

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

Laminaria hyperborea on tide-swept, infralittoral rock

MarLIN – Marine Life Information Network Marine Evidence-based Sensitivity Assessment (MarESA) Review

Thomas Stamp

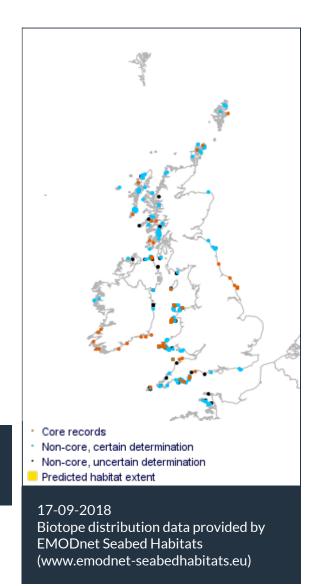
2015-10-20

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1044]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

Stamp, T.E., 2015. [Laminaria hyperborea] on tide-swept, infralittoral rock. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1044.1


The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

Laminaria hyperborea on tide-swept, infralittoral rock Photographer: Paul Brazier Copyright: Joint Nature Conservation Committee (JNCC)

Researched by Thomas Stamp Refereed by Admin

Summary

UK and Ireland classification

EUNIS 2008A3.212Laminaria hyperborea on tide-swept, infralittoral rockJNCC 2015IR.MIR.KR.LhypTLaminaria hyperborea on tide-swept, infralittoral rockJNCC 2004IR.MIR.KR.LhypTLaminaria hyperborea on tide-swept, infralittoral rock1997 BiotopeImage: Comparison of the swept of the

Description

Wave exposed to moderately wave exposed, tide-swept bedrock and boulders with Laminaria hyperborea, characterized by a rich under-storey and stipe flora of foliose seaweeds including the brown seaweed Dictyota dichotoma. The kelp stipes support epiphytes such as Cryptopleura ramosa and Phycodrys rubens. At some sites, instead of being covered by red seaweeds, the kelp stipes are heavily encrusted by the ascidian Botryllus schlosseri. Epilithic seaweeds Delesseria sanguinea, Plocamium cartilagineum Heterosiphonia plumosa, Hypoglossum hypoglossoides, Callophyllis laciniata,

Kallymenia reniformis, Brongniartella byssoides and crustose seaweeds commonly occur beneath the kelp. The kelp fronds are often covered with growth of the hydroid Obelia geniculata or the bryozoan Membranipora membranacea. On the rock surface, a rich fauna comprising the bryozoan Electra pilosa, the sponge Pachymatisma johnstonia, anthozoans such as Alcyonium digitatum, Sagartia elegans and Urticina felina, colonial ascidians such as Clavelina lepadiformis, the calcareous tubeworm Spirobranchus triqueter and the barnacle Balanus crenatus occur. More mobile species include the gastropod Calliostoma zizyphinum, the crab Cancer pagurus and the echinoderms Asterias rubens and Echinus esculentus. Two variants have been described: Tide-swept kelp forest (LhypT.Ft) and tide-swept kelp park (LhypT.Pk).

↓ Depth range

-

<u><u></u> Additional information</u>

-

✓ Listed By

- none -

% Further information sources

Search on:

G S G JNCC

Sensitivity review

Sensitivity characteristics of the habitat and relevant characteristic species

At high densities, *Laminaria hyperborea* forms a canopy over infralittoral rock and mixed substrata. Beneath the canopy an understory community grows, defined by a mixed red seaweed and faunal (filter feeding) turf. The abundance of *Laminaria hyperborea* is determined by light availability, which decreases with an increase in water depth. Therefore, depth and water clarity determine the density of *Laminaria hyperborea* and hence the distribution of kelp forest (high density kelp) and park (low density kelp) variants. What distinguishes IR.MIR.KR.LhypT & IR.MIR.KR.LhypTX biotopes from other *Laminaria hyperborea* biotopes (e.g. IR.HIR.KFaR.LhypR) is exposure to strong (1.5-3 m/s)-moderately strong (0.5-1.5 m/s) tidal streams, which encourages the abundant growth of filter feeding fauna within the kelp understory. *Laminaria hyperborea* stipes can be dominated by dense *Botryllus schlosseri* rather than the red seaweed communities of IR.HIR.KFaR.LhypR and species such as *Balanus crenatus* and can be more abundant. Red seaweeds are also an important component of the understory and stipe communities, however, in IR.MIR.KR.LhypT & IR.MIR.KR.LhypT & IR.MIR.KR.LhypT and stipe communities are more predominant within the understory than in other *Laminaria hyperborea* biotopes (except in IR.HIR.KFaR.LhypFa).

Kelp biotopes are a major source of primary productivity, and support magnified secondary productivity within North Atlantic coastal waters (Smale *et al.*, 2013; Brodie *et al.*, 2014). In Scotland alone, kelp biotopes are estimated to cover 8000km² (Walker, 1953), and account for ca 45% of primary production in UK coastal waters (Smale *et al.*, 2013). Therefore kelp biotopes, of which *Laminaria hyperborea* is dominant within UK sub-tidal rocky reefs (Birkett *et al.*, 1998b), make a substantial contribution to coastal primary production in the UK (Smale *et al.*, 2013). *Laminaria hyperborea* is grazed directly by species such as *Patella pellucid*, however approximately 80% of primary production is consumed as detritus or dissolved organic material (Krumhansl, 2012) which is both retained within and transported out of the parent kelp forest, providing valuable nutrition to potentially low productivity habitats such as sandy beaches (Smale *et al.*, 2013).

Laminaria hyperborea acts as an ecosystem engineer (Jones *et al.*, 1994; Smale *et al.*, 2013) by altering; light levels (Sjøtun *et al.*, 2006), physical disturbance (Connell, 2003), sedimentation rates (Eckman *et al.*, 1989) and water flow (Smale *et al.*, 2013), profoundly altering the physical environment for fauna and flora in close proximity. *Laminaria hyperborea* biotopes increase the three-dimensional complexity of unvegetated rock (Norderhaug, 2004; Norderhaug *et al.*, 2007; Norderhaug & Christie, 2011; Gorman *et al.*, 2012; Smale *et al.*, 2013), and support high local diversity, abundance and biomass of epi/benthic species (Smale *et al.*, 2013), and serve as a nursery ground for a number of commercial important species, e.g. Gadidae (The taxonomic family that contains many commercially important marine fish species, including the Atlantic Cod and Pollack) (Rinde *et al.*, 1992).

In undertaking this assessment of sensitivity, an account is taken of knowledge of the biology of all characterizing species/taxa in the biotope. However, 'indicative species' are particularly important in undertaking the assessment because they have been subject to detailed research. For this sensitivity assessment, *Laminaria hyperborea* is the primary focus of research, however, it is recognized that the understory community also defines the biotope. Examples of important species groups are mentioned where appropriate.

Resilience and recovery rates of habitat

A number of review and experimental publications have assessed the recovery of *Laminaria hyperborea* kelp beds and the associated community. If environmental conditions are favourable *Laminaria hyperborea* can recover following disturbance events reaching comparable plant densities and size to pristine *Laminaria hyperborea* beds within 2-6 years (Kain, 1979; Birkett *et al.*, 1998b; Christie *et al.*, 1998). Holdfast communities may recover in six years (Birkett *et al.*, 1998b). Full epiphytic community and stipe habitat complexity regeneration required over 6 years (possibly 10 years). These recovery rates were based on discrete kelp harvesting events. Recurrent disturbance occurring frequently within 2-6 years of the initial disturbance is likely to lengthen recovery time (Birkett *et al.*, 1998b; Burrows *et al.*, 2014). Kain (1975) cleared sublittoral blocks of *Laminaria hyperborea* at different times of the year for several years. The first colonizers and succession community differed between blocks were dominated by *Laminaria hyperborea*.

In south Norway, *Laminaria hyperborea* forests are harvested, which results in large scale removal of the canopy-forming kelps. Cristie *et al.* (1998) found that in south Norwegian *Laminaria hyperborea* beds a pool of small (<25 cm) understory, *Laminaria hyperborea* plants persist beneath the kelp canopy for several years. The understory *Laminaria hyperborea* sporophytes had fully reestablished the canopy at a height of 1 m within 2-6 years after kelp harvesting. Within 1 year following harvesting, and each successive year thereafter, a pool of *Laminaria hyperborea* recruits had re-established within the understory beneath the kelp canopy. Cristie *et al.* (1998) suggested that *Laminaria hyperborea* bed re-establishment from understory recruits (see above) inhibits the colonization of other kelps species and furthers the dominance of *Laminaria hyperborea* within suitable habitats, stating that *Laminaria hyperborea* habitats are relatively resilient to disturbance events.

Laminaria hyperborea has a heteromorphic life strategy. A vast number of zoospores (mobile asexual spores) are released into the water column between October-April (Kain & Jones, 1964). Zoospores settle onto rock substrata and develop into dioecious gametophytes (Kain, 1979) which, following fertilization, develop into sporophytes and mature within 1-6 years (Kain, 1979; Fredriksen *et al.*, 1995; Christie *et al.*, 1998). *Laminaria hyperborea* zoospores have a recorded dispersal range of ca 200 m (Fredriksen *et al.*, 1995). However zoospore dispersal is greatly influenced by water movements, and zoospore density and the rate of successful fertilization decreases exponentially with distance from the parental source (Fredriksen *et al.*, 1995). Hence, recruitment following disturbance can be influenced by the proximity of mature kelp beds producing viable zoospores to the disturbed area. (Kain, 1979, Fredriksen *et al.*, 1995).

Laminaria hyperborea biotopes are partially reliant on low (or no) populations of sea urchins, primarily the species; *Echinus esculentus, Paracentrotus lividus* and *Strongylocentrotus droebachiensis,* which graze directly on macroalgae, epiphytes and the understory community. Multiple authors (Steneck *et al.*, 2002; Steneck *et al.*, 2004; Rinde & Sjøtun, 2005; Norderhaug & Christie, 2009; Smale *et al.*, 2013) have reported dense aggregations of sea urchins to be a principal threat to *Laminaria hyperborea* biotopes of the North Atlantic. Intense urchin grazing creates expansive areas known as 'urchin barrens', in which a shift can occur from *Laminaria hyperborea* dominated biotopes to those characterized by coralline encrusting algae, with a resultant reduction in biodiversity (Lienaas & Christie, 1996; Steneck *et al.*, 2002, Norderhaug & Christie, 2009). Continued intensive urchin grazing pressure on *Laminaria hyperborea* biotopes can inhibit the *Laminaria hyperborea* recruitment (Sjøtun *et al.*, 2006) and cause urchin barrens to persist for decades (Cristie *et al.*, 1998; Stenneck *et al.*, 2004; Rinde & Sjøtun, 2005). The mechanisms that control sea urchin aggregations are poorly understood but have been attributed to anthropogenic pressure on urchin predators (e.g. cod or lobsters). While these theories are largely unproven a

number of studies have shown that removal of urchins from grazed areas coincide with kelp recolonization (Lienaas & Christie, 1996; Nourderhaug & Christie, 2009). Lienaas & Christie, (1996) removed *Strongylocentrotus droebachiensis* from 'urchin barrens' and observed a succession effect, in which the substratum was initially colonized by filamentous macroalgae and *Saccharina latissima*. However, after 2-4 years *Laminaria hyperborea* dominated the community.

Reports of large scale urchin barrens within the North East Atlantic are generally limited to regions of the North Norwegian and Russian Coast (Rinde & Sjøtun, 2005, Nourderhaug & Christie, 2009). Within the UK, urchin grazed biotopes (IR.MIR.KR.Lhyp.GzFt/Pk, IR.HIR.KFaR.LhypPar, IR.LIR.K.LhypSlat.Gz & IR.LIR.K.Slat.Gz) are generally localised to a few regions in North Scotland and Ireland (Smale *et al.*, 2013; Stenneck *et al.*, 2002; Norderhaug & Christie 2009; Connor *et al.*, 2004). IR.MIR.KR.Lhyp.GzFt/Pk, IR.HIR.KFaR.LhypPar, IR.LIR.K.LhypSlat.Gz & IR.LIR.K.Slat.Gz are characterized by a canopy-forming kelp. However, urchin grazing decreases the abundance and diversity of understory species. In the Isle of Man. Jones & Kain (1967) observed that low *Echinus esculentus* grazing pressure could control the lower limit of *Laminaria hyperborea* and remove *Laminaria hyperborea* sporelings and juveniles. Urchin abundances in 'urchin barrens' have been reported as high as 100 individuals/m2 (Lang & Mann, 1976). Kain (1967) reported urchin abundances of 1-4/m2 within experimental plots of the Isle of Man. Therefore, while 'urchin barrens' are not presently an issue within the UK, relatively low urchin grazing has been found to control the depth distribution of *Laminaria hyperborea*, negatively impact on *Laminaria hyperborea* recruitment and reduce the understory community abundance and diversity.

Other factors that are likely to influence the recovery of *Laminaria hyperborea* biotopes is competitive interactions with Invasive Non Indigenous Species (INIS), e.g. *Undaria pinnatifida* (Smale *et al.*, 2013; Brodie *et al.*, 2014; Heiser, 2014), and/or the Lusitanian kelp *Laminaria ochroleuca* (Brodie *et al.*, 2014; Smale *et al.*, 2014). A predicted sea temperature rise in the North and Celtic seas of between 1.5-5°C over the next century (Philippart *et al.*, 2011) is likely to create northward range shifts in many macroalgal species, including *Laminaria hyperborea*. *Laminaria hyperborea* is a northern (Boreal) kelp species, thus increases in seawater temperature is likely to affect the resilience and recoverability of *Laminaria hyperborea* biotopes with southerly distributions in the UK (Smale *et al.*, 2013; Stenneck *et al.*, 2002). Evidence suggests that the Lusitanian kelp *Laminaria ochroleuca* (Smale *et al.*, 2014), and the INIS *Undaria pinnatifida* (Heiser *et al.*, 2014) are competing with *Laminaria hyperborea* along the UK south coast and may displace *Laminaria hyperborea* from some sub-tidal rocky reef habitats. The wider ecological consequences of *Laminaria hyperborea*' competition with *Laminaria ochroleuca* and *Undaria pinnatifida* are however as of yet unknown.

Resilience assessment. The evidence suggests that beds of mature *Laminaria hyperborea* can regenerate from disturbance within a period of 1-6 years, and the associated community within 7-10 years. However, other factors such as competitive interactions with *Laminaria ochroleuca* and *Undaria pinnatifida* may limit recovery of *Laminaria hyperborea* biotopes following disturbance. Also, urchin grazing pressure is shown to limit *Laminaria hyperborea* recruitment and reduce the diversity and abundance of the understory community and may limit habitat recovery following disturbance. The recovery of *Laminaria hyperborea* biotopes to disturbance from commercial harvesting in south Norway suggests that *Laminaria hyperborea* beds and the associated community could recover from a significant loss of canopy cover within 10 years, resilience has therefore been assessed as **Medium**.

Please note in northern Norway urchin grazing pressure could extend recovery/resilience of the *Laminaria hyperborea* biotopes >25 years. If intensive urchin grazing (as seen in northern Norway)

occurs in the UK resilience would be re-assessed as **Very Low**. However, because of the limited/localised incidence of urchin grazing within the UK, urchin grazing on large scales (as in Northern Norway) has not been included in this general resilience assessment. Introduction of Invasive Non-Indigenous Species (INIS) will also inhibit the recovery of *Laminaria hyperborea* biotopes for an indeterminate amount of time, in these cases, resilience would need to be re-assessed as **Very low**. Another factor that is beyond the scope of this sensitivity assessment is the presence of multiple concurrent synergistic or cumulative effects, which Smale *et al.* (2013) suggest could be a more damaging than the individual pressures.

Hydrological Pressures

	Resistance	Resilience	Sensitivity
Temperature increase	<mark>Medium</mark>	<mark>Medium</mark>	<mark>Medium</mark>
(local)	Q: High A: High C: High	Q: High A: High C: High	Q: High A: High C: High

Kain (1964) stated that *Laminaria hyperborea* sporophyte growth and reproduction could occur within a temperature range of 0 - 20°C. Upper and lower lethal temperatures have been estimated at between 1-2°C above or below the extremes of this range (Birkett *et al.*, 1988). Above 17°C gamete survival is reduced (Kain, 1964 & 1971) and gametogenesis is inhibited at 21°C (Dieck, 1992). It is, therefore, likely that *Laminaria hyperborea* recruitment will be impaired at a sustained temperature increase of above 17°C. Sporophytes, however, can tolerate slightly higher temperatures of 20°C. Temperature tolerances for *Laminaria* hyperborea are also seasonally variable and temperature changes are less tolerated in winter months than summer months (Birkett *et al.*, 1998).

Subtidal red algae are less tolerant of temperature extremes than intertidal red algae, surviving between -2°C and 18-23 °C (Lüning 1990; Kain & Norton, 1990). Temperature increase may affect growth, recruitment or interfere with reproduction processes. For example, there is some evidence to suggest that blade growth in *Delesseria sanguinea* is delayed until ambient sea temperatures fall below 13 °C. Blade growth is also likely to be intrinsically linked to gametangia development (Kain, 1987), and maintenance of sea temperatures above 13 °C may affect recruitment success.

Laminaria hyperborea has a geographic range from mid-Portugal to Northern Norway (Birket *et al.*, 1998), and a mid range within southern Norway (60°-65° North)(Kain, 1971). The average seawater temperature for southern Norway in October is 12-13°C (Miller *et al.*, 2009), and average annual sea temperature, from 1970-2014, is 8°C (Beszczynska-Möller & Dye, 2013). Against the pressure benchmark, the available information suggests that Laminaria hyperborea recruitment processes may be affected and associated red algae communities may decline.

Sensitivity assessment. Overall, a chronic change (2°C for a year) outside the normal range for a year may reduce recruitment and growth, resulting in a minor loss in the population of kelp, especially in winter months or in southern examples of the biotope. However, an acute change (5°C for a month; e.g. from thermal effluent) may result in loss of abundance of kelp or extent of the bed, especially in winter. Therefore, resistance to the pressure is considered '**Medium**', and resilience '**Medium**'. The sensitivity of this biotope to increases in temperature has been assessed as '**Medium**'.

Temperature decrease (local)

High Q: High A: High C: High

High Q: High A: High C: High Not sensitive

Q: High A: High C: High

Kain (1964) stated that Laminaria hyperborea sporophyte growth and reproduction could occur within a temperature range of 0 - 20°C. Upper and lower lethal temperatures have been estimated at between 1-2 °C above or below the extremes of this range (Birkett et al., 1988). Subtidal red algae can survive at temperatures between -2 °C and 18-23 °C (Lüning, 1990; Kain & Norton, 1990).

Laminaria hyperborea is a boreal northern species with a geographic range from mid-Portugal to Northern Norway (Birket et al., 1998), and a mid range within southern Norway (60°-65° North)(Kain, 1971). The average seawater temperature for southern Norway in October is 12-13°C (Miller et al., 2009), and average annual sea temperature, from 1970-2014, is 8°C (Beszczynska-Möller & Dye, 2013). The available information suggests that Laminaria hyperborea and biotope structure would not be affected by a change in sea temperature at the benchmark level.

Sensitivity assessment. Resistance to the pressure is considered 'High', and resilience 'High'. The sensitivity of this biotope to decreases in temperature has been assessed as 'Not Sensitive'.

Salinity increase (local)

Low Q: Low A: NR C: NR Medium

Q: High A: Medium C: High

Medium

Q: Low A: NR C: NR

Lüning (1990) suggest that "kelps" are stenohaline, their general tolerance to salinity as a phenotypic group covering 16 - 50 PSU over a 24 hr period. Optimal growth probably occurs between 30-35 PSU (MNCR category- 'Full' salinity) and growth rates are likely to be affected by periodic salinity stress. Birkett et al, (1998) suggested that long-term increases in salinity may affect Laminaria hyperborea growth and may result in loss of affected kelp, and, therefore, loss of the biotope.

Sensitivity assessment. Resistance to the pressure is considered 'Low', and resilience 'Medium'. The sensitivity of this biotope to an increase in salinity has been assessed as '**Medium**'.

Salinity decrease (local)

Medium

Medium

Q: Medium A: Medium C: Medium

Lüning (1990) suggest that 'kelps' are stenohaline, their general tolerance to salinity as a phenotypic group covering 16 - 50 PSU over a 24 hr period. Optimal growth probably occurs between 30-35 PSU (MNCR category-Full Salinity) and growth rates are likely to be affected by periodic salinity stress. Birkett et al. (1998) suggest that long-term changes in salinity may result in loss of affected kelp and, therefore, loss of this biotope.

Hopkin & Kain (1978) tested Laminaria hyperborea sporophyte growth at various low salinity treatments. The results showed that Laminaria hyperborea sporophytes could grow 'normally' at 19 PSU, growth was reduced at 16 PSU and did not grow at 7 PSU. A decrease in one MNCR salinity scale from Full Salinity (30-40 PSU) to Reduced Salinity (18-30 PSU) would result in a decrease of Laminaria hyperborea sporophyte growth. Laminaria hyperborea may also be out-competed by low salinity tolerant species e.g. Saccharina latissma (Karsten, 2007), or invasive kelp species, e.g. Undaria pinnatifida (Burrows et al., 2014).

If salinity was returned to Full Salinity (30-40 PSU) Laminaria hyperborea could out-compete Saccharina latissma and re-establish community dominance in 2-4 years (Leinaas & Christie, 1996), however, full habitat structure may take over 10 years to recover (Birkett et al., 1998; Cristie et al., 1998). The ability of Laminaria hyperborea to out-compete Undaria pinnatifida within the UK is, however, unknown (Heiser et al., 2014), and as such interspecific interaction between Laminaria hyperborea and Undaria pinnatifida is not included within this sensitivity assessment.

Sensitivity assessment. Resistance to the pressure is considered 'Low', and resilience 'Medium'. The sensitivity of this biotope to decreases in salinity has been assessed as '**Medium**'.

Water flow (tidal High current) changes (local)

Q: High A: High C: High

High Q: High A: High C: High Not sensitive Q: High A: High C: High

Kregting et al. (2013) measured Laminaria hyperborea blade growth and stipe elongation from an exposed and a sheltered site in Strangford Lough, Northern Ireland, from March 2009-April 2010. Maximal significant wave height (HmO) was 3.67 & 2m at the exposed and sheltered sites, and maximal water velocity (Velrms) was 0.6 & 0.3 m/s at the exposed and sheltered sites respectively. Despite the differences in wave exposure and water velocity, there was no significant difference in Laminaria hyperborea growth between the exposed and sheltered sites. Therefore, water flow was found to have no significant effect on Laminaria hyperborea growth at the observed range of water velocities.

Biotope structure is, however, different between wave exposed and sheltered sites. Pederson et al. (2012) observed Laminaria hyperborea biomass, productivity and density increased with an increase in wave exposure. At low wave exposure, Laminaria hyperborea canopy forming plants were smaller, had lower densities and had higher mortality rates than at exposed sites. At low wave exposure Pederson et al. (2012) suggested that high epiphytic loading on Laminaria hyperborea impaired light conditions, nutrient uptake, and increased the drag on the host Laminaria hyperborea during extreme storm events.

The morphology of the stipe and blade of kelps vary with water flow. In wave exposed areas, for example, Laminaria hyperborea develops a long and flexible stipe and this is probably a functional adaptation to strong water movement (Sjøtun et al., 1998). In addition, the lamina becomes narrower and thinner in strong currents (Sjøtun & Fredriksen, 1995). However, the stipe of Laminaria hyperborea is relatively stiff and can snap in strong currents. Laminaria hyperborea is usually absent from areas of high wave action or strong currents, although it is found in the Menai Strait, Wales, where tidal velocities can exceed 4 m/s (NBN, 2015) and in tidal rapids in Norway (J. Jones, pers. comm.) Laminaria hyperborea growth can persist in very strong tidal streams (>3 m/s).

Increase water flow rate may also remove or inhibit grazers including Patella pellucida and Echinus esculentus, therefore reducing grazing in the understorey and on stipes. The associated algal flora and suspension feeding faunal populations change significantly with different water flow regimes. Decreased water flow rates may reduce the suspension feeding understorey epifauna, to be replaced by an epiflora dominated community as in the biotope IR.HIR.KFaR.LhypR. The composition of the holdfast fauna may also change, e.g. energetic or sheltered water movements favour different species of amphipods (Moore, 1985).

IR.MIR.KR.LhypT, IR.MIR.KR.LhypTX and their associated sub-biotopes are predominantly found within strong (1.5-3 m/s)-moderate (0.5-1.5 m/s) tidal streams. The prominent understory filter feeding community within IR.MIR.KR.LhypT/TX is reliant on strong tidal flow. It is the abundance

of filter feeding organisms that separates the tide swept *Laminaria hyperborea* biotopes from the not tide-swept biotopes within the same wave exposure (e.g. IR.HIR.KFaR.LhypR). A change in peak mean spring bed flow velocity within the tidal streams 0.5-3 m/s is not likely to significantly affect the abundance of *Laminaria hyperborea*. A decrease in tidal streams may result in a decline of filter feeding fauna and an increase in red seaweeds within the understory community. A decrease in tidal flow within this range may also decrease urchin dislodgment and increase urchin grazing. An increase in urchin grazing may cause a decline in the understory community abundance and diversity (as in IR.MIR.KR.Lhyp.GzFt/Pk). Large increases in water movement (e.g. >3 m/s) may increase the dislodgement/loss of *Laminaria hyperborea* from the biotope (Birkett *et al.*, 1988), and may cause an increase in the abundance of the ephemeral kelp: *Saccharina latissima* or *Alaria esculenta*, which are both fast growing species and tolerant of fast water movement (Birket *et al.*, 1998).

Sensitivity assessment. Water movement is a key environmental characteristic of IR.MIR.KR.LhypT and IR.MIR.KR.LhypTX, however, these biotopes are found within a broad range of tidal streams (0.5-3 m/s). A change in peak mean spring bed flow velocity of between 0.1m/s to 0.2m/s for more than 1 year is however observed as a small change in water movement, and is not likely to significantly affect the community Resistance to the pressure is therefore considered '**High**', and resilience '**High**'. The sensitivity of this biotope to changes in peak mean spring bed velocity has been assessed as '**Not Sensitive**' at the benchmark level.

Large and dramatic changes in tidal streams (>3m/sec) may increase the abundance/dominance of ephemeral kelp species *Alaria esculenta* and *Saccharina latissima*, and may result in loss of the biotope. Changes of this dramatic nature are however outside of the scope of this habitat sensitivity assessment.

Emergence regime changes

Low Q: Low A: NR C: NR Medium Q: High A: Low C: High

Medium Q: Low A: NR C: NR

The upper limit of the *Laminaria hyperborea* bed is determined by wave action and water flow, desiccation, and competition from the more emergence resistant *Laminaria digitata*. *Laminaria hyperborea* exposed at extreme low water are very intolerant of desiccation, the most noticeable effect being bleaching of the frond and subsequent death of the meristem and loss of the plant. An increase in wave exposure (See below- water flow), as a result of increased emergence, has been found to exclude *Laminaria hyperborea* from shallow waters due to dislodgement of the sporophyte or snapping of the stipe (Birkett *et al.*, 1998). Hence, an increase in emergence is likely to lead to mortality of exposed *Laminaria hyperborea* and the associated habitat.

An increase in water depth/decreased emergence (at the benchmark level) may increase the upper depth restriction of *Laminaria hyperborea* forest variants within this biotope group. However, limited light availability at depth will decrease the lower extent of *Laminaria hyperborea*, and may therefore result in a shift from forest to park biotope variants at depth. Further increases in depth will cause a community shift to that characterized by circalittoral faunal species, however this is beyond the scope of the benchmark.

Sensitivity assessment. Resistance to the pressure is considered '**Low**', and resilience '**Medium**'. The sensitivity of this biotope to changes in tidal emergence has been assessed as '**Medium**'.

Wave exposure changesHigh(local)Q: High

Q: High A: High C: High

High Q: High A: High C: High Not sensitive Q: High A: High C: High

Kregting *et al.*, (2013) measured *Laminaria hyperborea* blade growth and stipe elongation from an exposed and a sheltered site in Strangford Lough, Northern Ireland from March 2009-April 2010. Wave exposure was found to be between 1.1. to 1.6 times greater between the exposed and sheltered sites. Maximal significant wave height (Hm0) was 3.67 & 2m at the exposed and sheltered sites. Maximal water velocity (VeIrms) was 0.6 & 0.3m/s at the exposed and sheltered sites. Despite the differences in wave exposure and water velocity, there was no significant difference in *Laminaria hyperborea* growth between the exposed and sheltered site.

Biotope structure is, however, different between wave exposed and sheltered sites. Pederson *et al.*, (2012) observed *Laminaria hyperborea* biomass, productivity and density increased with an increase in wave exposure. At low wave exposure, *Laminaria hyperborea* canopy forming plants were smaller, had lower densities and had higher mortality rates than at exposed sites. At low wave exposure high epiphytic loading on *Laminaria hyperborea* was theorised to impair light conditions, nutrient uptake, and increase the drag of the host *Laminaria hyperborea* during extreme storm events.

The morphology of the stipe and blade of kelps vary with water flow. In wave exposed areas, for example, *Laminaria hyperborea* develops a long and flexible stipe and this is probably a functional adaptation to strong water movement (Sjøtun, 1998). In addition, the lamina becomes narrower and thinner in strong currents (Sjøtun & Fredriksen, 1995). However, the stipe of *Laminaria hyperborea* is relatively stiff and can snap in strong currents. *Lamiaria hyperborea* is usually absent from areas of extreme wave action and can be replaced by *Alaria esculenta*. In extreme wave exposures, *Alaria esculenta* can dominate the shallow sub-littoral to a depth of 15m, where *Laminaria hyperboea* dominates the infralittoral (Birket *et al.*, 1998).

Increase water flow may also remove or inhibit grazers including *Patella pellucida* and *Echinus esculentus*, therefore reducing grazing in the understorey and on stipes. The associated algal flora and suspension feeding faunal populations change significantly with different water flow regimes. Increased water flow rates may reduce the understorey epiflora, to be replaced by an epifauna dominated community (e.g. sponges, anemones and polyclinid ascidians) as in the biotope IR.HIR.KFaR.LhypFa. The composition of the holdfast fauna may also change, e.g. energetic or sheltered water movements favour different species of amphipods (Moore, 1985).

IR.MIR.KR.LhypT, IR.MIR.KR.LhypTX and their associated sub-biotopes are found between extremely exposed to sheltered wave exposure but experience elevated tidal streams. Changes in local wave height above or below that experienced in extremely exposed to sheltered exposed sites will affect the dominance of *Laminaria hyperborea*. Smaller changes in local wave height have the potential to cause changes to the understory community. The prominent understory filter feeding community within IR.MIR.KR.LhypT/TX is reliant on high water movement. A decrease in wave surge may result in a decline of filter feeding fauna and an increase in red seaweeds within the understory community or vice versa. A decrease in local wave height may also decrease the chance of urchins being dislodged (removed) from biotopes found at sites with traditionally high wave exposure and may, therefore, increase urchin grazing. An increase in urchin grazing may cause a decline in the understory community abundance and diversity (as in IR.MIR.KR.Lhyp.GzFt/Pk and IR.MIR.KR.LhypPar).

Sensitivity assessment. A change in nearshore significant wave height >3% but <5% is, however,

unlikely to have a significant effect. Resistance to the pressure is considered '**High**', and resilience '**High**'. Hence, the sensitivity of this biotope to changes in local wave height has been assessed as '**Not Sensitive**'.

Large and dramatic changes in near shore wave height may increase the abundance/dominance of the ephemeral kelp species *Alaria esculenta*, increase the dominance of IR.HIR.KFaR.Ala and may result in loss of the biotope. Changes of this dramatic nature are however outside of the scope of this habitat sensitivity assessment.

A Chemical Pressures

	Resistance	Resilience	Sensitivity
Transition elements & organo-metal	Not Assessed (NA)	Not assessed (NA)	Not assessed (NA)
contamination	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR

This pressure is **Not assessed** but evidence is presented where available.

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg > inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole *et al.* (1999) reported that Hg was very toxic to macrophytes. Similarly, Hopkin & Kain (1978) demonstrated sub-lethal effects of heavy metals on *Laminaria hyperborea* gametophytes and sporophytes, including reduced growth and respiration. Sheppard *et al.*, (1980) noted that increasing levels of heavy metal contamination along the west coast of Britain reduced species number and richness in holdfast fauna, except for suspension feeders which became increasingly dominant. Gastropods may be relatively tolerant of heavy metal pollution (Bryan, 1984). *Echinus esculentus* recruitment is likely to be impaired by heavy metal contamination due to the intolerance of its larvae. *Echinus esculentus* are long-lived and poor recruitment may not reduce grazing pressure in the short-term. Although macroalgae species may not be killed, except by high levels of contamination, reduced growth rates may impair the ability of the biotope to recover from other environmental disturbances.

Hydrocarbon & PAH	Not Assessed (NA)	Not assessed (NA)	Not assessed (NA)
contamination	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR

This pressure is **Not assessed** but evidence is presented where available.

Laminaria hyperborea fronds, being almost exclusively sub tidal, would not come into contact with freshly released oil, but only to sinking emulsified oil and oil adsorbed onto particles (Birkett *et al.*, 1998). The mucilaginous slime layer coating of laminarians may protect them from smothering by oil. Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt *et al.* (1995) reported that oil spills in the USA and from the 'Torrey Canyon' had little effect on kelp forests. Similarly, surveys of subtidal communities at a number sites between 1-22.5m below chart datum, including Laminaria hyperborea communities, showed no noticeable impacts of the Sea Empress oil spill and clean up (Rostron & Bunker, 1997). An assessment of holdfast fauna in Laminaria showed that although species richness and diversity decreased with increasing proximity to the Sea Empress oil spill, overall the holdfasts contained a reasonably rich and diverse fauna, even though oil was present in most samples (Sommerfield & Warwick, 1999). Laboratory studies of the effects of oil and dispersants on several red algae species, including Delesseria sanguinea (Grandy 1984; cited in Holt *et al.*, 1995) concluded that they were all sensitive to oil/

dispersant mixtures, with little differences between adults, sporelings, diploid or haploid life stages. Holt *et al.* (1995) concluded that *Delesseria sanguinea* is probably generally sensitive of chemical contamination. Overall the red algae are likely to be highly intolerant to hydrocarbon contamination. Loss of red algae is likely to reduce the species richness and diversity of the biotope and the understorey may become dominated by encrusting corallines; however, red algae are likely to recover relatively quickly.

Synthetic compound	Not Assessed (NA)	Not assessed (NA)	Not assessed (NA)
contamination	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR

This pressure is **Not assessed** but evidence is presented where available.

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to oil and dispersant contamination (see Smith, 1968). Although Laminaria hyperborea sporelings and gametophytes are intolerant of atrazine (and probably other herbicides) overall they may be relatively tolerant of synthetic chemicals (Holt et al., 1995). Laminaria hyperborea survived within >55 m from the acidified halogenated effluent discharge polluting Amlwch Bay, Anglesey, albeit at low density. These specimens were greater than 5 years of age, suggesting that spores and/or early stages were more intolerant (Hoare & Hiscock, 1974). Patella pellucida was excluded from Amlwch Bay by the pollution and the species richness of the holdfast fauna decreased with proximity to the effluent discharge; amphipods were particularly intolerant although polychaetes were the least affected (Hoare & Hiscock, 1974). The richness of epifauna/flora decreased near the source of the effluent and epiphytes were absent from Laminaria hyperborea stipes within Amlwch Bay. The red alga Phyllophora membranifolia was also tolerant of the effluent in Amlwch Bay. Smith (1968) also noted that epiphytic and benthic red algae were intolerant of dispersant or oil contamination due to the Torrey Canyon oil spill; only the epiphytes Crytopleura ramosa and Spermothamnion repens and some tufts of Jania rubens survived together with Osmundea pinnatifida, Gigartina pistillata and Phyllophora crispa from the sublittoral fringe. Delesseria sanguinea was probably to most intolerant since it was damaged at depths of 6m (Smith, 1968). Holt et al., (1995) suggested that Delesseria sanguinea is probably generally sensitive of chemical contamination. Although Laminaria hyperborea may be relatively insensitive to synthetic chemical pollution, evidence suggests that grazing gastropods, amphipods and red algae are sensitive. Loss of red algae is likely to reduce the species richness and diversity of the biotope and the understorey may become dominated by encrusting corallines; however, red algae are likely to recover relatively quickly.

Radionuclide contamination

Not relevant (NR) Q: NR A: NR C: NR Not relevant (NR) Q: NR A: NR C: NR No evidence (NEv) Q: NR A: NR C: NR

No evidence

Introduction of other substances

Not Assessed (NA) Q: NR A: NR C: NR Not assessed (NA) Q: NR A: NR C: NR Not assessed (NA) Q: NR A: NR C: NR

This pressure is **Not assessed**.

De-oxygenation

Medium Q: High A: Medium C: High <mark>High</mark> Q: High A: Medium C: High **Low** Q: High A: Medium C: High Reduced oxygen concentrations have been shown to inhibit both photosynthesis and respiration in macroalgae (Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the oxygen depletion is short-term (Frieder et al., 2012). In addition, the biotope occurs in areas of moderate to extreme wave action, so is likely to be continuously aerated. A rapid recovery from a state of low oxygen is expected if the environmental conditions are transient. If levels do drop below 4 mg/l negative effects on these organisms can be expected with adverse effects occurring below 2mg/l (Cole et al., 1999).

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration but not cause a loss of the macroalgae population directly. Furthermore, wave exposure is likely to constantly aerate the affected area. While de-oxygenation may not directly affect Laminaria hyperborea, small invertebrate epifauna may be lost, causing a reduction in species richness. Therefore, resistance has been assessed as 'Medium' is recorded. Resilience is likely to be 'High', and the biotopes is probably 'Low' at the benchmark level.

Nutrient enrichment

High Q: NR A: NR C: NR

High Q: NR A: NR C: NR

Not sensitive

Q: NR A: NR C: NR

Holt et al. (1995) suggest that Laminaria hyperborea may be tolerant of nutrient enrichment since healthy populations are found at ends of sublittoral untreated sewage outfalls in the Isle of Man. Increased nutrient levels e.g. from sewage outfalls, has been associated with increases in abundance, primary biomass and Laminaria hyperborea stipe production but with concomitant decreases in species numbers and diversity (Fletcher, 1996).

Increased nutrients may result in phytoplankton blooms that increase turbidity (see above). Increased nutrients may favour sea urchins, e.g. Echinus esculentus, due their ability to absorb dissolved organics, and result in increased grazing pressure leading to loss of understorey epiflora/fauna, decreased kelp recruitment and possibly 'urchin barrens'. Therefore, although nutrients may not affect kelps directly, indirect effects such as turbidity, siltation and competition may significantly affect the structure of the biotope.

However, this biotope is considered to be 'Not sensitive' at the pressure benchmark, that assumes compliance with good status as defined by the WFD.

Organic enrichment

Medium High Q: Medium A: Medium C: Medium Q: High A: Medium C: High

Low Q: Medium A: Medium C: Medium

Holt et al. (1995) suggest that Laminaria hyperborea may be tolerant of organic enrichment since healthy populations are found at ends of sublittoral untreated sewage outfalls in the Isle of Man. Increased nutrient levels e.g. from sewage outfalls, has been associated with increases in abundance, primary biomass and Laminaria hyperborea stipe production, but with concomitant decreases in species numbers and diversity (Fletcher, 1996). Increase organic enrichment has also been found to increase the abundance and dominance of suspension feeding fauna within Laminaria hyperborea holdfasts (Sheppard et al., 1980). Increase in ephemeral and opportunistic algae are associated with reduced numbers of perennial macrophytes (Fletcher, 1996). Increased nutrients may also result in phytoplankton blooms that increase turbidity. Therefore, although nutrients may not affect kelps directly, indirect effects such as turbidity and the increased abundance of suspension feeding fauna may affect the structure of Laminaria hyperborea biotopes

(see water clarity above).

Sensitivity assessment. While organic enrichment may not have any direct effects on *Laminaria hyperborea*, increased turbidity and abundance of suspension feeding fauna may have significant effects on the biotope structure. Resistance to the pressure has therefore been considered '**Medium**', and resilience '**High**'. The sensitivity of this biotope to organic enrichment is assessed as '**Low**'.

A Physical Pressures

All marine habitats and benthic species are considered to have a resistance of 'None' to this pressure and to be unable to recover from a permanent loss of habitat (resilience is '**Very Low**'). Sensitivity within the direct spatial footprint of this pressure is therefore '**High**'. Although no specific evidence is described confidence in this assessment is '**High**', due to the incontrovertible nature of this pressure.

Physical change (to another seabed type)

<mark>None</mark> Q: Low A: NR C: NR

Q: Low A: NR C: NR

If rock substrata were replaced with sedimentary substrata this would represent a fundamental change in habitat type, which *Laminaria hyperborea* would not be able to tolerate (Birket *et al.*, 1998). The biotope would be lost.

Sensitivity assessment. Resistance to the pressure is considered '**None**', and resilience '**Very Low**' or '**None**'. The sensitivity of this biotope to change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa is assessed as '**High**'.

Physical change (to Not relevant (NR) Not relevant (NR) Not relevant (NR) another sediment type) Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR Not relevant Habitat structure None Medium Medium changes - removal of Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High substratum (extraction)

IR.MIR.KR.LhypTX plus associated sub biotopes, are found on tide swept boulders, cobbles, pebbles and gravel. Extraction of the substratum would likely result in high mortality of *Laminaria hyperborea* plus the associated community.

Sensitivity assessment. Resistance has been assessed as '**None**', resilience as '**Medium**'. Sensitivity has been assessed as '**Medium**'

Abrasion/disturbance of the surface of the substratum or seabed

Q: Medium A: High C: High

	Μ	edi	iun	n
--	---	-----	-----	---

Q: Medium A: Medium C: Medium Q: Medium A: Medium C: Medium

Christie et al. (1998) observed Laminaria hyperborea habitat regeneration following commercial Laminaria hyperborea trawling in south Norway. Within the study area, trawling removed all large canopy-forming adult Laminaria hyperborea, however, sub-canopy recruits were largely unaffected. In 2-6 years of harvesting, a new canopy had formed 1m off the seabed. The associated holdfast communities recovered in 6 years, however, the epiphytic stipe community did not fully recover within the same time period. Christie et al., (1998) suggested that kelp habitats were relatively resistant to direct disturbance/removal of Laminaria hyperborea canopy.

Recurrent disturbance occurring at a smaller time scale than the recovery period of 2-6 years (stated above) could extend recovery time. Kain (1975) cleared sublittoral blocks of Laminaria hyperborea at different times of the year for several years. The first colonizers and succession community differed between blocks and at what time of year the blocks were cleared however within 2 years of clearance the blocks were dominated by Laminaria hyperborea. Lienaas & Christie (1996) also observed Laminaria hyperborea re-colonization of "urchin barrens", following removal of urchins. The substratum was initially colonized by filamentous macroalgae and Saccharina latissima however after 2-4 years Laminaria hyperborea dominated the community.

Sensitivity assessment. Resistance to the pressure is considered 'Low', and resilience 'Medium'. The sensitivity of this biotope to damage to seabed surface features is assessed as 'Medium'.

Penetration or disturbance of the	Not relevant (NR)	Not relevant (NR)	Not relevant (NR)
substratum subsurface	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR

Not relevant, please refer to pressure 'Abrasion/ disturbance of the substratum on the surface of the seabed'.

Changes in suspended Low solids (water clarity)

Q: High A: High C: High

Medium Q: High A: High C: High

Medium

Q: High A: High C: High

Suspended Particle Matter (SPM) concentration has a linear relationship with sub-surface light attenuation (Kd) (Devlin et al., 2008). An increase in SPM results in a decrease in sub-surface light attenuation. Light availability and water turbidity are principal factors in determining kelp depth range (Birkett et al., 1998). Light penetration influences the maximum depth at which kelp species can grow and it has been reported that laminarians grow down to depths at which the light levels are reduced to 1 percent of incident light at the surface. Maximal depth distribution of laminarians, therefore, varies from 100 m in the Mediterranean to only 6-7 m in the silt-laden German Bight. In Atlantic European waters, the depth limit is typically 35 m. In very turbid waters the depth at which Laminaria hyperborea is found may be reduced, or in some cases excluded completely (e.g. Severn Estuary), because of the alteration in light attenuation by suspended sediment (Birkett et al. 1998b; Lüning, 1990).

Laminaria spp. show a decrease of 50% photosynthetic activity when turbidity increases by 0.1/m (light attenuation coefficient =0.1-0.2/m; Staehr & Wernberg, 2009). An increase in water turbidity will likely affect the photosynthetic ability of Laminaria hyperborea and Laminaria

ochroleuca and decrease Laminaria hyperborea abundance and density (see sub-biotope-IR.MIR.KR.Lhyp.Pk). Kain (1964) suggested that early Laminaria hyperborea gametophyte development could occur in the absence of light. Furthermore, observations from south Norway found that a pool of Laminaria hyperborea recruits could persist growing beneath Laminaria hyperborea canopies for several years, indicating that sporophyte growth can occur in light-limited environments (Christe *et al.*, 1998). However in habitats exposed to high levels of suspended silts Laminaria hyperborea is out-competed by Saccharina latissima, a silt tolerant species, and thus, a decrease in water clarity is likely to decrease the abundance of Laminaria hyperborea in the affected area (Norton, 1978).

Sensitivity Assessment. Changes in water clarity are likely to affect photosynthetic rates and enable Saccharina latissima to compete more successfully with Laminaria hyperborea. A decrease in turbidity is likely to support enhanced growth (and possible habitat expansion) and is therefore not considered in this assessment. An increase in water clarity from clear to intermediate (10-100 mg/l) represents a change in light attenuation of ca 0.67-6.7 Kd/m, and is likely to result in a greater than 50% reduction in photosynthesis of *Laminaria* spp. Therefore, the dominant kelp species will probably suffer a significant decline and resistance to this pressure is assessed as '**Low**'. Resilience to this pressure is probably '**Medium**' at the benchmark. Hence, this biotope is assessed as having a sensitivity of '**Medium** 'to this pressure.

Smothering and siltation	High	High
rate changes (light)	Q: Medium A: High C: High	Q: High A: Medium C: High

Not sensitive

Q: Medium A: Medium C: High

Smothering by sediment e.g. 5 cm material during a discrete event is unlikely to damage *Laminaria hyperborea* plants but is likely to affect gametophyte survival as well as holdfast fauna, and interfere with zoospore settlement. Given the microscopic size of the gametophyte, 5 cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that gametophytes can survive in darkness for between 6 - 16 months at 8 °C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

If inundation is long lasting then the understory epifauna/flora may be adversely affected, e.g. suspension or filter feeding fauna and/or algal species. If clearance of deposited sediment occurs rapidly then understory communities are expected to recover quickly. IR.MIR.KR.LhypT/TX (and their associated sub-biotopes) occur in high to moderate energy habitats (due to water flow or wave action) so deposited sediment is unlikely to remain for more than a few tidal cycles, except in the deepest of rock-pools.

Sensitivity assessment. Due to the strong tidal flows that characterize IR.MIR.KR.LhypT, IR.MIR.KR.LhypTX, deposited sediments are likely to be rapidly dispersed from the affected site. Resistance to the pressure is therefore considered '**High**', and resilience '**High**'. The sensitivity of this biotope to light deposition of up to 5cm of fine material added to the seabed in a single discreet event is assessed as '**Not Sensitive**'.

Smothering and siltation	High
rate changes (heavy)	Q: Medium A

Q: Medium A: High C: High

Not sensitive

Q: Medium A: Medium C: High

Smothering by sediment e.g. 30 cm material during a discrete event, is unlikely to damage

Laminaria hyperborea plants but is likely to affect gametophyte survival, holdfast communities, epiphytic community at the base of the stype, and interfere with zoospore settlement. Given the microscopic size of the gametophyte, 30 cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that gametophytes can survive in darkness for between 6 - 16 months at 8 °C and would probably survive smothering within a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

If inundation is long lasting then the understory epifauna/flora may be adversely affected, e.g. suspension or filter feeding fauna and/or algal species. If clearance of deposited sediment occurs rapidly then understory communities are expected to recover quickly. IR.MIR.KR.LhypT/TX (and their associated sub-biotopes) occur in high to moderate energy habitats (due to water flow or wave action) so deposited sediment is unlikely to remain for more than a few tidal cycles, except in the deepest of rock-pools.

Sensitivity assessment. Resistance to the pressure is considered '**High**', and resilience '**High**'. The sensitivity of this biotope to heavy deposition of up to 30cm of fine material added to the seabed in a single discreet event is assessed as '**Not Sensitive**'.

Litter	Not Assessed (NA)	Not assessed (NA)	Not assessed (NA)
	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR
Not assessed.			
Electromagnetic changes	Not relevant (NR)	Not relevant (NR)	No evidence (NEv)
	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR
No evidence			
Underwater noise	Not relevant (NR)	Not relevant (NR)	Not relevant (NR)
changes	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR
No evidence			
Introduction of light or shading	Low	<mark>Medium</mark>	<mark>Medium</mark>
	Q: Low A: NR C: NR	Q: Low A: NR C: NR	Q: <u>Low</u> A: <u>NR</u> C: <u>NR</u>

Shading of the biotope (e.g. by construction of a pontoon, pier etc) could adversely affect the biotope in areas where the water clarity is also low, and tip the balance to shade tolerant species, resulting in the loss of the biotope directly within the shaded area, or a reduction in laminarian abundance from forest to park type biotopes.

Sensitivity assessment. Resistance is probably '**Low**', with a '**Medium**' resilience and a sensitivity of '**Medium**', albeit with 'low' confidence due to the lack of direct evidence.

Barrier to species movement

Not relevant (NR) Q: NR A: NR C: NR Not relevant (NR) Q: NR A: NR C: NR

Not relevant (NR) Q: NR A: NR C: NR

Not relevant. this pressure is considered applicable to mobile species, e.g. fish and marine mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal of spores. But spore dispersal is not considered under the pressure definition and benchmark.

Death or injury by	Not relevant (NR)	Not relevant (NR)	Not relevant (NR)
collision	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR

Not relevant. Collision from grounding vessels is addressed under abrasion above.

Visual disturbance	Not relevant (NR)	Not relevant (NR)	Not relevant (NR)
V ISUAI UISTUI DAIICE	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR

Not relevant

Biological Pressures

	Resistance	Resilience	Sensitivity
Genetic modification & translocation of	Not relevant (NR)	Not relevant (NR)	No evidence (NEv)
indigenous species	Q: NR A: NR C: NR	Q: NR A: NR C: NR	Q: NR A: NR C: NR

No evidence regarding the genetic modification or effects of translocation of native populations was found.

Introduction or spread o invasive non-indigenous		Very Low	High
species	Q: High A: High C: High	Q: High A: High C: High	Q: High A: High C: High

Undaria pinnatifida has received a large amount of research attention as a major Invasive Non-Indigenous Species (INIS) which could out-compete native UK kelp habitats (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012, Brodie *et al.*, 2014; Heiser *et al.*, 2014). *Undaria pinnatifida* was first recorded in Plymouth Sound, UK in 2003 (NBN, 2015) subsequent surveys in 2011 have reported that Undaria pinnatifida is widespread throughout Plymouth Sound, colonizing rocky reef habitats. Where Undaria pinnatifida is present there was a significant decrease in the abundance of other Laminaria species, including Laminaria hyperborea (Heiser *et al.*, 2014).

In New Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete *Undaria pinnatifida* and re-dominate the substratum. However, Thompson & Schiel (2012) suggested the fucoid recovery was partially due to an annual *Undaria pinnatifida* die back, which as noted by Heiser *et al.*, (2014) did not occur in Plymouth Sound, UK. It is unknown whether *Undaria pinnatifida* will out-compete native macro-algae in the UK. However, from 2003-2011 *Undaria pinnatifida* had spread throughout Plymouth Sound, UK, becoming a visually dominant species at some locations within summer months (Heiser *et al.*, 2014). While *Undaria pinnatifida* may replace *Laminaria hyperborea* in some locations within the UK, at the time of writing there is limited

evidence available to assess what ecological impacts this invasion may have on Laminaria hyperborea associated communities e.g. red seaweeds.

Undaria pinnatifida was successfully eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of 70 °C (see Wotton et al., 2004) however numerous other eradication attempts have failed, and as noted by Farrell & Fletcher (2006) once established Undaria pinadifida resists most attempts at long-term removal. The biotope is unlikely to fully recover until Undaria pinnatifida is fully removed from the habitat, which as stated above is unlikely to occur.

Sensitivity assessment. Resistance to the pressure is considered 'Low', and resilience 'Very Low'. The sensitivity of this biotope to the introduction of INIS is assessed as 'High'.

Introduction of microbial Medium High pathogens Q: Low A: NR C: NR

Q: Low A: NR C: NR

Low Q: Low A: Low C: Low

Galls on the blade of Laminaria hyperborea and spot disease are associated with the endophyte Streblonema sp. although the causal agent is unknown (bacteria, virus or endophyte). The resultant damage to the blade and stipe may increase losses in storms. The endophyte inhibits spore production and, therefore, recruitment and recoverability (Lein et al., 1991).

Sensitivity assessment. Resistance to the pressure is considered 'Medium', and resilience 'High'. The sensitivity of this biotope to the introduction of microbial pathogens is assessed as 'Low'.

Removal of target species

Q: High A: High C: High

Medium Q: High A: High C: High

Q: High A: High C: High

Christie et al. (1998) observed Laminaria hyperborea habitat regeneration following commercial Laminaria hyperborea trawling in south Norway. Within the study area, trawling removed all large canopy-forming adult Laminaria hyperborea. Within 2-3 years of harvesting, a new canopy had formed 1m off the seabed. The associated holdfast communities recovered in 6 years however the epiphytic stipe community did not fully recover within the same time period. Christie et al. (1998) suggested that kelp habitats were relatively resistant to direct disturbance of Laminaria hyperboreaa canopy.

Recurrent disturbance occurring at a smaller time scale than the recovery period of 2-6 years (stated above) could extend recovery time. Kain (1975) cleared sublittoral blocks of Laminaria hyperborea at different times of the year for several years. The first colonizers and succession community differed between blocks and at what time of year the blocks were cleared however within 2 years of clearance the blocks were dominated by Laminaria hyperborea. Lienaas & Christie (1996) also observed Laminaria hyperborea re-colonization of 'urchin barrens', following removal of urchins. The substratum was initially colonized by filamentous macroalgae and Saccharina latissima however after 2-4 years Laminaria hyperborea dominated the community.

Following disturbance or in areas were recurrent rapid disturbance occurs Laminaria hyperborea recruitment could also be affected by interspecific competitive interactions with Non-Indigenous Invasive Species or ephemeral algal species (Brodie et al., 2013; Smale et al., 2013), however, evidence for this is limited and thus not included in this assessment.

Sensitivity assessment. Resistance to the pressure is considered 'None', and resilience 'Medium'. The sensitivity of this biotope to damage to seabed surface features is assessed as 'Medium'.

Removal of non-target species

Q: High A: High C: High

Medium Q: High A: High C: High

Q: High A: High C: High

Incidental/accidental removal of Laminaria hyperborea from other fisheries or extraction processes are likely to cause similar effects to that of direct harvesting; as such the same evidence has been used for both pressure assessments.

Christie et al. (1998) observed Laminaria hyperborea habitat regeneration following commercial Laminaria hyperborea trawling in south Norway. Within the study area, trawling removed all large canopy-forming adult Laminaria hyperborea. Within 2-3 years of harvesting, a new canopy had formed 1m off the seabed. The associated holdfast communities recovered in 6 years however the epiphytic stipe community did not fully recover within the same time period. Christie et al., (1998) suggested that kelp habitats were relatively resistant to direct disturbance of Laminaria hyperborea canopy.

Recurrent disturbance occurring at a smaller time scale than the recovery period of 2-6 years (stated above) could extend recovery time. Kain (1975) cleared sublittoral blocks of Laminaria hyperborea at different times of the year for several years. The first colonizers and succession community differed between blocks and at what time of year the blocks were cleared however within 2 years of clearance the blocks were dominated by Laminaria hyperborea. Lienaas & Christie (1996) also observed Laminaria hyperborea re-colonization of 'urchin barrens', following removal of urchins. The substratum was initially colonized by filamentous macroalgae and Saccharina latissima however after 2-4 years Laminaria hyperborea dominated the community.

Following disturbance or in areas were recurrent rapid disturbance occurs Laminaria hyperborea recruitment could also be affected by interspecific competitive interactions with Non-Indigenous Invasive Species or ephemeral algal species (Brodie et al., 2013; Smale et al., 2013), however, evidence for this is limited and thus not included in this assessment.

Sensitivity assessment. Resistance to the pressure is considered 'Low', and resilience 'Medium'. The sensitivity of this biotope to damage to seabed surface features is assessed as 'Medium'.

Bibliography

Beszczynska-Möller, A., & Dye, S.R., 2013. ICES Report on Ocean Climate 2012. In ICES Cooperative Research Report, vol. 321 pp. 73.

Birkett, D.A., Maggs, C.A., Dring. M.J., Boaden. P.J.S. & Seed, R., 1998b. Infralittoral reef biotopes with kelp species (volume VII). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. *Scottish Association of Marine Science (UK Marine SACs Project)*. 174 pp

Brodie J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C. & Anderson, K.M., 2014. The future of the northeast Atlantic benthic flora in a high CO₂ world. *Ecology and Evolution*, **4** (13), 2787-2798.

Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In *Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters*, vol. 5. *Ocean Management*, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

Burrows, M.T., Smale, D., O'Connor, N., Rein, H.V. & Moore, P., 2014. Marine Strategy Framework Directive Indicators for UK Kelp Habitats Part 1: Developing proposals for potential indicators. *Joint Nature Conservation Comittee*, Peterborough. Report no. 525.

Christie, H., Fredriksen, S. & Rinde, E., 1998. Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. *Hydrobiologia*, **375/376**, 49-58.

Cole, S., Codling, I.D., Parr, W. & Zabel, T., 1999. Guidelines for managing water quality impacts within UK European Marine sites. *Natura 2000 report prepared for the UK Marine SACs Project*. 441 pp., Swindon: Water Research Council on behalf of EN, SNH, CCW, JNCC, SAMS and EHS. [UK Marine SACs Project.], http://www.ukmarinesac.org.uk/

Connell, S.D., 2003. The monopolization of understorey habitat by subtidal encrusting coralline algae: a test of the combined effects of canopy-mediated light and sedimentation. *Marine Biology*, **142** (6), 1065-1071.

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. ISBN 1 861 07561 8. In JNCC (2015), *The Marine Habitat Classification for Britain and Ireland Version* 15.03. [2019-07-24]. Joint Nature Conservation Committee, Peterborough. Available from https://mhc.jncc.gov.uk/

Devlin, M.J., Barry, J., Mills, D.K., Gowen, R.J., Foden, J., Sivyer, D. & Tett, P., 2008. Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. *Estuarine, Coastal and Shelf Science*, **79** (3), 429-439.

Dieck, T.I., 1992. North Pacific and North Atlantic digitate *Laminaria* species (Phaeophyta): hybridization experiments and temperature responses. *Phycologia*, **31**, 147-163.

Dieck, T.I., 1993. Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales: Phaeophyta) - ecological and biogeographical implications. *Marine Ecology Progress Series*, **100**, 253-264.

Eckman, J.E., Duggins, D.O., Sewell, A.T., 1989. Ecology of understory kelp environments. I. Effects of kelps on flow and particle transport near the bottom. *Journal of Experimental Marine Biology and Ecology*, **129**, 173-187.

Farell, P. & Fletcher, R., 2000. The biology and distribution of the kelp, *Undaria pinnatifida* (Harvey) Suringar, in the Solent. In *Solent Science* - A *Review* (ed. M. Collins and K. Ansell), pp. 311-314. Amsterdam: Elsevier Science B.V.

Farrell, P. & Fletcher, R., 2006. An investigation of dispersal of the introduced brown alga *Undaria pinnatifida* (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). *Journal of Experimental Marine Biology and Ecology*, **334** (2), 236-243.

Fletcher, R.L., 1996. The occurrence of 'green tides' - a review. In *Marine Benthic Vegetation. Recent changes and the Effects of Eutrophication* (ed. W. Schramm & P.H. Nienhuis). Berlin Heidelberg: Springer-Verlag. [Ecological Studies, vol. 123].

Fredriksen, S., Sjøtun, K., Lein, T.E. & Rueness, J., 1995. Spore dispersal in *Laminaria hyperborea* (Laminariales, Phaeophyceae). *Sarsia*, **80** (1), 47-53.

Frieder, C., Nam, S., Martz, T. & Levin, L., 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. *Biogeosciences*, **9** (10), 3917-3930.

Gorman. T., Bajjouk. J., Populis. M., Vasquez, A. & Ehrhold., 2012. Modeling kelp forest distribution and biomass along temperate rocky coastlines. *Marine Biology*, **160** (2), 209 - 325.

Grandy, N., 1984. The effects of oil and dispersants on subtidal red algae. Ph.D. Thesis. University of Liverpool.

Heiser, S., Hall-Spencer, J.M. & Hiscock, K., 2014. Assessing the extent of establishment of *Undaria pinnatifida* in Plymouth Sound Special Area of Conservation, UK. *Marine Biodiversity Records*, **7**, e93.

Hoare, R. & Hiscock, K., 1974. An ecological survey of the rocky coast adjacent to the effluent of a bromine extraction plant. *Estuarine and Coastal Marine Science*, **2** (4), 329-348.

Holt, T.J., Jones, D.R., Hawkins, S.J. & Hartnoll, R.G., 1995. The sensitivity of marine communities to man induced change - a scoping report. *Countryside Council for Wales, Bangor, Contract Science Report*, no. 65.

Hopkin, R. & Kain, J.M., 1978. The effects of some pollutants on the survival, growth and respiration of *Laminaria hyperborea*. *Estuarine and Coastal Marine Science*, **7**, 531-553.

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. (20/05/2015). Available from https://mhc.jncc.gov.uk/

Jones, C.G., Lawton, J.H. & Shackak, M., 1994. Organisms as ecosystem engineers. Oikos, 69, 373-386.

Jones, N.S. & Kain, J.M., 1967. Subtidal algal recolonisation following removal of *Echinus*. *Helgolander Wissenschaftliche Meeresuntersuchungen*, **15**, 460-466.

Kain, J.M., 1964. Aspects of the biology of Laminaria hyperborea III. Survival and growth of gametophytes. Journal of the Marine Biological Association of the United Kingdom, 44 (2), 415-433.

Kain, J.M., 1971a. Synopsis of biological data on Laminaria hyperborea. FAO Fisheries Synopsis, no. 87.

Kain, J.M., 1975a. Algal recolonization of some cleared subtidal areas. *Journal of Ecology*, **63**, 739-765.

Kain, J.M., 1979. A view of the genus Laminaria. Oceanography and Marine Biology: an Annual Review, 17, 101-161.

Kain, J.M., 1987. Photoperiod and temperature as triggers in the seasonality of *Delesseria sanguinea*. *Helgolander Meeresuntersuchungen*, **41**, 355-370.

Kain, J.M., & Norton, T.A., 1990. Marine Ecology. In *Biology of the Red Algae*, (ed. K.M. Cole & Sheath, R.G.). Cambridge: Cambridge University Press.

Karsten, U., 2007. Research note: salinity tolerance of Arctic kelps from Spitsbergen. Phycological Research, 55 (4), 257-262.

Kinne, O., 1977. International Helgoland Symposium "Ecosystem research": summary, conclusions and closing. *Helgoländer Wissenschaftliche Meeresuntersuchungen*, **30**(1-4), 709-727.

Kitching, J., 1941. Studies in sublittoral ecology III. *Laminaria* forest on the west coast of Scotland; a study of zonation in relation to wave action and illumination. *The Biological Bulletin*, **80** (3), 324-337

Kregting, L., Blight, A., Elsäßer, B. & Savidge, G., 2013. The influence of water motion on the growth rate of the kelp Laminaria hyperborea. Journal of Experimental Marine Biology and Ecology, **448**, 337-345.

Krumhansl, K.A., 2012. Detrital production in kelp beds. degree of Doctor of Philosophy, Department of Biology, Dalhousie University, Halifax, Nova Scotia.

Lang, C. & Mann, K., 1976. Changes in sea urchin populations after the destruction of kelp beds. *Marine Biology*, **36** (4), 321-326.

Lein, T.E, Sjotun, K. & Wakili, S., 1991. Mass - occurrence of a brown filamentous endophyte in the lamina of the kelp *Laminaria hyperborea* (Gunnerus) Foslie along the south western coast of Norway *Sarsia*, **76**, 187-193.

Leinaas, H.P. & Christie, H., 1996. Effects of removing sea urchins (*Strongylocentrotus droebachiensis*): stability of the barren state and succession of kelp forest recovery in the east Atlantic. *Oecologia*, **105**(4), 524-536.

 $\label{eq:linear} L"uning, K., 1990. \ Seaweeds: their environment, biogeography, and ecophysiology: John Wiley \& Sons.$

Miller III, H.L., Neale, P.J. & Dunton, K.H., 2009. Biological weighting functions for UV inhibiton of photosynthesis in the kelp *Laminaria hyperborea* (Phaeophyceae) 1. *Journal of Phycology*, **45** (3), 571-584.

Moore, P.G., 1985. Levels of heterogeneity and the amphipod fauna of kelp holdfasts. In *The Ecology of Rocky Coasts: essays presented to J.R. Lewis, D.Sc.* (ed. P.G. Moore & R. Seed), 274-289. London: Hodder & Stoughton Ltd.

NBN, 2015. National Biodiversity Network 2015(20/05/2015). https://data.nbn.org.uk/

Norderhaug, K., 2004. Use of red algae as hosts by kelp-associated amphipods. Marine Biology, 144 (2), 225-230.

Norderhaug, K.M. & Christie, H., 2011. Secondary production in a *Laminaria hyperborea* kelp forest and variation according to wave exposure. *Estuarine, Coastal and Shelf Science*, **95** (1), 135-144.

Norderhaug, K.M. & Christie, H.C., 2009. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. *Marine Biology Research*, **5** (6), 515-528.

Norderhaug, K.M., Christie, H. & Fredriksen, S., 2007. Is habitat size an important factor for faunal abundances on kelp (*Laminaria hyperborea*)? *Journal of Sea Research*, **58** (2), 120-124.

Norton, T.A., 1978. The factors influencing the distribution of *Saccorhiza polyschides* in the region of Lough Ine. *Journal of the Marine Biological Association of the United Kingdom*, **58**, 527-536.

O'Brien, P.J. & Dixon, P.S., 1976. Effects of oils and oil components on algae: a review. British Phycological Journal, 11, 115-142.

Pedersen, M.F., Nejrup, L.B., Fredriksen, S., Christie, H. & Norderhaug, K.M., 2012. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp *Laminaria hyperborea*. *Marine Ecology Progress Series*, **451**, 45-60.

Philippart, C.J., Anadón, R., Danovaro, R., Dippner, J.W., Drinkwater, K.F., Hawkins, S.J., Oguz, T., O'Sullivan, G. & Reid, P.C., 2011. Impacts of climate change on European marine ecosystems: observations, expectations and indicators. *Journal of Experimental Marine Biology and Ecology*, **400** (1), 52-69.

Rinde, E. & Sjøtun, K., 2005. Demographic variation in the kelp *Laminaria hyperborea* along a latitudinal gradient. *Marine Biology*, **146** (6), 1051-1062.

Rinde, E., Christie, H., Fredriksen, S. & Sivertsen, A., 1992. Ecological consequences of kelp trawling: Importance of the structure of the kelp forest for abundance of fauna in the kelp holdfasts, benthic fauna and epiphytes. *Norsk Institutt for Naturforskning. Oppdragsmelding*, (127), 1-37.

Rostron, D.M. & Bunker, F. St P.D., 1997. An assessment of sublittoral epibenthic communities and species following the Sea Empress oil spill. A report to the Countryside Council for Wales from Marine Seen & Sub-Sea Survey., Countryside Council for Wales,

Bangor, CCW Sea Empress Contact Science, no. 177.

Sheppard, C.R.C., Bellamy, D.J. & Sheppard, A.L.S., 1980. Study of the fauna inhabiting the holdfasts of *Laminaria hyperborea* (Gunn.) Fosl. along some environmental and geographical gradients. *Marine Environmental Research*, **4**, 25-51.

Sjøtun, K., Christie, H. & Helge Fosså, J., 2006. The combined effect of canopy shading and sea urchin grazing on recruitment in kelp forest (*Laminaria hyperborea*). *Marine Biology Research*, **2** (1), 24-32.

Sjøtun, K. & Fredriksen, S., 1995. Growth allocation in *Laminaria hyperborea* (Laminariales, Phaeophyceae) in relation to age and wave exposure. *Marine Ecology Progress Series*, **126**, 213-222.

Sjøtun, K., Fredriksen, S. & Rueness, J., 1998. Effect of canopy biomass and wave exposure on growth in *Laminaria hyperborea* (Laminariaceae: Phaeophyta). *European Journal of Phycology*, **33**, 337-343.

Smale, D.A., Burrows, M.T., Moore, P., O'Connor, N. & Hawkins, S.J., 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. *Ecology and evolution*, **3** (11), 4016-4038.

Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

Somerfield, P.J. & Warwick, R.M., 1999. Appraisal of environmental impact and recovery using *Laminaria* holdfast faunas. *Sea Empress*, *Environmental Evaluation Committee.*, *Countryside Council for Wales*, *Bangor*, *CCW Sea Empress Contract Science*, *Report* no. 321.

Staehr, P.A. & Wernberg, T., 2009. Physiological responses of *Ecklonia radiata* (Laminariales) to a latitudinal gradient in ocean temperature. *Journal of Phycology*, **45**, 91-99.

Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A. & Tegner, M.J., 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. *Environmental conservation*, **29** (04), 436-459.

Steneck, R.S., Vavrinec, J. & Leland, A.V., 2004. Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. *Ecosystems*, **7** (4), 323-332.

Thompson, G.A. & Schiel, D.R., 2012. Resistance and facilitation by native algal communities in the invasion success of *Undaria pinnatifida*. *Marine Ecology*, *Progress Series*, **468**, 95-105.

Walker, F. T., 1953. Distribution of Laminariaceae around Scotland. Journal du Conseil, 20 (2), 160-166.

Wotton, D.M., O'Brien, C., Stuart, M.D. & Fergus, D.J., 2004. Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Marine Pollution Bulletin, **49** (9), 844-849.