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Polyclinum aurantium and Flustra foliacea on sand-scoured tide-
swept moderately wave-exposed circalittoral rock
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Summary

 UK and Ireland classification

EUNIS 2008 A4.1341
Polyclinum aurantium and Flustra foliacea on sand-
scoured tide-swept moderately wave-exposed
circalittoral rock

JNCC 2015 CR.HCR.XFa.FluCoAs.Paur
Polyclinum aurantium and Flustra foliacea on sand-
scoured tide-swept moderately wave-exposed
circalittoral rock

JNCC 2004 CR.HCR.XFa.FluCoAs.Paur
Polyclinum aurantium and Flustra foliacea on sand-
scoured tide-swept moderately wave-exposed
circalittoral rock

1997 Biotope CR.MCR.As.StoPaur
Stolonica socialis and/or Polyclinum aurantium with
Flustra foliacea on slightly sand-scoured tide-swept
moderately exposed circalittoral rock

 Description
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This variant is typically found on the upper face of moderately exposed, moderately tide-swept,
circalittoral bedrock or boulders. Sand and silt are periodically re-suspended in the water column,
resulting in scour-tolerant species being characteristic of these areas. There is a dense covering of
the scour-resistant bryozoan Flustra foliacea attached to the bedrock plains and boulders. The
colonial ascidian Polyclinum aurantium commonly covers the rock surface at most locations within
this biotope - itself incorporating sand grains into its surface to give it the appearance of sandy
rock nodules. Other ascidians that may occur in this crust are the flat, encrusting
colonial Botrylloides leachi, Botryllus schlosseri and the colonial ascidian Clavelina lepadiformis,
although in varying quantities at each location. A short turf of other bryozoans such as Alcyonidium
diaphanum, Crisularia plumosa and Bugulina flabellata occur amongst the ascidians. Other species
found in this biotope are the sponges Cliona celata, Leucosolenia botryoides and Scypha ciliata, the
hydroids Tubularia indivisa, Nemertesia antennina, Halecium halecinum and the
anthozoans Alcyonium digitatum andUrticina felina. Echinoderms which may be present include the
starfish Asterias rubens, Crossaster papposus and the brittlestar Ophiothrix fragilis. Crustaceans such
as the crab Cancer pagurus, the hermit crab Pagurus bernhardus and the lobster Homarus
gammarus may be observed in crevices and under boulders. The palps of the
polychaete Polydora spp. may be observed whilst the nudibranch Janolus cristatus may be seen
preying on the hydroid/bryozoan turf. This variant is commonly found on the Northumberland
coast, Flamborough Head and the Lleyn Peninsula. (Information from Connor et al., 2004; JNCC,
2105).

 Depth range

-

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iPolyclinum+aurantium/i+and+iFlustra+foliacea/i+on+sand-scoured+tide-swept+moderately+wave-exposed+circalittoral+rock
http://scholar.google.co.uk/scholar?q=iPolyclinum+aurantium/i+and+iFlustra+foliacea/i+on+sand-scoured+tide-swept+moderately+wave-exposed+circalittoral+rock
http://www.google.co.uk/search?q=CR.HCR.XFa.FluCoAs.Paur
https://mhc.jncc.gov.uk/search/?q=CR.HCR.XFa.FluCoAs.Paur


Date: 2016-06-15
Polyclinum aurantium and Flustra foliacea on sand-scoured tide-swept moderately wave-exposed circalittoral rock -
Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/284 5

Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

These biotope occur on bedrock or boulders in moderately tide swept, moderately wave exposed
conditions and are characteristically dominated by dense beds of Flustra foliacea (although other
bryozoans may also be present).  The CR.HCR.XFa.FluCoAs biotope complex is also characterized
by the presence of colonial ascidians, including Clavelina lepadiformis and Polyclinum aurantium. 
CR.HCR.XFa.FluCoAs.Paur experiences greater suspended sediment levels and subsequent scour. 
Sand and silt are periodically re-suspended in the water column, resulting in scour-tolerant species
being characteristic of these areas. Together with a dense covering of the scour-resistant
bryozoan Flustra foliacea, the colonial ascidian Polyclinum aurantium commonly covers the rock
surface at most locations within this biotope.  CR.HCR.XFa.FluCoAs.X occurs on mixed substrata
(including boulders, cobbles and pebbles).   CR.HCR.XFa.FluCoAs.SmAs experiences lower wave
exposure and is more species rich, with greater presence of colonial ascidians (such as Clavelina
lepadiformis).  CR.HCR.XFa.FluHocu occurs in deeper water and has a more impoverished
appearance (especially the sponge component).

Therefore, the sensitivity of the biotope is based on Flustra foliacea, with Haliclona oculata and
colonial ascidians (including Clavelina lepadiformis and Polyclinum aurantium) considered where
appropriate.  Assessments for the colonial ascidians generally focus on the well-studied Clavelina
lepadiformis, given the lack of evidence for Polyclinum aurantium.

 Resilience and recovery rates of habitat

Bryozoans are sessile fauna forming colonies through asexual budding following settlement of
sexually produced larvae (Hayward & Ryland, 1995a). Larvae have a short pelagic lifetime of up to
about 12 hours (Ryland, 1976). Recruitment is dependent on the supply of suitable, stable, hard
substrata (Eggleston, 1972b; Ryland, 1976; Dyrynda, 1994)and the abundance of bryozoans is
positively correlated with supply of stable hard substrata and hence with current strength
(Eggleston, 1972b; Ryland, 1976).  Even in the presence of available substratum, Ryland (1976)
noted that significant recruitment in bryozoans only occurred in the proximity of breeding
colonies. 

Flustra foliacea is a coarse, foliaceous bryozoan that  tends to be found on stones and shells, reaches
10 – 20 cm in height (Porter, 2012), is common to all coasts in northwest Europe (Hayward &
Ryland, 1995a) and is found across all coasts in the British Isles (NBN, 2015).    Stebbing (1971a)
noted that Flustra foliacea on the Gower peninsular, South Wales had an annual growth season
between March and November, with a dormant winter period, when no growth occurred, leading
to a line forming across the fronds which can be used to age specimens.  In the first year of growth,
Flustra foliacea forms a flat encrustation on the substrata, from which erect growth begins in the
second year (Porter, 2012) and can regularly reach 6 years of age, although 12 year old specimens
were reported off the Gower Peninsula (Stebbing, 1971a; Ryland, 1976).  Fortunato et al. (2013)
compared numerous sets of growth data with their own observations and reported that colonies
grow faster during the first couple of years (about 1.05 cm/year), with growth subsequently
slowing.  Colonies appeared to be able to regenerate areas of the frond which had been removed
by grazing (Fortunato et al., 2013).  Stebbing (1971a) reported that growth rates were reasonably
consistent between samples, age classes and years. Stebbing (1971a) reported a mean increment
in frond height of 16.8 mm/yr, whereas Eggleston (1972b) reported that annual lines were usually
between 2-3cm apart in Isle of Man specimens, and Menon (1978) reported that Helgoland
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specimens reached an average of 21.2 mm in height at 2 years old and an average of 79.3 mm after
8 years. Silén (1981) reported that erect fronds grew in zooid number about 10-20 times that of
the encrusting base. Menon (1978) reported that growth rates varied in specimens over 5 years
old.

Silén (1981) reported that Flustra foliacea  could repair physical damage (a notch) to its fronds
within 5-10 days, and as long as the holdfast remained intact, Flustra foliacea would survive and
grow back.

Flustra foliacea colonies are perennial, and potentially highly fecund with increasing colony size
(Eggleston, 1972b) with ca 10,000 larvae released from a specimen of Flustra foliacea within 3 hrs
(Dalyell, cited in Hincks, 1880).   Once settled, new colonies of Flustra foliacea take at least 1 year to
develop erect growth and 1-2 years to reach maturity, depending on environmental conditions
(Tillin & Tyler Walters, 2014). Four years after sinking off Lundy, the M.V. Roberts was found to be
colonized by erect bryozoans and hydroids, including occasional Flustra foliacea.   Whilst Bryozoan
larvae are typically very short lived, limiting recruitment to the immediate area surrounding
breeding colonies, specimens experiencing strong water movement would improve dispersal
potential, and may explain reports of Flustra foliacea colonizing a the MV Roberts  (Hiscock, 1981;
Tyler-Walters & Ballerstedt, 2007).  

Fariñas-Franco et al. (2014) recorded the colonization of an artificial reef constructed of 16 tonnes
of king scallop shells (Pecten maximus) deployed in Strangford Loch in February 2010. The reef was
then seeded with translocated Modiolus modiolus in March 2010. Among other species, Flustra
foliacea had colonized the reef within 6 months of the reef construction. Flustra foliacea was also
recorded locally prior to construction of the reef, and therefore recruitment may have a local
source.

Clavelina lepadiformis is a colonial ascidian that grows up to a height of 2 cm with zooids joined at
the base by short stolons (Fish & Fish, 1992). Picton & Morrow (2004c) reported regression of
Atlantic colonies in winter with re-growth occurring in spring.  De Caralt et al. (2002) looked at the
differences in Clavelina lepadiformis between Mediterranean populations inside and outside of
harbours.  The inner harbour population underwent rapid growth, reproducing both asexually and
sexually throughout the year, resulting in a dense population that carpeted submersed surfaces,
with large abundance fluctuations from one month to the next, suggesting multiple generations
per year (De Caralt et al., 2002).  The outer population exhibited restricted growth but with less
fluctuation between observation times.

Clavelina lepadiformis undergoes stolonic asexual budding. At the end of the sexual breeding
season, towards the end of the summer, zooids disappear or are resorbed. Over winter the colony
survives as 'winter buds' from which new zooids develop in spring (Berrill, 1950; Fish & Fish, 1996).
In the winter months, when the zooids undergo de-differentiation, the resulting cylindrical bodies
of many species of  Clavelinidae  are often found on rocky shores (Millar, 1970).   Clavelina
lepadiformis is considered an INIS species in the north west Atlantic (Reinhardt et al., 2010). 
Clavelina lepadiformis grows from immature zooids to full size in two months (Riley, 2008).

Polyclinum aurantium colonies consist of irregular globular masses of zooids (10-15 mm thick by
20-50 mm across) irregularly arranged around common cloacal openings (Picton & Morrow,
2004b). Larvae are produced from May to October. The colony regresses into an overwintering
phase when it divides and reproduces asexually before beginning to feed again in the spring.

Koopmans & Wijffels (2008) reported that growth of Haliclona oculata in the Netherlands was
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seasonal, with the highest average specific growth rate measured in May.  The study noted that
growth rate correlated with temperature, algal biomass (measured as chlorophyll a), carbon and
nitrogen content in suspended particulate matter. Growth rate negatively correlated with salinity,
ammonium, nitrate, nitrite, and phosphate. No correlation was found with dissolved organic
carbon, suggesting that Haliclona oculata was more dependent on particulate organic carbon.

Koopmans & Wijffels (2008) monitored Haliclona oculata off the Dutch coast over a year.  Mass
mortality was recorded at the end of the summer (2006) with all sponges on and around the
monitoring platform perishing. The reason for this death is not known but could be related to the
relatively high temperature of the water. Summer 2006 was a warm summer with water
temperatures rising to 23°C (normally approximately 20°C. In other years Haliclona oculata
survived throughout the year (ANEMOON foundation data cited in Koopmans & Wijffels, 2008).

Haliclona oculata is a stalked to branching-erect sponge found in sheltered but fast-moving water
or on vertical rock faces in exposed conditions (Ackers et al., 1992).  It is found from the Arctic
(Ackers et al., 1992), to the Mediterranean (Mustapha et al., 2003).  Larvae (parenchymella) are
produced in summer and autumn (July to November) (Wapstra & Van Soest, 1987) and Haliclona
oculata can also reproduce asexually through  fragmentation, with primmorphs forming, have a
lifespan of 0.6 months (Sipkema et al., 2003).  The typical lifespan of Haliclona oculata is unknown,
however, populations in Fishers Island Sound were found to be reproductively active on an annual
basis (reproductive structures present from March to June) over a three-year sampling period
(Fell, 1974). Van Dolah et al. (1987) studied the effects on sponges and corals of one trawl event
over a low-relief hard bottom habitat off Georgia, US.  Haliclona oculta did not appear to be
significantly affected and 12 months after trawling the abundance of sponges had increased to
pre-trawl densities, or greater. 

Resilience assessment

Bryozoans tend to be fast growing fauna that are capable of self-regeneration.  Dispersal of the
larvae is limited and whist it is likely that Flustra foliacea would recover rapidly, within 2 years
(resilience of ‘High’), from most levels of damage, but if more than 75% of the bryozoan population
or habitat is removed (Resistance of ‘None’), recovery could take longer, due to the limited
dispersal potential of larvae, and a resilience of ‘Medium’ (2-10 years) is recorded in such cases. 
The colonial ascidians including Clavelina lepadiformis is more ephemeral, with some populations
having multiple generations per year (De Caralt et al., 2002).  When also taking into consideration
the classification of Clavelina lepadiformis as an INIS species in the north west Atlantic, recovery is
likely to be rapid and resilience is likely to be ‘High’.  Haliclona oculata has been shown to recover
rapidly from low mortality events (Van Dolah et al., 1987), however lifespan and recovery from
more significant mortality is unknown.  Resilience of ‘High’ should be recorded in the event of no or
low levels of mortality (resistance of ‘High’ or ‘Medium’).  A more cautious resilience assessment of
‘Medium’ should be recorded for lower levels of resistance (‘Low’ and ‘None’). 

Overall, resilience is assessed as ‘Medium’ (recovery within 2-10 years) for ‘None’ or ‘Low’
resistance and resilience is ‘High’ for resistance of ‘Medium’ or ‘High’.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Flustra foliacea is perennial (Stebbing, 1971a) and widespread throughout the British Isles (NBN,
2015).  It is distributed across north-west Europe (Fish& Fish, 1996).  Stebbing (1974) noted that
Flustra foliacea on the Gower peninsular, South Wales had an annual growth season between
March and November.  Polyclinum aurantium is distributed across the British Isles and from
Norway to the Mediterranean (Picton & Morrow, 2004b).

Reproduction of Clavelina lepadiformis is temperature dependant (Berrill, 1975; Millar, 1970).  A
change in temperature could affect time and duration of spawning, however, the distribution of
Clavelina lepadiformis extends to the north and south of the British Isles from Norway to the
Adriatic (Hayward & Ryland, 1996).

Sensitivity assessment

 

All characterizing species are not at their southerly limit in the British Isles.  Resistance is ‘High’,
resilience is ‘High’ and the biotope is ‘Not sensitive’ at the benchmark level.

 

Temperature decrease
(local)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Flustra foliacea is perennial (Stebbing, 1971a) and widespread throughout the British Isles (NBN,
2015).  It is distributed across north-west Europe (Fish& Fish, 1996). Stebbing (1974) noted that
Flustra foliacea on the Gower peninsular, South Wales had an annual growth season between
March and November, with a dormant winter period, when no growth occurred.  Growth resumed
in spring, leading to a line forming across the fronds which can be used to age specimens (Stebbing,
1971a).

Polyclinum aurantium regresses into an overwintering phase when it divides, reproducing asexually
before beginning to feed again in the spring and is distributed across the British Isles and from
Norway to the Mediterranean (Picton & Morrow, 2004).

Clavelina lepadiformis undergoes stolonic asexual budding. At the end of the sexual breeding
season, towards the end of the summer, zooids disappear or are resorbed. Over winter the colony
survives as 'winter buds' from which new zooids develop in spring (Berrill, 1950; Fish & Fish, 1996;
Picton, 1997). In the winter months, when the zooids undergo de-differentiation, the resulting
cylindrical bodies of many species of Clavelinidae are often found on rocky shores (Millar, 1970).
 During the severe winter of 1962-63, although no significant mortality of Clavelina
lepadiformis was noted, Crisp (1964) found that many compound ascidians were retarded in
renewal of the colony after 'winter budding', and some individuals may have been killed.

Sensitivity assessment

Flustra foliacea is not at its northerly limit in the British Isles and growth, which is halted in the
winter, resumes in spring (Stebbing, 1971a).  The characterizing species have mechanisms in place
to cope with cold conditions and no evidence of mortality due to low temperature in the British
Isles was found.  Sensitivity is therefore assessed as ‘High’, Resilience as ‘High’ and the biotope is
‘Not Sensitive’ at the benchmark level.
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Salinity increase (local) No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This biotope occurs in full salinity and an increase in salinity would result in hypersaline
conditions.  Soule & Soule (1979) cite Hastings (1927) who described the presence of five
bryozoans in the Suez Canal at salinities of up to 49‰.  No other evidence for bryozoans, including
Flustra foliacea, in hypersaline conditions was found.   Marin et al. (1998) describes the presence of
Dysidea fragilis in a hypersaline coastal lagoon (42-47 g/l) in La Mar Menor, Spain.  No other
evidence could be found for characterizing sponges.

Sensitivity assessment

CR.HCR.XFa.FluCoAs and associated biotopes occur in the circalittoral and are recorded at full
salinity. No evidence was found to assess the effects of hypersaline conditions on Flustra foliacea or
other characterizing species.

Salinity decrease (local) Low Medium Medium
Q: Medium A: Low C: Medium Q: Medium A: Medium C: Medium Q: Medium A: Low C: Medium

Ryland (1970) reported that, with a few exceptions, the Gymnolaemata were stenohaline and
restricted to full salinity (30-35 ppt), noting that reduced salinities resulted in an impoverished
bryozoan fauna. Flustra foliacea appears to be restricted to areas with full salinity (Tyler-Walters &
Ballerstedt, 2007; Budd, 2008). Dyrynda (1994) noted that Flustra foliacea and Alcyonidium
diaphanum were probably restricted to the vicinity of Poole Harbour entrance by their intolerance
to reduced salinity. No evidence for the presence of Haliclona oculata in lower salinity conditions
was found, and the species appears to be limited to open coasts and the outer reaches of estuaries
(Hayward & Ryland, 1995a). Clavelina lepadiformis can tolerate a relatively broad range of salinities
from 14 – 35 psu (Millar, 1971).

Sensitivity assessment. Although protected from extreme changes in salinity due to their subtidal
habitat, distribution suggests that hyposaline conditions would probably affect Flustra foliacea and
Haliclona oculata adversely.  Resistance is assessed as ‘Low’, resilience as ‘Medium’ and sensitivity
as ‘Medium’.

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: High A: Medium C: Medium Q: High A: High C: High Q: High A: Medium C: Medium

Water flow has been shown to be important for the development of bryozoan communities and
the provision of suitable hard substrata for colonization (Eggleston, 1972b; Ryland, 1976). In
addition, areas subject to high mass transport of water such as the Menai Strait and tidal rapids
generally support large numbers of bryozoan species (Moore, 1977a). Although, active suspension
feeders, their feeding currents are probably fairly localized and they are dependent on water flow
to bring adequate food supplies within reach (McKinney, 1986). A substantial decrease in water
flow will probably result in impaired growth due to a reduction in food availability, and an
increased risk of siltation (Tyler-Walters, 2005).

Okamura (1984) reported that an increase in water flow from slow flow (1-2 cm/s) to fast flow
(10-12 cm/s) reduced feeding efficiency in small colonies but not in large colonies of Bugula
stolonifera. 
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Flustra foliacea colonies are flexible, robust and reach high abundances in areas subject to strong
currents and tidal streams (Stebbing, 1971a; Eggleston, 1972b; Knight-Jones & Nelson-Smith,
1977; Hiscock, 1983, 1985b; Holme & Wilson, 1985). Dyrynda (1994) suggested that mature
fronded colonies do not occur on unstable substratum due to the drag caused by their fronds,
resulting in rafting of colonies on shells or the rolling of pebbles and cobbles and destruction of the
colony. Dyrynda (1994) reported that the distribution of Flustra foliacea in the current swept
entrance to Poole Harbour was restricted to circalittoral boulders, on which it dominated as nearly
mono-specific stands. While the pumping activity of the lophophores provide the greatest
proportion of the colonies food requirements (Hayward & Ryland, 1998), the current generated is
probably localized and the colonies are likely to be dependent on water currents for food supply. 
Flustra foliacea abundance is lower in weak currents (Stebbing, 1971a). A significant decrease in
water flow is likely to result in a decrease in the abundance of bryozoans.

Increased competition and sedimentation could also affect the community.  Riisgard et al. (1993)
discussed the low energy cost of filtration for sponges and concluded that passive current-induced
filtration may be insignificant for sponges. Pumping and filtering occurs in choanocyte cells that
generate water currents in sponges using flagella (De Vos et al., 1991). 

Clavelina lepadiformis thrives in areas where there is little water movement (Hiscock & Hoare,
1975; De Caralt et al., 2002). Naranjo et al. (1996) found that the species was dominant in a low
rate of water renewal, excess silting and high suspended solid concentrations. High water flow
rates may be detrimental to feeding ability and posture but are unlikely to cause detachment.

Sensitivity assessment

The CR.HCR.XFa.FluCoAs biotope complex occurs in a range of water flow conditions, from weak
(>1kn) to strong (3-6kn) (Connor et al., 2004).  Flustra foliacea has been reported in areas subject to
high water flow, with greater abundance in stronger water flow (Stebbing , 1971a).  Significant
decrease in water flow would likely result in a reduction in the abundance of Flustra foliacea.  But a
change in flow  benchmark level (0.1-0.2 m/s) are unlikely to result in mortality.  Resistance is
therefore assessed as ‘High’, resilience as ‘High’ and the biotope is ‘Not sensitive’ at the
benchmark level.

Emergence regime
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Water flow has been shown to be important for the development of bryozoan communities and
the provision of suitable hard substrata for colonization (Eggleston, 1972b; Ryland, 1976). In
addition, areas subject to high mass transport of water such as the Menai Strait and tidal rapids
generally support large numbers of bryozoan species (Moore, 1977a). Although, active suspension
feeders, their feeding currents are probably fairly localized and they are dependent on water flow
to bring adequate food supplies within reach (McKinney, 1986). A substantial decrease in water
flow will probably result in impaired growth due to a reduction in food availability, and an
increased risk of siltation (Tyler-Walters, 2005).

Okamura (1984) reported that an increase in water flow from slow flow (1-2cm/s) to fast flow
(10-12cm/s) reduced feeding efficiency in small colonies but not in large colonies of Bugula
stolonifera. 

Flustra foliacea colonies are flexible, robust and reach high abundances in areas subject to strong
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currents and tidal streams (Stebbing, 1971a; Eggleston, 1972b; Knight-Jones & Nelson-Smith,
1977; Hiscock, 1983, 1985; Holme & Wilson, 1985). Dyrynda (1994) suggested that mature
fronded colonies do not occur on unstable substratum due to the drag caused by their fronds,
resulting in rafting of colonies on shells or the rolling of pebbles and cobbles, resulting in
destruction of the colony. Dyrynda (1994) reported that the distribution of Flustra foliacea in the
current swept entrance to Poole Harbour was restricted to circalittoral boulders, on which it
dominated as nearly mono-specific stands. While, the pumping activity of the lophophores provide
the greatest proportion of the colonies food requirements (Hayward & Ryland, 1998), the current
generated is probably localized and the colonies are likely to be dependent on water currents for
food supply.  A significant decrease in water flow is likely to result in a decrease in the abundance
of bryozoans.

Flustra foliacea abundance is lower in weak currents (Stebbing, 1971a). While the pumping activity
of the lophophores provide the greatest proportion of the colonies food requirements (Hayward &
Ryland, 1998), the current generated is probably very localized and the colonies are dependent on
water currents to carry food particles to them.  Increased competition and sedimentation could
also affect the community.  Riisgard et al. (1993) discussed the low energy cost of filtration for
sponges and concluded that passive current-induced filtration may be insignificant for sponges.
Pumping and filtering occurs in choanocyte cells that generate water currents in sponges using
flagella (De Vos et al., 1991). 

Clavelina lepadiformis thrives in areas where there is little water movement (Hiscock & Hoare,
1975; De Caralt et al., 2002). Naranjo et al. (1996) found that the species was dominant in a low
rate of water renewal, excess silting and high suspended solid concentrations. High water flow
rates may be detrimental to feeding ability and posture but are unlikely to cause detachment.

 

Sensitivity assessment

The CR.HCR.XFa.FluCoAs biotope complex occurs in a range of water flow conditions, from weak
(>1kn) to strong (3-6kn) (Connor et al., 2004).  Flustra foliacea has been reported in areas subject to
high water flow, with greater abundance in stronger water flow (Stebbing , 1971a).  Significant
decrease in water flow would likely result in a reduction in the abundance of Flustra foliacea, but
changes at the benchmark level are unlikely to result in mortality.  Resistance is therefore assessed
as ‘High’, resilience as ‘High’ and the biotope is ‘Not sensitive’ at the benchmark level.

Wave exposure changes
(local)

High High Not sensitive
Q: Medium A: Medium C: Medium Q: High A: High C: High Q: Medium A: Medium C: Medium

Flustra foliacea occurs from very wave exposed to sheltered waters, although probably limited to
deeper waters in very wave exposed conditions (Tyler-Walters & Ballerstedt, 2007). The
oscillatory water flow generated by wave action may be more damaging than constant strong
currents, e.g. strong wave action may generate an oscillatory flow of 2 m/s at 20 m (Hiscock, 1983,
1985). Dead colonies of Flustra foliacea are commonly found washed up, having been removed from
its substratum by storms (Hayward & Ryland, 1995a). Whilst the biotope is circalittoral, a severe
increase in wave exposure (e.g. storms) could affect bryozoans colonies.

Roberts et al. (2006) studied deep sponge reef communities (18-20 m) in sheltered and exposed
locations in Australia. They reported greater diversity and cover (>40% cover) of sponges in wave-
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sheltered areas compared with a sparser and more temporal cover in exposed sites (25% cover). 
Erect sponges dominated the sheltered sites, while encrusting sponges dominated in exposed
locations (Roberts et al., 2006).  Erect or massive sponge forms possess a relatively small basal area
relative to volume and do poorly in high energy environments (Wulff, 1995; Bell & Barnes, 2000). 
Haliclona oculata is found in biotopes up to moderately exposed (Connor et al., 2004)

Clavelina lepadiformis is tolerant of a wide range of exposure, but is most abundant in moderately
exposed sites (Picton, 1997).

Sensitivity assessment:

The CR.HCR.XFa.FluCoAs biotope complex is exposed or moderately exposed to wave action
(Connor et al., 2004).  Whilst there is evidence that storm damage has significantly affected Flustra
foliacea populations (Cocito et al., 1998b), changes in wave action at the benchmark level (a 3-5%
change in significant wave height) are unlikely to be significant.  Resistance is therefore recorded
as ‘High’, with resilience as ‘High’ and the biotope is ‘Not sensitive’ at the benchmark level.

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Bryozoans are common members of the fouling community, and amongst those organisms most
resistant to antifouling measures, such as copper containing anti-fouling paints (Soule & Soule,
1979; Holt et al., 1995). Bryan & Gibbs (1991) reported that there was little evidence regarding
TBT toxicity in bryozoa with the exception of the encrusting Schizoporella errata, which suffered
50% mortality when exposed for 63 days to 100ng/l TBT. Rees et al. (2001) reported that the
abundance of epifauna (including bryozoans) had increased in the Crouch estuary in the 5 years
since TBT was banned from use on small vessels. This last report suggests that bryozoans may be
at least inhibited by the presence of TBT. Bryozoans were shown to bioaccumulate heavy metals to
a certain extent (Holt et al., 1995). For example, Bowerbankia gracialis and Nolella pusilla
accumulated Cd, exhibiting sublethal effects (reduced sexual reproduction and inhibited resting
spore formation) between 10-100 µg Cd /l and fatality above 500 µg Cd/l (Kayser, 1990).

De Caralt et al. (2002) reported that Clavelina lepadiformis accumulated copper, lead and vanadium
(vanadium is used in ascidian metabolism). A harbour population contained significantly more
copper and lead than an open littoral population despite its abundance being an order of
magnitude higher in the harbour (De Caralt et al., 2002). Neither reproduction nor growth were
affected in this harbour population compared with a population outside of the harbour.

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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CR.HCR.XFa.FluCoAs is a sub-tidal biotope complex (Connor et al., 2004). Oil pollution is mainly a
surface phenomenon its impact upon circalittoral turf communities is likely to be limited. However,
as in the case of the Prestige oil spill off the coast of France, high swell and winds can cause oil
pollutants to mix with the seawater and potentially negatively affect sub-littoral habitats (Castège
et al., 2014).

Filter feeders are highly sensitive to oil pollution, particularly those inhabiting the tidal zones
which experience high exposure and show correspondingly high mortality, as are bottom dwelling
organisms in areas where oil components are deposited by sedimentation (Zahn et al., 1981). There
is little information on the effects of hydrocarbons on bryozoans. Ryland & De Putron (1998) did
not detect adverse effects of oil contamination on the bryozoan Alcyonidium spp. in Milford Haven
or St. Catherine's Island, south Pembrokeshire although it did alter the breeding period. Banks &
Brown (2002) found that exposure to crude oil significantly impacted recruitment in the bryozoan
Membranipora savartii.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Bryozoans are common members of the fouling community, and amongst those organisms most
resistant to antifouling measures, such as copper containing anti-fouling paints (Soule & Soule,
1979; Holt et al., 1995). Bryan & Gibbs (1991) reported that there was little evidence regarding
TBT toxicity in bryozoa with the exception of the encrusting Schizoporella errata, which suffered
50% mortality when exposed for 63 days to 100ng/l TBT. Rees et al. (2001) reported that the
abundance of epifauna (including bryozoans) had increased in the Crouch estuary in the 5 years
since TBT was banned from use on small vessels. This last report suggests that bryozoans may be
at least inhibited by the presence of TBT. Hoare & Hiscock (1974) suggested that polyzoa
(bryozoa) were amongst the most intolerant species to acidified halogenated effluents in Amlwch
Bay, Anglesey and reported that Flustra foliacea did not occur within 165m of the effluent source.

Radionuclide
contamination

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation Medium High Low
Q: Medium A: Low C: Low Q: Medium A: Medium C: Medium Q: Medium A: Low C: Low

In general, respiration in most marine invertebrates does not appear to be significantly affected
until extremely low concentrations are reached. For many benthic invertebrates this
concentration is about 2 ml/l (ca 2.66 mg/l) (Herreid, 1980; Rosenberg et al., 1991; Diaz &
Rosenberg, 1995). Cole et al. (1999) suggest possible adverse effects on marine species below 4
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mg/l and probable adverse effects below 2 mg/l.

Little information on the effects of oxygenation on bryozoans was found. Sagasti et al. (2000)
reported that epifaunal communities, including dominant species such as bryozoans
(Membranipora tenuis and Conopeum tenuissimum), were unaffected by periods of moderate hypoxia
(ca 0.35 -1.4 ml/l) and short periods of anoxia (<0.35 ml/l) in the York River, Chesapeake Bay,
although bryozoans were more abundant in the area with generally higher oxygen. However,
estuarine species are likely to be better adapted to periodic changes in oxygenation.    An anoxic
event in the northern Adriatic (1989–1990) exterminated the Pentapora fascialis population
(McKinney & Jaklin, 2000; Hayward and McKinney, 2002). Colonies of Pentapora fascialis
established after that anoxic event exceeded 15 cm in diameter by the summer of 1998 (Hayward
& McKinney, 2002).

Demosponges maintained under laboratory conditions can tolerate hypoxic conditions for brief
periods. Gunda & Janapala (2009) investigated the effects of variable DO levels on the survival of
the marine sponge, Haliclona pigmentifera. Under hypoxic conditions (1.5-2.0 ppm DO), Haliclona
pigmentifera with intact ectodermal layers and subtle oscula survived for 42 ± 3 days.  Sponges with
prominent oscula, foreign material, and damaged pinacoderm exhibited poor survival (of 1-9 days)
under similar conditions. Complete mortality of the sponges occurred within 2 days under anoxic
conditions (<0.3 ppm DO).  Stefaniak et al. (2014) reported that the sponge population at Stratford
Shoal persisted despite multiple hypoxic events, however, the length and magnitude of these
events was uncertain.  Hiscock & Hoare (1975) reported an oxycline forming in the summer
months (Jun-Sep) in a quarry lake (Abereiddy, Pembrokeshire) from close to full oxygen saturation
at the surface to <5% saturation below ca 10 m.  No sponges or ascidians were recorded at depths
below 10 - 11 m.

Sensitivity assessment

There is evidence that bryozoans and sponges may tolerate short periods of hypoxia, although
moderate to long-term events or anoxia is likely to cause significant mortality.  Resistance at the
benchmark level is likely to be ‘Medium’, resilience is ‘High’ and sensitivity is ‘Low’.

Nutrient enrichment Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Hartikainen et al. (2009) reported that increased nutrient concentrations resulted in freshwater
bryozoans achieving higher biomass.  O’Dea & Okamura (2000) found that annual growth of
Flustra foliacea in western Europe has substantially increased since 1970.  They suggested that this
could be due to eutrophication in coastal regions due to organic pollution, leading to increased
phytoplankton biomass (see Allen et al., 1998). Rose & Risk, 1985 described increase in abundance
of Cliona delitrix in organically polluted section of Grand Cayman fringing reef affected by  the 
discharge of untreated  faecal  sewage.  Ward-Paige et al. (2005) described greatest size and
biomass of Clionids corresponding with highest nitrogen and ammonia and δ15N levels. Gochfeld et
al. (2012) studied the effect of nutrient enrichment (≤0.05 to 0.07 μM for nitrate and ≤0.5 μM for
phosphate)  as a potential stressor in Aplysina caulifornis and its bacterial symbionts and found that
nutrient enrichment had no effects on sponge or symbiont physiology when compared to control
conditions. This study does contradict with findings in Gochfeld et al. (2007) in which Aplysina spp.
sponges were virtually absent from a site of anthropogenic stress in Bocas del Toro, Panama,
which experienced high rainfall and terrestrial runoff.  The author suggested that whilst this site
did include elevated nutrient concentrations, other pressures and stresses could be contributing.
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Koopmans & Wijffels (2008) reported that concentrations of nitrate, nitrite, ammonium and
phosphate correlated negatively with growth rate of Haliclona oculata. 

Clavelina lepadiformis was found to dominate Spanish harbours and nearby zones with highly
transformed substrata, low rate of water renewal and excess silting and suspended matter and was
described as biofouling and opportunist (Naranjo et al., 1996).

Nevertheless, this biotope is considered to be 'Not sensitive' at the pressure benchmark, that
assumes compliance with good status as defined by the WFD.

Organic enrichment High High Not sensitive
Q: Medium A: Medium C: Medium Q: High A: High C: High Q: Medium A: Medium C: Medium

O’Dea & Okamura (2000) found that annual growth of Flustra foliacea in western Europe has
substantially increased since 1970.  They suggested that this could be due to eutrophication in
coastal regions due to organic pollution, leading to increased phytoplankton biomass (see Allen et
al., 1998).  

Koopmans & Wijffels (2008) found no correlation between growth rate of Halilcona oculata and
dissolved organic carbon, suggesting that Haliclona oculata is more dependent on particulate
organic carbon.  Rose & Risk (1985) described an increase in abundance of the sponge Cliona
delitrix in an organically polluted section of Grand Cayman fringing reef affected by the discharge
of untreated faecal sewage.  De Goeij et al. (2008) used 13C to trace the fate of dissolved organic
matter in the coral reef sponge Halisarca caerulea.  Biomarkers revealed that the sponge
incorporated dissolved organic matter through both bacteria mediated and direct pathways,
suggesting that it feeds, directly and indirectly, on dissolved organic matter.  Koopmans & Wiffjels
(2008) reported that there was no correlation of Haliclona oculata growth rate and dissolved
organic carbon concentration, suggesting that Haliclona oculata is more dependent on particulate
organic carbon.

Clavelina lepadiformis was found to dominate Spanish harbours and nearby zones with highly
transformed substrata, low rate of water renewal, excess silting and suspended matter.  The
species was described as biofouling and opportunist (Naranjo et al., 1996).

Sensitivity assessment

Therefore, the important characteristic species could probably resist organic enrichment at the
benchmark level. Resistance to this pressure is assessed as 'High', but with Low confidence, and
resilience as 'High'. This biotope is therefore considered to be 'Not sensitive'. 

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very low’).
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’. Although no

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

If rock were replaced with sediment, this would represent a fundamental change to the physical
character of the biotope and the species would be unlikely to recover. The biotope would be lost.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very low’.
Sensitivity has been assessed as ‘High’.

Physical change (to
another sediment type)

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

‘Not relevant’ to biotopes occurring on bedrock.

Habitat structure
changes - removal of
substratum (extraction)

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The species characterizing this biotope are epifauna or epiflora occurring on rock and would be
sensitive to the removal of the habitat. However, extraction of rock substratum is considered
unlikely and this pressure is considered to be ‘Not relevant’ to hard substratum habitats.

Abrasion/disturbance of
the surface of the
substratum or seabed

Medium High Low

Q: Medium A: Low C: Medium Q: High A: Medium C: Medium Q: Medium A: Low C: Medium

Flustra foliacea is tolerant of sediment abrasion (Stebbing, 1971a; Knight-Jones & Nelson-Smith,
1977), but physical disturbance by fishing gear has been shown to adversely affect emergent
epifaunal communities with bryozoan matrices reported to be greatly reduced in fished areas
(Jennings & Kaiser, 1998).  Heavy mobile gears could also result in movement of boulders
(Bullimore, 1985; Jennings & Kaiser, 1998).  Although Flustra foliacea is flexible, physical
disturbance by a passing scallop dredge is likely to damage fronds and remove some colonies.
Colonies on hard substrata are probably less vulnerable to fishing activity but would probably be
damaged or partially removed. Colonies of Flustra foliacea are capable of regenerating areas of the
frond which have been removed by grazing, which can result in new branches (Stebbing, 1971a). 
Silén (1981) reported that Flustra foliacea could repair physical damage (a notch) to its fronds
within 5-10 days, and regenerated at ca 4-5 zooid lengths per month.  As long as the holdfast
remains intact, Flustra foliacea would survive and grow back.

Haliclona oculata is a branching erect sponge which is soft and elastic near the branch tips,
becoming firmer near the base (Ackers et al., 1992).  Van Dolah et al. (1987) studied the effects on
sponges and corals of one trawl event over a low-relief hard bottom habitat off Georgia, US.  The
densities of individuals taller than 10 cm of three species of sponges in the trawl path and in
adjacent control area were assessed by divers, and were compared before, immediately after and
12 months after trawling.  Of the total number of sponges remaining in in the trawled area, 32%
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were damaged.  Most of the affected sponges were the barrel sponges Cliona spp., whereas
Haliclona oculta (and Ircina campana) were not significantly affected.  Twelve months after trawling,
the abundance of sponges had increased to pre-trawl densities, or greater.  Freese (2001) studied
deep cold-water sponges in Alaska a year after a trawl event and found that 46.8% of sponges
exhibited damage and 32.1% were torn loose.  None of the damaged sponges displayed signs of
regrowth or recovery.  This was in stark contrast to early work by Freese et al. (1999) on warm
shallow sponge communities.  Impacts of trawling activity in Alaska study being much more
persistent due to the slower growth/regeneration rates of deep, cold-water sponges.  Boulcott &
Howell (2011) conducted experimental Newhaven scallop dredging over a circalittoral rock
habitat in the sound of Jura, Scotland and recorded the damage to the resident community. The
results indicated that epifaunal species, including the sponge Pachymatisma johnstoni, were highly
damaged by the experimental trawl. 

Clavelina lepadiformis is permanently attached to the substratum and is unable to move out of the
way from abrasive objects. The body of the species is soft and delicate, so abrasion is likely to
cause physical damage and possibly death.

Sensitivity assessment

Whilst disturbance would damage the sessile Flustra foliacea, the flexibility and ability to
regenerate damaged fronds (as long as the holdfast is undamaged) would result in a significant
proportion of the colonies to survive disturbance.  Therefore, resistance is assessed as ‘Medium’,
resilience is ‘High’ and sensitivity as ‘Low’.

Penetration or
disturbance of the
substratum subsurface

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The species characterizing this biotope group are epifauna or epiflora occurring on rock which is
resistant to subsurface penetration.  The assessment for abrasion at the surface only is therefore
considered to equally represent sensitivity to this pressure. This pressure is thought ‘Not relevant’
to hard rock biotopes.

Changes in suspended
solids (water clarity)

High High Not sensitive
Q: Medium A: Medium C: Medium Q: High A: High C: High Q: Medium A: Medium C: Medium

Bryozoans are suspension feeders that may be adversely affected by increases in suspended
sediment, due to clogging of their feeding apparatus.  However, Tyler-Walters & Ballerstedt (2007)
reported Flustra foliacea as tolerant to suspended sediment based on its occurrence in areas of high
suspended sediment e.g. abundant in turbid, fast flowing waters of the Menai Straits (Moore
1977). Communities dominated by Flustra foliacea were described on tide swept seabed, exposed
to high levels of suspended sediment and sediment scour in the English Channel subject to
sediment transport (mainly sand) and periodic, temporary, submergence by thin layers of sand (ca
<5 cm) (Holme & Wilson 1985). Flustra foliacea is also characteristic of sediment-scoured, silty rock
communities CR.HCR.XFa.FluCoAs and CR.MCR.EcCr.UrtScr (Connor et al., 2004). 

Despite sediment being generally considered to have a negative impact on suspension feeders
(Gerrodette & Flechsig 1979), many encrusting sponges appear to be able survive in highly
sedimented conditions, and many species prefer such habitats (Bell & Barnes 2001; Bell & Smith
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2004).  Storr (1976) observed the sponge Sphecispongia vesparium back washing to eject sediment
and noted that other sponges (such as Condrilla nucula) use secretions to remove settled material. 
Raspailia ramosa and Stelligera stuposa have a reduced maximum size in areas of high sedimentation
(Bell et al, 2002).  Tjensvoll et al. (2013) found that Geodia barretti physiologically shuts down when
exposed to sediment concentrations of 100 mg /l (86% reduction).  Rapid recovery to initial
respiration levels directly after the exposure indicated that Geodia barretti can cope with a single
short exposure to elevated sediment concentrations.  Schönberg (2015) reviewed and observed
the interactions between sediments and marine sponges and described the lack of research on
Porifera, with most studies grouping them together when looking at sediment effects.  Her findings
were that, whilst many sponges are disadvantaged by sedimentation, many examples exist of
sponges adapting to sediment presence, including through sediment incorporation, sediment
encrusting, soft sediment anchoring using spicules and living, at least partially, embedded within
the sediment.  Schönberg (2015) found that Polymastiida interacted with sediment in 18.9% of
observations (primarily through spicules), Clionaida had a highly variable interaction with
sediment, with 5.7±11.4 %, Tethyida interacted in 13.1±21.1%. However no Haliclonids were
considered as part of the study.   De Kluijver & Leewis (1994) monitored the marine species before
and two years after construction of a storm barrier in the Oosterschelde Estuary.  The barrier
resulted in lower tidal flow, higher sedimentation and increased Haliclona oculata abundance.

Increased siltation can cause clogging of ascidians respiratory organs (Bakus, 1968). Clavelina
lepadiformis has relatively wide apertures that help prevent clogging from particles (Naranjo et al.,
1996). The simplistic structure of its branchial sac (Fiala-Medioni, 1978) may be less efficient in
expelling particles, and more likely to suffer from clogging of feeding apparatus than other forms
of sea squirts, such as Ciona intestinalis.  Clavelina lepadiformis was found to dominate Spanish
harbours and nearby zones with low rate of water renewal, excess silting and suspended matter
and the species was described as biofouling and opportunist (Naranjo et al., 1996).

Sensitivity assessment

Sediment scour within CR.HCR.XFa.FluCoAs and associated biotopes is an important factor in the
dominance of the scour tolerant Flustra foliacea (Connor et al., 2004).  Whilst an increase is unlikely
to have an effect, a reduction in suspended sediment could reduce scour and allow other species to
colonize the biotope.  On return to the original sediment levels, it is probable that Flustra foliacea
would again dominate the biotope.

Resistance is assessed as ‘High’, resilience as ‘High’ and the biotope is ‘Not Sensitive’ at the
benchmark level.

Smothering and siltation
rate changes (light)

Medium High Low
Q: Low A: NR C: NR Q: Medium A: Medium C: Medium Q: Low A: Low C: Low

Smothering by 5 cm of sediment is likely to prevent feeding, and hence growth and reproduction,
as well as respiration in the bryozoans. In addition, associated sediment abrasion may remove the
bryozoan colonies. A layer of sediment will probably also interfere with larval settlement (Tyler-
Walters, 2005).  Communities dominated by Flustra foliacea were described on tide swept seabed,
exposed to high levels of suspended sediment and sediment scour in the English Channel subject
to sediment transport (mainly sand) and periodic, temporary, submergence by thin layers of sand
(ca <5 cm) (Holme & Wilson 1985). 

Despite sediment being generally considered to have a negative impact on suspension feeders
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(Gerrodette & Flechsig 1979), many encrusting sponges appear to be able to survive in highly
sedimented conditions, and in fact many species prefer such habitats (Bell & Barnes 2001; Bell &
Smith 2004).  However, Wulff (2006) described mortality in three sponge groups following four
weeks of burial under sediment.  16% of Amphimedon biomass died compared with 40% and 47% in
Iotrochota and Aplysina respectively.  The complete disappearance of the sea squirt Ascidiella aspera
and associated sponges in the Black Sea near the Kerch Strait was attributed to siltation
(Terent'ev, 2008 cited in Tillin & Tyler-Walters, 2014).  Some sponges are likely to be buried in 5cm
of sediment deposition.  Haliclona oculata grows to ca 30 cm in height (Hayward & Ryland, 1995a)
and smothering by 5 cm depth of sediment would bury only the smallest individuals.

Clavelina lepadiformis reaches up to 2 cm in height and often colonizes vertical surfaces and
overhangs (Fish & Fish, 1992). Smothering by 5 cm depth of sediment would completely cover the
majority of the population, with only those colonizing overhangs and vertical surfaces protected.

Sensitivity assessment

A deposit of 5 cm of fine sediment could smother and damage many of the smaller individulas of
the faunal community. For example, Flustra foliacea is probably resistant while Clavelina
lepadiformis is probably not resistant. However, in the high energy environment that the biotope
occurs, deposited sediment would probably be removed quickly.  Therefore, resistance is
‘Medium’, resilience is ‘High’ and the sensitivity is ‘Low’.

Smothering and siltation
rate changes (heavy)

Low Medium Medium
Q: Low A: NR C: NR Q: Medium A: Medium C: Medium Q: Low A: Low C: Low

Smothering by 30 cm of sediment is likely to prevent feeding, hence growth and reproduction, as
well as respiration in the bryozoans. In addition, associated sediment abrasion may remove the
bryozoan colonies. Sediment will probably also interfere with larval settlement (Tyler-Walters,
2005).

Holme & Wilson (1985) examined the bottom fauna in a tide-swept region of the central English
Channel. Flustra foliacea dominated communities were reported to form in areas subject to
sediment transport (mainly sand) and periodic, temporary, submergence by thin layers of sand (ca
<5 cm). If inundated by 30cm of sediment respiration and larval settlement are likely to be blocked
until the deposited sediment is removed.  Haliclona oculata grows to ca 300 mm in height (Hayward
& Ryland, 1995a) and smothering by 30 cm of sediment would cover the majority of the
population.

Clavelina lepadiformis reaches up to 20 mm in height and often colonizes vertical surfaces and
overhangs (Fish & Fish, 1992). Smothering by 30 cm of sediment would completely cover the
majority of the population, with only those colonizing overhangs and vertical surfaces protected.

Sensitivity assessment

A deposit of 30 cm of fine sediment would smother and damage the majority of the faunal
community.  In the high energy environment that the biotope occurs, deposited sediment would
probably be removed fairly quickly.

Resistance is therefore assessed as ‘Low’, resilience as ‘Medium’ and sensitivity as ‘Medium’. 
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Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not assessed.

Electromagnetic changes No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Underwater noise
changes

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Stanley et al. (2014) studied the effects of vessel noise on fouling communities and found that the
bryozoans Bugula neritina, Watersipora arcuate and Watersipora subtorquata responded positively. 
More than twice as many bryozoans settled and established on surfaces with vessel noise (128 dB
in the 30–10,000 Hz range) compared to those in silent conditions.  Growth was also significantly
higher in bryozoans exposed to noise, with 20% higher growth rate in encrusting and 35% higher
growth rate in branching species. No evidence could be found for the effects of noise on sponges
but they are unlikely to be sensitive.

Sensitivity assessment. Resistance to this pressure is assessed as 'High' and resilience as 'High'.
This biotope is therefore considered to be 'Not sensitive' at the benchmark level.

Introduction of light or
shading

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Flustra foliacea larvae are positively phototactic on release, swimming for only short periods
(Hayward & Ryland, 1998) however, at the depths Flustra foliacea can occur, light may not be
important.

Jones et al. (2012) compiled a report on the monitoring of sponges around Skomer Island and
found that many sponges, particularly encrusting species, were more abundant on vertical or
shaded bedrock to open, light surfaces, probably due to reduced competition with algae.

Sensitivity assessment

The biotope occurs in the ciraclittoral and, whilst increase in light could result in competition with
algae, it is unlikely that an increase at the benchmark level would be significant.   Resistance to this
pressure is assessed as 'High' and resilience as 'High'. This biotope is therefore considered to be
'Not sensitive' at the benchmark level. 

Barrier to species
movement

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Barriers and changes in tidal excursion are 'Not relevant' to biotopes restricted to open waters.
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Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to seabed habitats.  NB. Collision by grounding vessels is addressed under ‘surface
abrasion’.

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

No evidence (NEv) Not relevant (NR) No evidence (NEv)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

There is currently ‘No evidence’ on which to assess this pressure.

Introduction or spread of
invasive non-indigenous
species

No evidence (NEv) Not relevant (NR) No evidence (NEv)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This biotope is classified as circalittoral and therefore no algal species have been considered. 
Didemnum vexillum is an invasive colonial sea squirt native to Asia which was first recorded in the
UK in Darthaven Marina, Dartmouth in 2005. Didemnum vexillum can form extensive mats over the
substrata it colonizes, binding boulders, cobbles and altering the host habitat (Griffith et al., 2009).
Didemnum vexillum can also grow over and smother the resident biological community. Recent
surveys within Holyhead Marina, North Wales have found Didemnum vexillum growing on and
smothering native tunicate communities, including Ciona intestinalis (Griffith et al., 2009). Due to
the rapid-re-colonization of Didemnum vexillum eradication attempts have to date failed. 

Presently Didemnum vexillum is isolated to several sheltered locations in the UK (NBN, 2015),
however Didemnum vexillum successfully colonized offshore in Georges Bank, USA (Lengyel et al.,
2009), which is more exposed than the locations that Didemnum vexillum has colonized in the UK. It
is therefore possible that Didemnum vexillum could pose a threat to these biotopes.

A number of invasive bryozoans are of concern including Schizoporella japonica (Ryland et al., 2014)
and Tricellaria inopinata (Dyrynda et al., 2000; Cook et al., 2013).  Tricellaria inopinata has been
reported to colonize the byssal threads of the mussel Mytilus galloprovincialis, Hymeniacidon perleve
and the ascidian Styela plicata (Dyrynda et al., 2000). Tricellaria inopinata dominated the fouling
community in the Lagoon of Venice, within 7 years of being introduced (Ambrogi, 2000).

There is ‘No evidence’ at present that this biotope has been affected by INIS species.  Due to the
constant risk of new invasive species, the literature for this pressure should be revisited.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Introduction of microbial
pathogens

Medium Medium Medium
Q: Low A: NR C: NR Q: Medium A: Medium C: Medium Q: Low A: Low C: Low

Pukall et al. (2001) studied the microbial community associated with Flustra foliacea and reported
colonization of surfaces by bacteria typical of the marine environment and which may have been
transferred into this environment from terrestrial sites.  No information on diseases was found.
Stebbing (1971a) reported that encrusting epizoites reduced the growth rate of Flustra foliacea by
ca 50%.  The bryozoan Bugula flabellata produces stolons that grow in and through the zooids of
Flustra foliacea, causing "irreversible degeneration of the enclosed polypide" (Stebbing, 1971b).

Gochfeld et al. (2012) found that diseased sponges hosted significantly different bacterial
assemblages compared to healthy sponges, with diseased sponges also exhibiting significant
decline in sponge mass and protein content.  Sponge disease epidemics can have serious long-term
effects on sponge populations, especially in long-lived, slow-growing species (Webster, 2007).
 Numerous sponge populations have been brought to the brink of extinction including cases in the
Caribbean with 70-95% disappearance of sponge specimens (Galstoff, 1942) and the
Mediterranean (Vacelet,1994; Gaino et al.,1992).  Decaying patches and white bacterial film were
reported in Haliclona oculata and Halichondria panicea in North Wales, 1988-89 (Webster, 2007). 
Specimens of Cliona spp. exhibited blackened damage since 2013 in Skomer. Preliminary results
have shown that clean, fouled and blackened Cliona all have very different bacterial communities.
The blackened Cliona were effectively dead and had a bacterial community similar to marine
sediments. The fouled Cliona had a very distinct bacterial community that may suggest a specific
pathogen caused the effect (Burton, pers comm; Preston & Burton, 2015). 

There appears to be little research into ascidian diseases particularly in the Atlantic.  The parasite
Lankesteria ascidiae targets the digestive tubes and can cause ‘long faeces syndrome’ in Ciona
intestinalis (although it has also been recorded in other species).  Mortality occurs in severely
affected individuals within about a week following first symptoms. (Mita et al., 2012). Ooishi (2010)
reported the copepod Enterocola hessei parasitizing Clavelina lepadiformis, however no evidence for
microbial infection was found.

Sensitivity assessment

Current research on disease indicates that Flustra foliacea and some sponges are susceptible to
disease, although the extent and long term implications are still being researched.  There is no
evidence to suggest mortality of sponges in the British Isles, although mass mortality and even
extinction have been reported further afield.  Resistance has been assessed as ‘Medium' with a
resilience of ‘Medium’ and sensitivity is therefore ‘Medium’.

Removal of target
species

None Medium Medium
Q: Low A: NR C: NR Q: Medium A: Medium C: Medium Q: Low A: Low C: Low

Flustra foliacea is not presently known to be subject to extraction. However, many bryozoans have
been recently found to contain pharmacologically active substances (Hayward & Ryland, 1998;
Lysek et al., 2002; Peters et al., 2003). Spongia officinalis (a Mediterranean species) has been
targeted as a commercial species for use as bath sponges, although this species does not occur in
the British Isles and no record of commercial exploitation of sponges in the British Isles could be
found.  Many different bioactive compounds have been found in the Haliclona order, such as
lectins, peptides, ketosteroids, and sterol esters (Pajic et al. 2002; Aoki et al. 2003; Santalova et al.
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2003; Koopmans & Wijffels, 2008), and it is possible that these sponges may be subject to future
harvesting.

Sensitivity assessment

Whilst not presently harvested, it is possible that Flustra foliacea and Haliclonids may be subject to
harvesting in the future.  Flustra foliacea and the sponges are sessile epifauna and would therefore
have no defence against targeted extraction. Therefore a precautionary resistance of ‘None’ is
suggested with Low confidence. Resilience is ‘Medium’ and overall sensitivity is therefore
‘Medium’.

Removal of non-target
species

Medium High Low
Q: Low A: NR C: NR Q: Medium A: Medium C: Medium Q: Low A: Low C: Low

The characteristic species probably compete for space within the biotope, so that loss of one
species would probably have little if any effect on the other members of the community. However,
removal of the characteristic epifauna due to by -catch is likely to remove a proportion of the
biotope and change the biological character of the biotope.

Whilst disturbance would damage the sessile Flustra foliacea, the flexibility and ability to
regenerate damaged fronds (as long as the holdfast is undamaged) would result in survival of a
significant proportion of the colonies. Resistance is therefore ‘Medium’, resilience is ‘High’ and
sensitivity is ‘Low’.
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