is grazed directly by species such as Patella pellucida, however approximately 80% of
primary production is consumed as detritus or dissolved organic material (Krumhansl, 2012) which
is both retained within and transported out of the parent kelp forest, providing valuable nutrition
to potentially low productivity habitats such as sandy beaches (Smale et al., 2013).

Laminaria hyperborea also acts as an ecosystem engineer (Jones et al., 1994; Smale et al., 2013) by
altering; light levels (Sjgtun et al., 2006), physical disturbance (Connell, 2003), sedimentation rates
(Eckman et al., 1989) and water flow (Smale et al., 2013), profoundly altering the physical
environment for fauna and flora in close proximity. Laminaria hyperborea biotopes increase the
three-dimensional complexity of unvegetated rock (Norderhaug, 2004, Norderhaug et al., 2007,
Norderhaug & Christie, 2011, Gorman et al., 2012; Smale et al., 2013) and support high local
diversity, abundance and biomass of epi/benthic species (Smale et al., 2013), and serve as a nursery
ground for a number of commercial important species, e.g. Gadidae (the taxonomic family that
contains many commercially important marine fish species, including the Atlantic Cod and Pollack)
(Rindeetal., 1992).

In undertaking this assessment of sensitivity, an account is taken of knowledge of the biology of all
characterizing species/taxa in the biotope. For this sensitivity assessment Laminaria hyperborea is
the primary focus of research, however, it is recognized that the understory community, typically
red seaweeds, also define the biotope. Examples of important species groups are mentioned where
appropriate.

Resilience and recovery rates of habitat

A number of review and experimental publications have assessed the recovery of Laminaria
hyperborea kelp beds and the associated community. If environmental conditions are favourable
Laminaria hyperborea can recover following disturbance events reaching comparable plant
densities and size to pristine Laminaria hyperborea beds within 2-6 years (Kain, 1979; Birkett et al.,
1998b; Christie et al., 1998). Holdfast communities may recover in 6 years (Birkett et al., 1998b).
Full epiphytic community and stipe habitat complexity regeneration require over 6 years (possibly
10 years). These recovery rates were based on discrete kelp harvesting events. Recurrent
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disturbance occurring frequently within 2-6 years of the initial disturbance is likely to lengthen
recovery time (Birkett et al., 1998b, Burrows et al., 2014). Kain (1975a) cleared sublittoral blocks of
Laminaria hyperborea at different times of the year for several years. The first colonizers and
succession community differed between blocks and at what time of year the blocks were cleared,
however, within two years of clearance the blocks were dominated by Laminaria hyperborea.

In south Norway, Laminaria hyperborea forests are harvested, which results in large scale removal
of the canopy-forming kelps. Christie et al., (1998) found that in south Norwegian Laminaria
hyperborea beds a pool of small (<25cm) understory Laminaria hyperborea plants persist beneath
the kelp canopy for several years. The understory Laminaria hyperborea sporophytes had fully re-
established the canopy at a height of 1m within 2-6 years after kelp harvesting. Within 1 year
following harvesting, and each successive year thereafter, a pool of Laminaria hyperborea recruits
had re-established within the understory beneath the kelp canopy. Christie et al., (1998) suggested
that Laminaria hyperborea bed re-establishment from understory recruits (see above) inhibits the
colonization of other kelps species and furthers the dominance of Laminaria hyperborea within
suitable habitats, stating that Laminaria hyperborea habitats are relatively resilient to disturbance
events.

Laminaria hyperborea has a heteromorphic life strategy, A vast number of zoospores (mobile
asexual spores) are released into the water column between October-April (Kain & Jones, 1964).
Zoospores settle onto rock substrata and develop into dioecious gametophytes (Kain, 1979)
which, following fertilization, develop into sporophytes and mature within 1-6 years (Kain, 1979;
Fredriksen et al., 1995; Christie et al., 1998). Laminaria hyperborea zoospores have a recorded
dispersal range of ~200 m (Fredriksen et al., 1995). However, zoospore dispersal is greatly
influenced by water movements, and zoospore density and the rate of successful fertilization
decreases exponentially with distance from the parental source (Fredriksen et al., 1995). Hence,
recruitment following disturbance can be influenced by the proximity of mature kelp beds
producing viable zoospores to the disturbed area. (Kain, 1979, Fredriksen et al., 1995).

Laminaria hyperborea biotopes are partially reliant on low (or no) populations of sea urchins,
primarily the species; Echinus esculentus, Paracentrotus lividus and Strongylocentrotus droebachiensis,
which graze directly on macroalgae, epiphytes and the understory community. Multiple authors
(Steneck et al., 2002; Steneck et al., 2004; Rinde & Sjgtun, 2005; Norderhaug & Christie, 2009;
Smale et al., 2013) have reported dense aggregations of sea urchins to be a principal threat to
Laminaria hyperborea biotopes of the North Atlantic. Intense urchin grazing creates expansive
areas known as “urchin barrens”, in which a shift can occur from Laminaria hyperborea dominated
biotopes to those characterized by coralline encrusting algae, with a resultant reduction in
biodiversity (Lienaas & Christie, 1996; Steneck et al., 2002; Norderhaug & Christie, 2009).
Continued intensive urchin grazing pressure on Laminaria hyperborea biotopes can inhibit the
Laminaria hyperborea recruitment (Sjgtun et al., 2006) and cause urchin barrens to persist for
decades (Christie et al., 1998; Stenneck et al., 2004; Rinde & Sjatun, 2005). The mechanisms that
control sea urchin aggregations are poorly understood but have been attributed to anthropogenic
pressure on top down urchin predators (e.g. cod or lobsters). While these theories are largely
unproven, a number of studies have shown that removal of urchins from grazed areas coincides
with kelp re-colonization (Lienaas & Christie, 1996; Nourderhaug & Christie, 2009). Lienaas &
Christie, (1996) removed Strongylocentrotus droebachiensis from “urchin barrens” and observed a
succession effect, in which the substratum was initially colonized by filamentous macroalgae and
Saccharina latissima. However, after 2-4 years Laminaria hyperborea dominated the community.

Reports of large-scale urchin barrens within the North East Atlantic are generally limited to
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regions of the north Norwegian and Russian coast (Rinde & Sjgtun, 2005, Nourderhaug & Christie,
2009). Within the UK, urchin grazed biotopes (IR.MIR.KR.Lhyp.GzFt/Pk, IR.HIR.KFaR.LhypPar,
IR.LIR.K.LhypSlat.Gz & IR.LIR.K.Slat.Gz) are generally localised to a few regions in North Scotland
and Ireland (Smale et al., 2013; Stenneck et al., 2002; Norderhaug & Christie 2009; Connor et al.,
2004). IR MIR.KR.Lhyp.GzFt/Pk, IR.HIR.KFaR.LhypPar, IR.LIR.K.LhypSlat.Gz & IR.LIR.K.Slat.Gz are
characterized by a canopy-forming kelp. However, urchin grazing decreases the abundance and
diversity of understory species. In the Isle of Man. Jones & Kain (1967) observed low Echinus
esculentus grazing pressure can control the lower limit of Laminaria hyperborea and remove
Laminaria hyperborea sporelings and juveniles. Urchin abundances in “urchin barrens” have been
reported as high as 100 individuals/m? (Lang & Mann, 1976). Jones & Kain (1967) reported urchin
abundances of 1-4 /m”within experimental plots of the Isle of Man. Therefore, while “urchin
barrens” are not presently an issue within the UK, relatively low urchin grazing has been found to
control the depth distribution of Laminaria hyperborea, negatively impact on Laminaria hyperborea
recruitment and reduce the understory community abundance and diversity.

Other factors that are likely to influence the recovery of Laminaria hyperborea biotopes is
competitive interactions with Invasive Non-Indigenous Species (INIS), e.g. Undaria pinnatifida
(Smale etal., 2013; Brodie et al., 2014; Heiser et al., 2014), and/or the Lusitanian kelp Laminaria
ochroleuca (Brodie et al., 2014; Smale et al., 2014). A predicted sea temperature rise in the North
and Celtic seas of between 1.5-5°C over the next century (Philippart et al., 2011) is likely to create
northward range shifts in many macroalgal species, including Laminaria hyperborea. Laminaria
hyperborea is a northern (Boreal) kelp species, thus increases in seawater temperature is likely to
affect the resilience and recoverability of Laminaria hyperborea biotopes with southerly
distributions in the UK (Smale et al., 2013; Stenneck et al., 2002). Evidence suggests that the
Lusitanian kelp Laminaria ochroleuca (Smale et al., 2014), and the INIS Undaria pinnatifida (Heiser et
al., 2014) are competing with Laminaria hyperborea along the UK south coast and may displace
Laminaria hyperborea from some sub-tidal rocky reef habitats. The wider ecological consequences
of Laminaria hyperborea’ competition with Laminaria ochroleuca and Undaria pinnatifida are however
as of yet unknown.

Resilience assessment. The evidence suggests that beds of mature Laminaria hyperborea can
regenerate from disturbance within a period of 1-6 years, and the associated community within
7-10years. However, other factors such as competitive interactions with Laminaria ochroleuca and
Undaria pinnatifida may limit recovery of Laminaria hyperborea biotopes following disturbance.
Also, urchin grazing pressure is shown to limit Laminaria hyperborea recruitment and reduce the
diversity and abundance of the understory community and may limit habitat recovery following
disturbance. The recovery of Laminaria hyperborea biotopes to disturbance from commercial
harvesting in south Norway suggests that Laminaria hyperborea beds and the associated
community could recover from a significant loss of canopy cover within 10 years, resilience has
therefore been assessed as Medium.

Please note, as in Northern Norway, urchin grazing pressure could extend recovery/resilience of
the Laminaria hyperborea biotopes >25 years, If intensive urchin grazing (as seen in Northern
Norway) occurs in the UK resilience would be re-assessed as Very Low. However, because of the
limited/localised incidence of urchin grazing within the UK, urchin grazing on large scales (as in
Northern Norway) has not been included in this general resilience assessment. The introduction of
Invasive Non-Indigenous Invasive Species (INIS) will also inhibit the recovery of Laminaria
hyperborea biotopes for an indeterminate amount of time, in these cases, resilience would need to
be re-assessed as Very Low. Another factor that is beyond the scope of this sensitivity assessment
is the presence of multiple concurrent synergistic or cumulative effects, which Smale et al. (2013)

https://www.marlin.ac.uk/habitats/detail/171



Date: 2015-11-30 Laminaria hyperborea with dense foliose red seaweeds on exposed infralittoral rock - Marine Life Information Network

suggested could be a more damaging than the individual pressures.

#® Hydrological Pressures

Resistance Resilience Sensitivity
Temperature increase  Medium Medium Medium
(local) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Kain (1964) stated that Laminaria hyperborea sporophyte growth and reproduction could occur
within a temperature range of O - 20°C. Upper and lower lethal temperatures have been estimated
at between 1-2°C above or below the extremes of this range (Birkett et al., 1988b). Above 17°C
gamete survival is reduced (Kain, 1964, 1971a) and gametogenesis is inhibited at 21 °C (Dieck,
1992). It is, therefore, likely that Laminaria hyperborea recruitment will be impaired at a sustained
temperature increase of above 17°C. Sporophytes, however, can tolerate slightly higher
temperatures of 20°C. Temperature tolerances for Laminaria hyperborea are also seasonally
variable and temperature changes are less tolerated in winter months than summer months
(Birkettetal., 1998b).

Subtidal red algae are less tolerant of temperature extremes than intertidal red algae, surviving
between -2°C and 18-23°C (Llining 1990; Kain & Norton, 1990). Temperature increase may affect
growth, recruitment or interfere with reproduction processes. For example, there is some
evidence to suggest that blade growth in Delesseria sanguinea is delayed until ambient sea
temperatures fall below 13°C. Blade growth is also likely to be intrinsically linked to gametangia
development (Kain, 1987), and maintenance of sea temperatures above 13°C may affect
recruitment success.

Laminaria hyperborea has a geographic range from mid-Portugal to Northern Norway (Birkett et al.,
1998b), and a mid range within southern Norway (60°-65° North) (Kain, 1971a). The average
seawater temperature for southern Norway in October is 12-13°C (Miller et al., 2009), and
average annual sea temperature, from 1970-2014, is 8°C (Beszczynska-Moller & Dye, 2013).
Against the pressure benchmark, the available information suggests that Laminaria hyperborea
recruitment processes may be affected and associated red algae communities may decline.

Sensitivity assessment. Overall, a chronic change (2°C for a year) outside the normal range for a
year may reduce recruitment and growth, resulting in a minor loss in the population of kelp,
especially in winter months or in southern examples of the biotope. However, an acute change
(5°C for amonth; e.g. from thermal effluent) may result in loss of abundance of kelp or extent of
the bed, especially in winter. Therefore, resistance to the pressure is considered 'Medium’, and
resilience 'Medium'. The sensitivity of this biotope to increases in temperature has been assessed

as 'Medium'.
Temperature decrease  High High Not sensitive
(local) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Kain (1964) stated that Laminaria hyperborea sporophyte growth and reproduction could occur
within a temperature range of O - 20°C. Upper and lower lethal temperatures have been estimated
at between 1-2 °C above or below the extremes of this range (Birkett et al., 1988b). Subtidal red
algae can survive at temperatures between -2 °C and 18-23 °C (Luning, 1990; Kain & Norton,
1990).
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Laminaria hyperborea is a boreal northern species with a geographic range from mid-Portugal to
Northern Norway (Birket et al., 1998b), and a mid range within southern Norway (60°-65°
North)(Kain, 1971a). The average seawater temperature for southern Norway in October is
12-13°C (Miller et al., 2009), and average annual sea temperature, from 1970-2014, is 8°C
(Beszczynska-Moller & Dye, 2013). The available information suggests that Laminaria hyperborea
and biotope structure would not be affected by a change in sea temperature at the benchmark
level.

Sensitivity assessment. Resistance to the pressure is considered ‘High’, and resilience ‘High’. The
sensitivity of this biotope to decreases in temperature has been assessed as ‘Not Sensitive’.

e Medium Medium
Salinity increase (local)
Q:Low A:NR C: NR Q: High A: Medium C: High Q:Low A: NR C: NR

Lining (1990) suggest that kelps are stenohaline, their general tolerance to salinity as a
phenotypic group covering 16 - 50 psu over a 24 hr period. Optimal growth probably occurs
between 30-35 psu (MNCR category- 'Full' salinity) and growth rates are likely to be affected by
periodic salinity stress. Birkett et al. (1998b) suggested that long-term increases in salinity may
affect Laminaria hyperborea growth and may result in loss of affected kelp, and, therefore, loss of
the biotope.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Medium’.
The sensitivity of this biotope to an increase in salinity has been assessed as ‘Medium’.

- Medium Medium
Salinity decrease (local)
Q: Medium A: Medium C: Medium  Q: High A: Medium C: High Q: Medium A: Medium C: Medium

Lining (1990) suggest that kelps are stenohaline, their general tolerance to salinity as a
phenotypic group covering 16 - 50 psu over a 24 hr period. Optimal growth probably occurs
between 30-35 psu (MNCR category-Full Salinity) and growth rates are likely to be affected by
periodic salinity stress. Birkett et al. (1998b) suggest that long-term changes in salinity may result
in loss of affected kelp and, therefore, loss of this biotope.

Hopkin & Kain (1978) tested Laminaria hyperborea sporophyte growth at various low salinity
treatments. The results showed that Laminaria hyperborea sporophytes could grow “normally” at
19 psu, growth was reduced at 16 psu and did not grow at 7 psu. A decrease in one MNCR salinity
scale from 'Full' salinity (30-40 psu) to 'Reduced' salinity (18-30 psu) would result in a decrease of
Laminaria hyperborea sporophyte growth. Laminaria hyperborea may also be out-competed by low
salinity tolerant species e.g. Saccharina latissima (Karsten, 2007), or the Invasive Non-Indigenous
Species Undaria pinnatifida (Burrows et al., 2014).

If salinity was returned to 'Full' salinity (30-40 psu) Laminaria hyperborea could out-compete
Saccharina latissima and re-establish community dominance in 2-4 years (Kain, 1975; Leinaas &
Christie, 1996), however full habitat structure may take over 10 years to recover (Birkett et al.,
1998b; Christie et al., 1998). The ability of Laminaria hyperborea to out-compete Undaria pinnatifida
within the UK is, however, unknown (Heiser et al., 2014), and as such interspecific interaction
between Laminaria hyperborea and Undaria pinnatifida is not included within this sensitivity
assessment.
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Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Medium’.
The sensitivity of this biotope to decreases in salinity has been assessed as ‘Medium’.

Water flow (tidal High High
current) changes (local)  q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Kregting et al. (2013) measured Laminaria hyperborea blade growth and stipe elongation from an
exposed and a sheltered site in Strangford Lough, Ireland, from March 2009-April 2010. Maximal
significant wave height (HmO) was 3.67 & 2 m at the exposed and sheltered sites, and maximal
water velocity (Velrms) was 0.6 & 0.3 m/s at the exposed and sheltered sites respectively. Despite
the differences in wave exposure and water velocity, there was no significant difference in
Laminaria hyperborea growth between the exposed and sheltered sites. Therefore, water flow was
found to have no significant effect on Laminaria hyperborea growth at the observed range of water
velocities.

Biotope structure is, however, different between wave exposed and sheltered sites. Pederson et al.
(2012) observed Laminaria hyperborea biomass, productivity and density increased with an
increase in wave exposure. At low wave exposure, Laminaria hyperborea canopy forming plants
were smaller, had lower densities and had higher mortality rates than at exposed sites. At low
wave exposure Pederson et al. (2012) suggested that high epiphytic loading on Laminaria
hyperborea impaired light conditions, nutrient uptake, and increased the drag on the host Laminaria
hyperborea during extreme storm events.

The morphology of the stipe and blade of kelps vary with water flow. In wave exposed areas, for
example, Laminaria hyperborea develops a long and flexible stipe and this is probably a functional
adaptation to strong water movement (Sjgtun et al., 1998). In addition, the lamina becomes
narrower and thinner in strong currents (Sjgtun & Fredriksen, 1995). However, the stipe of
Laminaria hyperborea is relatively stiff and can snap in strong currents. Laminaria hyperborea is
usually absent from areas of high wave action or strong currents, although it is found in the Menai
Strait, Wales, where tidal velocities can exceed 4 m/s (NBN, 2015) and in tidal rapids in Norway (J.
Jones, pers.comm.) Laminaria hyperborea growth can persist in very strong tidal streams (>3 m/s).

Increase water flow rate may also remove or inhibit grazers including Patella pellucida and Echinus
esculentus and remove epiphytic algae growth (Pederson et al., 2012). The associated algal flora
and suspension feeding faunal populations change significantly with different water flow regimes.
Increased water flow rates may reduce the understorey epiflora, to be replaced by an epifauna
dominated community (e.g. sponges, anemones and polyclinid ascidians) as in the biotope
IR.HIR.KFaR.LhypFa. The composition of the holdfast fauna may also change, e.g. energetic or
sheltered water movements favour different species of amphipods (Moore, 1985).

IR.HIR.KFaR.LhypR, IR.HIR.KFaR.LhypFa, IR.MIR.KR.Lhyp, and their associated sub-biotopes are
found within strong (1.5-3 m/s)-moderate (0.5-1.5 m/s) tidal streams. A change in peak mean
spring bed flow velocity, which does not result in a change in tidal streams above or below 0.5-3
m/s, is not likely to affect the dominance of Laminaria hyperborea within the community, but may
cause changes in the understory community. The prominent understory filter feeding community
within IR.HIR.KFaR.LhypFa is reliant on high water movement. A decrease in tidal streams may
result in a decline of filter feeding fauna and an increase in red seaweeds within the understory
community or vice versa with an increase in tidal streams A decrease in tidal flow within this range
may also decrease urchin dislodgment and increase urchin grazing. An increase in urchin grazing
may cause a decline in the understory community abundance and diversity (as in
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IR.MIR.KR.Lhyp.GzFt/Pk and IR.MIR.KR.LhypPar).

Sensitivity assessment. A change in peak mean spring bed flow velocity of between 0.1 m/s to 0.2
m/s for more than 1 year is not likely to affect the dominance of Laminaria hyperborea, however,
subtle differences in tidal regime may influence the understory community. Resistance to the
pressure is considered ‘High’, and resilience ‘High’. Hence, the sensitivity of this biotope to changes
in peak mean spring bed velocity has been assessed as ‘Not Sensitive’.

However, if peak mean spring bed flow velocity changes but remains within 0.5-3 m/s Laminaria
hyperborea is likely to remain the dominant habitat but the understory community may be affected;
directly by a change in water velocity or through increased grazing pressure.

Emergence regime Low Medium Medium
changes Q: Low A:NR C:NR Q: High A: Low C: High Q: Low A:NR C:NR

The upper limit of the Laminaria hyperborea bed is determined by wave action and water flow,
desiccation, and competition from the more emergence resistant Laminaria digitata. Laminaria
hyperborea exposed at extreme low water are very intolerant of desiccation, the most noticeable
effect being bleaching of the frond and subsequent death of the meristem and loss of the plant. An
increase in wave exposure (see water flow), as a result of increased emergence, has been found to
exclude Laminaria hyperborea from shallow waters due to dislodgement of the sporophyte or
snapping of the stipe (Birkett et al., 1998b). Hence, an increase in emergence is likely to lead to
mortality of exposed Laminaria hyperborea and the associated habitat.

Anincrease in water depth/decreased emergence (at the benchmark level) may increase the upper
depth restriction of Laminaria hyperborea forest biotope variants. However, limited light
availability at depth will decrease the lower extent of Laminaria hyperborea, and may, therefore,
result in a shift from forest to park biotope variants at depth. Further increases in depth will cause
a community shift to that characterized by circalittoral faunal species, however, this is beyond the
scope of the benchmark.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Medium’.
The sensitivity of this biotope to changes in tidal emergence has been assessed as ‘Medium’.

Wave exposure changes High High Not sensitive
(local) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Kregting et al. (2013) measured Laminaria hyperborea blade growth and stipe elongation from an
exposed and a sheltered site in Strangford Lough, Ireland from March 2009-April 2010. Wave
exposure was found to be between 1.1. to 1.6 times greater between the exposed and sheltered
sites. Maximal significant wave height (HmO) was 3.67 & 2 m at the exposed and sheltered sites.
Maximal water velocity (Velrms) was 0.6 & 0.3 m/s at the exposed and sheltered sites. Despite the
differences in wave exposure and water velocity, there was no significant difference in Laminaria
hyperborea growth between the exposed and sheltered site.

Biotope structure is, however, different between wave exposed and sheltered sites. Pederson et al.
(2012) observed Laminaria hyperborea biomass, productivity and density increased with an
increase in wave exposure. At low wave exposure, Laminaria hyperborea canopy forming plants
were smaller, had lower densities and had higher mortality rates than at exposed sites. At low
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wave exposure high epiphytic loading on Laminaria hyperborea was theorised to impair light
conditions, nutrient uptake, and increase the drag of the host Laminaria hyperborea during extreme
storm events.

The morphology of the stipe and blade of kelps vary with water flow. In wave exposed areas, for
example, Laminaria hyperborea develops a long and flexible stipe and this is probably a functional
adaptation to strong water movement (Sjgtun et al., 1998). In addition, the lamina becomes
narrower and thinner in strong currents (Sjgtun & Fredriksen, 1995). However, the stipe

of Laminaria hyperborea is relatively stiff and can snap in strong currents. Laminaria hyperborea is
usually absent from areas of extreme wave action and can be replaced by Alaria esculenta. In
extreme wave exposure, Alaria esculenta can dominate the shallow sublittoral to a depth of 15 m
(Birkettetal., 1998b).

Increase water flow rate may also remove or inhibit grazers including Patella pellucida and Echinus
esculentus and remove epiphytic algae growth (Pederson et al., 2012). The associated algal flora
and suspension feeding faunal populations change significantly with different water flow regimes.
Increased water flow rates may reduce the understorey epiflora, to be replaced by an epifauna
dominated community (e.g. sponges, anemones and polyclinid ascidians) as in the biotope
IR.HIR.KFaR.LhypFa. The composition of the holdfast fauna may also change, e.g. energetic or
sheltered water movements favour different species of amphipods (Moore, 1985).

IR.HIR.KFaR.LhypR, IR.HIR.KFaR.LhypFa, IRMIR.KR.Lhyp and their associated sub-biotopes are
found between extremely exposed to moderate wave exposure. Changes in local wave height
above or below that experienced in extremely exposed to moderately exposed sites will affect the
dominance of Laminaria hyperborea. Smaller changes in local wave height have the potential to
cause changes to the understory community. The prominent understory filter feeding community
within IR.HIR.KFaR.LhypFais reliant on wave surge currents. A decrease in wave surge may result
in a decline of filter feeding fauna and an increase in red seaweeds within the understory
community or vice versa. A decrease in local wave height may also decrease the chance of urchins
being dislodged (removed) from biotopes found at sites with traditionally high wave exposure and
may, therefore, increase urchin grazing. An increase in urchin grazing may cause a decline in the
understory community abundance and diversity (as in IR.MIR.KR.Lhyp.GzFt/Pk and
IR.MIR.KR.LhypPar).

Sensitivity assessment. A change in nearshore significant wave height >3% but <5% is, however,
unlikely to have a significant effect. Resistance to the pressure is considered ‘High’, and resilience
‘High’. Hence, the sensitivity of this biotope to changes in local wave height has been assessed as
‘Not Sensitive'.

& Chemical Pressures

Resistance Resilience Sensitivity
Transition elements &  Not Assessed (NA) Not assessed (NA) Not assessed (NA)
organo-metal
contamination Q:NRA:NRC:NR Q:NRA:NR C:NR Q:NRA: NR C:NR

This pressure is Not assessed but evidence is presented where available.

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg
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> inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole et al., (1999) reported that Hg was very toxic to
macrophytes. Similarly, Hopkin & Kain (1978) demonstrated sub-lethal effects of heavy metals on
Laminaria hyperborea gametophytes and sporophytes, including reduced growth and respiration.
Sheppard et al. (1980) noted that increasing levels of heavy metal contamination along the west
coast of Britain reduced species number and richness in holdfast fauna, except for suspension
feeders which became increasingly dominant. Gastropods may be relatively tolerant of heavy
metal pollution (Bryan, 1984). Echinus esculentus recruitment is likely to be impaired by heavy
metal contamination due to the intolerance of its larvae. Echinus esculentus are long-lived and poor
recruitment may not reduce grazing pressure in the short-term. Although macroalgae species may
not be killed, except by high levels of contamination, reduced growth rates may impair the ability
of the biotope to recover from other environmental disturbances.

Hydrocarbon & PAH Not Assessed (NA) Not assessed (NA) Not assessed (NA)
contamination Q:NRA:NRC: NR Q:NRA:NRC:NR Q:NRA:NRC:NR

This pressure is Not assessed but evidence is presented where available.

Laminaria hyperborea fronds, being almost exclusively subtidal, would not come into contact with
freshly released oil, but only to sinking emulsified oil and oil adsorbed onto particles (Birkett et al.,
1998b). The mucilaginous slime layer coating of laminarians may protect them from smothering by
oil. Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt et al.
(1995) reported that oil spills in the USA and from the 'Torrey Canyon' had little effect on kelp
forests. Similarly, surveys of subtidal communities at a number sites between 1-22.5m below chart
datum, including Laminaria hyperborea communities, showed no noticeable impacts of the Sea
Empress oil spill and clean up (Rostron & Bunker, 1997). An assessment of holdfast faunain
Laminaria showed that although species richness and diversity decreased with increasing
proximity to the Sea Empress oil spill, overall the holdfasts contained a reasonably rich and diverse
fauna, even though oil was present in most samples (Sommerfield & Warwick, 1999). Laboratory
studies of the effects of oil and dispersants on several red algae species, including Delesseria
sanguinea (Grandy 1984; cited in Holt et al., 1995) concluded that they were all sensitive to oil/
dispersant mixtures, with little differences between adults, sporelings, diploid or haploid life
stages. Holt et al. (1995) concluded that Delesseria sanguinea is probably generally sensitive to
chemical contamination. Overall, the red algae are likely to be highly intolerant to hydrocarbon
contamination. Loss of red algae is likely to reduce the species richness and diversity of the biotope
and the understorey may become dominated by encrusting corallines; however, red algae are
likely to recover relatively quickly.

Synthetic compound Not Assessed (NA) Not assessed (NA) Not assessed (NA)
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA: NR C:NR

This pressure is Not assessed but evidence is presented where available.

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to
oil and dispersant contamination (see Smith, 1968). Although Laminaria hyperborea sporelings and
gametophytes are intolerant of atrazine (and probably other herbicides) overall they may be
relatively tolerant of synthetic chemicals (Holt et al., 1995). Laminaria hyperborea survived within
>55 m from the acidified halogenated effluent discharge polluting Amlwch Bay, Anglesey, albeit at
low density. These specimens were greater than 5 years of age, suggesting that spores and/or early
stages were more intolerant (Hoare & Hiscock, 1974). Patella pellucida was excluded from Amlwch
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Bay by the pollution and the species richness of the holdfast fauna decreased with proximity to the
effluent discharge; amphipods were particularly intolerant although polychaetes were the least
affected (Hoare & Hiscock, 1974). The richness of epifauna/flora decreased near the source of the
effluent and epiphytes were absent from Laminaria hyperborea stipes within Amlwch Bay. The red
alga Phyllophora membranifolia was also tolerant of the effluent in Amlwch Bay. Smith (1968) also
noted that epiphytic and benthic red algae were intolerant of dispersant or oil contamination due
to the Torrey Canyon oil spill; only the epiphytes Crytopleura ramosa and Spermothamnion repens
and some tufts of Jania rubens survived together with Osmundea pinnatifida, Gigartina pistillata and
Phyllophora crispa from the sublittoral fringe. Delesseria sanguinea was probably to most intolerant
since it was damaged at depths of 6m (Smith, 1968). Holt et al. (1995) suggested that Delesseria
sanguinea is probably generally sensitive to chemical contamination. Although Laminaria
hyperborea may be relatively insensitive to synthetic chemical pollution, evidence suggests that
grazing gastropods, amphipods and red algae are sensitive. Loss of red algae is likely to reduce the
species richness and diversity of the biotope and the understorey may become dominated by
encrusting corallines; however, red algae are likely to recover relatively quickly.

Radionuclide Not relevant (NR) Not relevant (NR) No evidence (NEv)
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

No evidence was found.

Introduction of other Not Assessed (NA) Not assessed (NA) Not assessed (NA)
substances Q:NRA:NRC:NR Q:NRA: NR C: NR Q:NRA: NR C: NR

This pressure is Not assessed.

. High High Not sensitive
De-oxygenation
Q: High A: Medium C: High Q: High A: Medium C: High Q: High A: Medium C: High

Reduced oxygen concentrations have been shown to inhibiting both photosynthesis and
respiration in macroalgae (Kinne, 1977). Despite this, macroalgae are thought to buffer the
environmental conditions of low oxygen, thereby acting as a refuge for organisms in oxygen
depleted regions especially if the oxygen depletion is short-term (Frieder et al., 2012). A rapid
recovery from a state of low oxygen is expected if the environmental conditions are transient. If
levels do drop below 4 mg/I negative effects on these organisms can be expected with adverse
effects occurring below 2mg/I (Cole et al., 1999).

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration
but not cause a loss of the macroalgae population directly. However, small invertebrate epifauna
may be lost, causing a reduction in species richness. Therefore a resistance of ‘High’ is recorded.
Resilience is likely to be ‘High’, and the biotopes is probably ‘Not sensitive’ at the benchmark level.

. . Not relevant (NR) Not relevant (NR) Not sensitive
Nutrient enrichment
Q:NRA:NR C:NR Q:NRA: NR C:NR Q:NRA: NR C:NR

Holt et al. (1995) suggest that Laminaria hyperborea may be tolerant of nutrient enrichment since
healthy populations are found at ends of sublittoral untreated sewage outfalls in the Isle of Man.
Increased nutrient levels e.g. from sewage outfalls, has been associated with increases in
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abundance, primary biomass and Laminaria hyperborea stipe production but with concomitant
decreases in species numbers and diversity (Fletcher, 1996).

Increased nutrients may result in phytoplankton blooms that increase turbidity (see above).
Increased nutrients may favour sea urchins, e.g. Echinus esculentus, due to their ability to absorb
dissolved organics, and result in increased grazing pressure leading to loss of understorey
epiflora/fauna, decreased kelp recruitment and possibly 'urchin barrens'. Therefore, although
nutrients may not affect kelps directly, indirect effects such as turbidity, siltation and competition
may significantly affect the structure of the biotope.

However, this biotope is considered to be 'Not sensitive' at the pressure benchmark, that assumes
compliance with good status as defined by the WFD.

o . . Medium High Low
rganic enrichment
Q: Medium A: Medium C: Medium  Q: High A: Medium C: High Q: Medium A: Medium C: Medium

Holt et al. (1995) suggest that Laminaria hyperborea may be tolerant of organic enrichment since
healthy populations are found at ends of sub-littoral untreated sewage outfalls in the Isle of Man.
Increased nutrient levels e.g. from sewage outfalls, has been associated with increases in
abundance, primary biomass and Laminaria hyperborea stipe production but with concomitant
decreases in species numbers and diversity (Fletcher, 1996). Increase in ephemeral and
opportunistic algae are associated with reduced numbers of perennial macrophytes (Fletcher,
1996). Increased nutrients may also result in phytoplankton blooms that increase turbidity.
Therefore, although nutrients may not affect kelps directly, indirect effects such as turbidity may
significantly affect the structure of Laminaria hyperborea biotopes.

Sensitivity assessment. Resistance to the pressure is considered 'Medium', and resilience 'High'.
The sensitivity of this biotope to organic enrichment is assessed as 'Low'.

A Physical Pressures

Resistance Resilience Sensitivity
Physical loss (toland or [N High
freshwater habitat) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’).
Sensitivity within the direct spatial footprint of this pressure is, therefore ‘High’. Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to High

another seabed type) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

If rock substrata were replaced with sedimentary substrata this would represent a fundamental
change in habitat type, which Laminaria hyperborea would not be able to tolerate (Birkett et al.,
1998b). The biotope would be lost.
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Sensitivity assessment. Resistance to the pressure is considered “None”, and resilience “Very
Low” or ‘None’. The sensitivity of this biotope to change from sedimentary or soft rock substrata to
hard rock or artificial substrata or vice-versa is assessed as “High”.

Physical change (to Not relevant (NR) Not relevant (NR) Not relevant (NR)
another sediment type) q:NRA:NRC:NR Q:NRA:NRC: NR Q:NRA:NRC:NR

Not relevant

Habitat structure Not relevant (NR) Not relevant (NR) Not relevant (NR)
changes - removal of
substratum (extraction) Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

Not Relevant to hard rock substrata.

Abrasion/disturbance of Medium Medium
the surface of the
substratum or seabed Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Christie et al. (1998) observed Laminaria hyperborea habitat regeneration following commercial
Laminaria hyperborea trawling in south Norway. Within the study area, trawling removed all large
canopy-forming adult Laminaria hyperborea, however, sub-canopy recruits were largely unaffected.
In 2-6 years of harvesting, a new canopy had formed 1m off the seabed. The associated holdfast
communities recovered in six years, however, the epiphytic stipe community did not fully recover
within the same time period. Christie et al. (1998) suggested that kelp habitats were relatively
resistant to direct disturbance/removal of Laminaria hyperborea canopy.

Recurrent disturbance occurring at a smaller time scale than the recovery period of 2-6 years
(stated above) could extend recovery time. Kain (1975a) cleared sublittoral blocks of Laminaria
hyperborea at different times of the year for several years. The first colonizers and succession
community differed between blocks and at what time of year the blocks were cleared however
within 2 years of clearance the blocks were dominated by Laminaria hyperborea. Lienaas & Christie
(1996) also observed Laminaria hyperborea re-colonization of “urchin barrens”, following removal
of urchins. The substratum was initially colonized by filamentous macroalgae and Saccharina
latissima however after 2-4 years Laminaria hyperborea dominated the community.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Medium’.
The sensitivity of this biotope to damage to seabed surface features is assessed as ‘Medium’.

Penetration or Not relevant (NR) Not relevant (NR) Not relevant (NR)
disturbance of the
substratum subsurface Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

Not Relevant; please refer to pressure “Abrasion/disturbance of the substrata on the surface of
the seabed”.
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Changes in suspended None| Medium Medium
solids (water clarity) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Suspended Particle Matter (SPM) concentration has a linear relationship with sub-surface light
attenuation (Kd) (Devlin et al., 2008). An increase in SPM results in a decrease in sub-surface light
attenuation. Light availability and water turbidity are principal factors in determining Laminaria
hyperborea’ depth range (0-47 m BSL) (Birkett et al., 1998b). Light penetration influences the
maximum depth at which kelp species can grow and it has been reported that laminarians grow at
depths at which the light levels are reduced to one percent of incident light at the surface. Maximal
depth distribution of laminarians, therefore, varies from 100 m in the Mediterranean to only 6-7 m
in the silt-laden German Bight. In Atlantic European waters, the depth limit is typically 35 m. In
very turbid waters the depth at which Laminaria hyperborea is found may be reduced to 2.5 m
(Birkett et al., 1998b), or in some cases excluded completely (e.g. Severn Estuary), because of the
alteration in light attenuation by suspended sediment (Birkett et al., 1998b; Liining, 1990).

Laminaria spp. show a decrease of 50% photosynthetic activity when turbidity increases by 0.1/m
(light attenuation coefficient =0.1-0.2/m; Staehr & Wernberg, 2009). An increase in water
turbidity will likely affect the photosynthetic ability of Laminaria hyperborea and decrease
Laminaria hyperborea abundance and density (see sub-biotope-IR.HIR.KFaR.LhypR.Pk). Kain (1964)
suggested that early Laminaria hyperborea gametophyte development could occur in the absence of
light. Furthermore observations from south Norway found that a pool of Laminaria hyperborea
recruits could persist growing beneath Laminaria hyperborea canopies for several years, indicating
that sporophytes growth can occur in light-limited environments (Christe et al., 1998). However in
habitats exposed to high levels of suspended silts Laminaria hyperborea is out-competed by
Saccharina latissima, a silt tolerant species, and thus, a decrease in water clarity is likely to decrease
the abundance of Laminaria hyperborea in the affected area (Norton, 1978). An absence of this
biotope in silt rich environments is therefore expected.

Sensitivity Assessment. Changes in water clarity are likely to affect photosynthetic rates and
enable Saccharina latissima to compete more successfully with Laminaria hyperborea. A decrease in
turbidity is likely to support enhanced growth (and possible habitat expansion) and is therefore not
considered in this assessment. Anincrease in SPM from intermediate to moderate turbidity is
likely to significantly reduce the depth at which laminarians can grow. Resistance to this pressure
is defined as ‘None’ and resilience to this pressure is defined as ‘Medium’ at the benchmark level.
Hence, this biotope is regarded as having a sensitivity of ‘Medium ‘to this pressure.

Smothering and siltation High High
rate changes (light) Q:Low A:NRC: NR Q:Low A: NR C: NR Q:Low A: NR C: NR

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Laminaria
hyperborea sporophytes but is likely to affect gametophyte survival as well as holdfast fauna, and
interfere with zoospore settlement. Given the microscopic size of the gametophyte, 5 cm of
sediment could be expected to significantly inhibit growth. However, laboratory studies showed
that gametophytes can survive in darkness for between 6 - 16 months at 8°C and would probably
survive smothering by a discrete event. Once returned to normal conditions the gametophytes
resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to
be higher during the peak periods of sporulation and/or spore settlement.

If inundation is long lasting then the understory epifauna/flora may be adversely affected, e.g.
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suspension or filter feeding fauna and/or algal species. This biotope occurs in high wave exposures
and, therefore, deposited sediments are unlikely to remain for more than a few tidal cycles, except
in the deepest of rock-pools. Therefore, the effects of depositing 5 cm of fine sediment in a discrete
event are likely to be transient.

Sensitivity assessment. Resistance to the pressure is considered ‘High’, and resilience ‘High’. The
sensitivity of this biotope to light deposition of up to 5 cm of fine material added to the seabed in a
single discreet event is assessed as ‘Note Sensitive'.

Smothering and siltation Medium High Low
rate changes (heavy) Q:Low A: NR C: NR Q:Low A: NR C: NR Q: Low A: NR C: NR

Smothering by sediment e.g. 30 cm material during a discrete event is unlikely to damage Laminaria
hyperborea plants but is likely to affect gametophyte survival, holdfast communities, epiphytic
community at the base of the stipe, and interfere with zoospore settlement. Given the microscopic
size of the gametophyte, 30 cm of sediment could be expected to significantly inhibit growth.
However, laboratory studies showed that gametophytes can survive in darkness for between 6 -
16 months at 8°C and would probably survive smothering within a discrete event. Once returned
to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck,
1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or
spore settlement.

If clearance of deposited sediment occurs rapidly then understory communities are expected to
recover quickly. If inundation is long lasting then the understory epifauna/flora may be adversely
affected, e.g. suspension or filter feeding fauna and/or algal species. While this biotope occursin
high to moderate energy habitats (due to water flow or wave action) deposition of 30 cm of
sediment represents a large volume of material that would likely remain for a number of tidal
cycles and is expected to damage understory flora/fauna as well as juvenile Laminaria hyperborea.

Sensitivity assessment. Resistance to the pressure is considered ‘Medium’, and resilience ‘High’.
The sensitivity of this biotope to heavy deposition of up to 30 cm of fine material added to the
seabed in a single discreet event is assessed as ‘Low’.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q:NRA:NRC: NR Q:NRA:NRC: NR Q:NRA: NR C: NR
Not assessed.
Not relevant (NR) Not relevant (NR) No evidence (NEv)

Electromagnetic changes
Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

No evidence
Underwater noise Not relevant (NR) Not relevant (NR) Not relevant (NR)
changes Q:NRA:NR C:NR Q:NRA: NR C: NR Q:NRA: NR C: NR

Not relevant
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Introduction of light or  [Ke}lJ] Medium Medium
shading Q:Low A:NRC: NR Q:Low A: NR C: NR Q:Low A: NR C: NR

Shading of the biotope (e.g. by construction of a pontoon, pier etc) could adversely affect the
biotope in areas where the water clarity is also low, and tip the balance to shade tolerant species,
resulting in the loss of the biotope directly within the shaded area, or a reduction in laminarian
abundance from forest to park type biotopes.

Sensitivity assessment. Resistance is probably 'Low', with a '"Medium' resilience and a sensitivity
of 'Medium’, albeit with 'low' confidence due to the lack of direct evidence.

Barrier to species Not relevant (NR) Not relevant (NR) Not relevant (NR)
movement Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA: NR C: NR

Not relevant. This pressure is considered applicable to mobile species, e.g. fish and marine
mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal
of spores. But spore dispersal is not considered under the pressure definition and benchmark.

Death or injury by Not relevant (NR) Not relevant (NR) Not relevant (NR)
collision Q:NRA: NR C: NR Q:NRA: NR C: NR Q:NRA: NR C: NR

Not relevant. Collision from grounding vessels is addressed under abrasion above.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

Visual disturbance

Not relevant

% Biological Pressures

Resistance Resilience Sensitivity
Genetic mf)dification &  Notrelevant (NR) Not relevant (NR) No evidence (NEv)
translocation of
indigenous species Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

No evidence regarding the genetic modification or effects of translocation of native
kelp populations was found.

!ntrosiuctlon or s.pread of erv Lo High
invasive non-indigenous
species Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Undaria pinnatifida has received a large amount of research attention as a major Invasive Non-
Indigenous Species (INIS) which could out-compete native UK kelp habitats (see Farrell & Fletcher,
2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was
first recorded in Plymouth Sound, the UK in 2003 (NBN, 2015) subsequent surveys in 2011 have
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reported that U.pinnatifida is widespread throughout Plymouth Sound, colonizing rocky reef
habitats. Where Undaria pinnatifida is present there was a significant decrease in the abundance of
other Laminaria species, including Laminaria hyperborea (Heiser et al., 2014).

In New Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete
U.pinnatifida and re-dominate the substratum. However, Thompson & Schiel (2012) suggested the
fucoid recovery was partially due to an annual Undaria pinnatifida die back, which as noted by
Heiser et al., (2014) did not occur in Plymouth Sound, UK. It is unknown whether Undaria
pinnatifida will out-compete native macro-algae in the UK. However, from 2003-2011 Undaria
pinnatifida had spread throughout Plymouth Sound, UK, becoming a visually dominant species at
some locations within summer months (Hieser et al., 2014). While Undaria pinnatifida may replace
Laminaria hyperborea in some locations within the UK, at the time of writing there is limited
evidence available to assess what ecological impacts this invasion may have on Laminaria
hyperborea associated communities e.g. red seaweeds.

Undaria pinnatifida was successfully eradicated on a sunken ship in Clatham Islands, New Zealand,
by applying a heat treatment of 70°C (see Wotton et al., 2004) however numerous other
eradication attempts have failed, and as noted by Farrell & Fletcher (2006) once established
Undaria pinadifida resists most attempts at long-term removal. The biotope is unlikely to fully
recover until Undaria pinnatifida is fully removed from the habitat, which as stated above is unlikely
to occur.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Very Low'.
The sensitivity of this biotope to the introduction of INIS is assessed as ‘High'.

Introduction of microbial Medium High Low
pathogens Q:Low A:NR C:NR Q: High A: Low C: High Q: Low A: NR C:NR

Galls on the blade of Laminaria hyperborea and spot disease are associated with the endophyte
Streblonema sp. although the causal agent is unknown (bacteria, virus or endophyte). The resultant
damage to the blade and stipe may increase losses in storms. The endophyte inhibits spore
production and, therefore, recruitment and recoverability (Lein et al., 1991).

Sensitivity assessment. Resistance to the pressure is considered ‘Medium’, and resilience ‘High'.
The sensitivity of this biotope to the introduction of microbial pathogens is assessed as ‘Low’.

Removal of target None Medium Medium
species Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Christie et al. (1998) observed Laminaria hyperborea habitat regeneration following commercial
Laminaria hyperborea trawling in south Norway. Within the study area trawling removed all large
canopy-forming adult Laminaria hyperborea, however, sub-canopy recruits were unaffected. Within
2-3 years of harvesting, a new canopy had formed 1 m off the seabed. The associated holdfast
communities recovered in 6 years however the epiphytic stipe community did not fully recover
within the same time period. Christie et al. (1998) suggested that kelp habitats were relatively
resistant to direct disturbance of Laminaria hyperborea canopy.

Recurrent disturbance occurring at a smaller time scale than the recovery period of 2-6 years
(stated above) could extend recovery time. Kain (1975a) cleared sublittoral blocks of Laminaria
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hyperborea at different times of the year for several years. The first colonizers and succession
community differed between blocks and at what time of year the blocks were cleared however
within two years of clearance the blocks were dominated by Laminaria hyperborea. Lienaas &
Christie (1996) also observed Laminaria hyperborea re-colonization of “urchin barrens”, following
removal of urchins. The substratum was initially colonized by filamentous macroalgae and
Saccharina latissima however after 2-4 years Laminaria hyperborea dominated the community.

Following disturbance or in areas were recurrent rapid disturbance occurs Laminaria hyperborea
recruitment could also be affected by interspecific competitive interactions with Invasive Non-
Indigenous Species or ephemeral algal species (Smale et al., 2013; Brodie et al., 2014), however,
evidence for this is limited and thus not included in this assessment.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Medium’.
The sensitivity of this biotope to damage to seabed surface features is assessed as ‘Medium’.

Removal of non-target  [Ke}Y Medium Medium
species Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Incidental/accidental removal of Laminaria hyperborea from the extraction of other marine
resources, e.g. fisheries or aggregates, is likely to cause similar effects to that of direct harvesting
of Laminaria hyperborea; hence, the same evidence has been used for both pressure assessments.

Christie et al. (1998) observed Laminaria hyperborea habitat regeneration following commercial
Laminaria hyperborea trawling in south Norway. Within the study area trawling removed all large
canopy-forming adult Laminaria hyperborea, however, sub-canopy recruits were unaffected. Within
2-6 years of harvesting, a new canopy had formed 1 m off the seabed. The associated holdfast
communities recovered in six years however the epiphytic stipe community did not fully recover
within the same time period. Christie et al., (1998) suggested that kelp habitats were relatively
resistant to direct disturbance of Laminaria hyperborea canopy.

Recurrent disturbance occurring at a smaller time scale than the recovery period of 2-6 years
(stated above) could extend recovery time. Kain (1975a) cleared sublittoral blocks of Laminaria
hyperborea at different times of the year for several years. The first colonizers and succession
community differed between blocks and at what time of year the blocks were cleared however
within two years of clearance the blocks were dominated by Laminaria hyperborea. Lienaas &
Christie (1996) also observed Laminaria hyperborea re-colonization of “urchin barrens”, following
removal of urchins. The substratum was initially colonized by filamentous macroalgae and
Saccharina latissima however after 2-4 years Laminaria hyperborea dominated the community.

Following disturbance or in areas were recurrent rapid disturbance occurs Laminaria hyperborea
recruitment could also be affected by interspecific competitive interactions with Invasive Non-
Indigenous Species or ephemeral algal species (Smale et al., 2013; Brodie et al., 2014), however,
evidence for this is limited and thus not included in this assessment.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Medium’.
The sensitivity of this biotope to damage to seabed surface features is assessed as ‘Medium’.
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