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  23 



Abstract 24 

Microplastics (MPs) are environmental contaminants that are of increasing global concern. This 25 

study investigated presence of MPs in four varieties of marine derived commercial fish meal, 26 

followed by identification of their polymer composition using Fourier-Transform Infrared 27 

(FTIR) spectroscopy. Exposure experiments were conducted on cultured common carp 28 

(Cyprinus carpio) by feeding four varieties of commercially available fish meal to determine 29 

relationships between abundance and properties of MPs found both in meal and those transferred 30 

to cultured common carp. Mean particle sizes were 452±161 μm (±SD). Fragments were the 31 

predominant shape of MP found in fish meal (67%) and C. carpio gastrointestinal tract and gills 32 

(65%), and polypropylene and polystyrene were the most present plastic polymers found in fish 33 

meal (45% and 24%, respectively) and C. carpio (37% and 33%, respectively). Positive 34 

relationships were found between MP levels in fish meal and C. carpio. This study highlights 35 

that marine derived fish meal may be a source of MPs which can be transferred to cultured fish, 36 

thus posing a concern for aquaculture.  37 

 38 

Keywords: Microplastics (MPs); Fish meal; Common carp (Cyprinus carpio); Gastrointestinal 39 

tract; Fourier Transform Infrared (FTIR) spectroscopy; Accumulation. 40 

  41 



1. Introduction 42 

Microplastics (MPs; defined as plastics <5 mm) have been recognized as a serious global 43 

environmental problem (Andrady 2011; Cole et al. 2011; Karbalaei et al. 2018; Schnurr et al. 44 

2018; Xanthos and Walker 2017).  MPs originate from breakdown of macroplastics (>5 mm) 45 

composed of synthetic polymers, known as secondary MPs or are industrially manufactured and 46 

used in many applications such as personal care products, also known as primary MPs (Andrady 47 

2017; Auta et al. 2017). The origin of a polymer can use as a criterion to differentiate between 48 

natural and artificial (man-made, synthetic) polymers. Natural polymers (e.g., proteins, cellulose) 49 

are not considered as plastics while synthetic polymers commonly are. Modified natural 50 

polymers, for instance, rayon (an organic cellulose-based polymer) represent a special case. 51 

Synthetic additives have been added to the products of rayon. Therefore, rayon was classified as 52 

MPs (Hartmann et al. 2019). 53 

MPs have been found in fish (Abbasi et al. 2018), birds (Provencher et al. 2018b; Trevail et al. 54 

2015), freshwater aquatic ecosystems (Brennholt et al. 2018), sediments (Akhbarizadeh et al. 55 

2017; Bergmann et al. 2017), and even in Arctic and Antarctic sea ice (Obbard et al. 2014). 56 

Adverse effects of MPs on organisms have been reported in their feeding activity, function, 57 

nutritional composition, behaviour and fecundity through investigating laboratory test organisms 58 

(Cole et al. 2015; Yin et al. 2018). Yin et al. (2018) found that polystyrene (PS) MPs reduced 59 

feeding activity, swimming and exploration ability, energy reserve, growth and nutritional 60 

quality of marine jacopever (Sebastes schlegelii) while shoaling behaviour increased. MPs have 61 

also been shown to be toxic in aquatic organisms, particularly when associated with persistent 62 

organic pollutants (Karami 2017). A recent study showed that low density polyethylene (LDPE) 63 

significantly increases toxic effects of polychlorinated biphenyl (PCB), brominated flame 64 



retardants (BFRs), perfluorinated compounds (PFCs), and methylmercury in zebrafish (Danio 65 

rerio) (Rainieri et al. 2018). MPs were also reported in popular products consumed by humans, 66 

including processed seafood products such as canned sardines and sprats (Karami et al. 2018), 67 

commercial salts (Karami et al. 2017a), drinking water (Kosuth et al. 2017), and fresh seafoods 68 

such as bivalves (Abbasi et al. 2018; Li et al. 2015). Thus, humans are potentially at risk due to 69 

consumption of these products. Rochman et al. (2015) found plastic debris in 55% of all sampled 70 

fish and shellfish directly sold for human consumption in Indonesia. 71 

 72 

Millions of tonnes of fish meal are produced from raw marine derived fish, by-products of fish or 73 

seafood-processing industries for use as fertilizer and animal feed, especially for livestock, 74 

poultry, cultured fish and shrimps due to high-quality protein, essential amino acids and fatty 75 

acids (Macan et al. 2006). Approximately, 6-7 million tonnes of fish meal are produced globally 76 

annually (Rustad et al. 2011). In 2010, 73% of global fish meal production were used by the 77 

aquaculture industry (World Bank 2013). Most commercial fish meal is made from small pelagic 78 

oily fish such as blue whiting (Micromesistius poutassou), Peruvian anchovy (Engraulis 79 

ringens), and lesser sand eel (Ammodytes tobianus) (Salin et al. 2018). Studies have reported 80 

presence of MPs in fish tissues (Abbasi et al. 2018; Baalkhuyur et al. 2018; Rochman et al. 81 

2015). For example, analysis of A. tobianus showed that 44.4% contained MPs in digestive tracts 82 

(Welden et al. 2018). In another study by Lusher et al. (2013), over 50% of M. poutassou and red 83 

gurnard (Aspitrigla cuculus) contained MPs in gastrointestinal tracts. Therefore, use of 84 

gastrointestinal tracts in fish meal production offers a potential pathway for contamination of fish 85 

meal by MPs.  86 

 87 



This study investigated MP loads in four varieties of commercially available fish meal. All 88 

isolated particles were sampled based on their similar morphology and density to MPs. Fourier-89 

Transform Infrared (FTIR) spectroscopy was used to identify polymer MP compositions. 90 

Relationships between abundance and properties of MPs in fish meal and cultured fish were 91 

assessed by feeding Common carp (Cyprinus carpio) with different varieties of fish meal. C. 92 

carpio were selected because they are a globally important aquaculture species (Haghi and 93 

Banaee 2017). 94 

 95 

2. Materials and methods 96 

A flow diagram of the experimental design is presented in Supplementary material, Appendix A. 97 

2.1. Materials and chemicals 98 

Fish meals were sourced from fish meal factories in Southern Iran, with the factories stating that 99 

fish meal was manufactured from salmon, sardine and kilka collected from the Persian Gulf and 100 

Caspian Sea. Chemical composition and fish species composition of fish meals are presented in 101 

Table 1. Sodium iodide (NaI) and potassium hydroxide (KOH) were purchased from Merck 102 

(Darmstadt, Germany). Ultrapure deionized water (purified by a Milli-Q Synergy UV system, 103 

Millipore, USA) was used for all solution preparations. Filter papers No. 540 and 541 (hardened 104 

ashless, pore size 8 μm and 22 μm, respectively) were purchased by Whatman and filter 105 

membranes (149 μm) were supplied from Spectrum Laboratories (USA). 106 

 107 

2.2. MP particles in fish meals 108 

2.2.1 Extraction of MPs from fish meals 109 



MPs were extracted from fish meals according to Karami et al. (2017b). To avoid contamination 110 

of samples, experiments were performed in a pre-cleaned (with deionized water and 70% 111 

ethanol) closed laminar flow cabinet. Fish meal (10 g of each brand, n=30) was transferred into a 112 

250 mL Schott Duran glass bottle, then 100 mL (1:10 w/v) of 10% KOH solution was added. 113 

Bottles were sealed with a premium cap and a pouring ring and incubated at 40°C for 72h. 114 

Digested samples clogged smaller pore size filter papers (8 and 22 μm) mainly due to presence 115 

of indigestible materials (i.e. tiny broken shells and bones) in fish meals. Therefore, all digestates 116 

were filtered through 149 µm filter papers using a vacuum system to extract particles larger >149 117 

µm. Filter papers of each sample was immersed into 10-15 mL of 4.4 M NaI at a concentration of 118 

1.5 g/mL and sonicated (50 Hz) by ultrasonic bath (Branson, 2510) for 5 min. Filters were 119 

removed and this process was repeated to ensure complete extraction of MPs. The solution was 120 

centrifuged at 500 × g for 2 min at room temperature, and supernatant containing MPs was 121 

filtered through No. 540, hardened ashless, pore size 8 μm, filter papers. To ensure complete 122 

isolation of plastic particles, this process was performed twice. Filters were stored in dry Petri 123 

dishes and airdried under laminar flow cabinet for visual identification of MPs. 124 

 125 

2.2.2. Visual observation of the MPs 126 

Filter papers were photographed using a Leica EZ4D Stereomicroscope (Leica, Germany). To 127 

measure particle sizes, digital images were examined using ImageJ software. A visual 128 

assessment was also used to identify suspected MPs according to their morphological 129 

characteristics such as colour, texture and shape (Karami et al. 2017a). Representative suspected 130 

particles that were visually identified as potential plastics were selected for corroboratory FTIR 131 

(Fourier Transform Infrared Spectroscopy) analysis. 132 



 133 

 134 

2.2.3. Microplastic verification using FTIR 135 

Suspected MPs were analyzed to identify polymer compositions of MPs using FTIR with a 136 

Vertex 70 spectrometer (Bruker) coupled with a Hyperion 2000 FTIR microscope (Bruker). 137 

Spectra were recorded as mean of 64 scans in the spectral wave range of 4000–600 cm
−1

 at a 138 

resolution of 4 cm
−1

. Each sample spectrum was compared with a database from Bruker to 139 

identify polymer type. Samples which produced spectra with a match less than 60% were 140 

automatically excluded. 141 

 142 

 143 

2.3 Laboratory uptake experiment 144 

Three days post-hatching larvae (C. carpio) with a mean individual weight of 0.89 ±0.10 mg was 145 

purchased from a local agricultural market in Karaj, Iran and acclimatized in a laboratory tank 146 

for 6 d. Water temperature, dissolved oxygen, and pH were 24°C, 6.9 ± 1.0 mg/L, and 7.4 ± 0.2, 147 

respectively. Photoperiod was 12-hour light/12-hour dark. Initially, larvae were fed ad libitum 148 

with newly hatched Artemia nauplii, 3-5 times d
-1

 for two weeks. Experiments were carried out 149 

in 124 L aquarium (n=15 aquarium) stocked with 10 fish (mean weight±SD: 592.31±57.3 mg, 150 

mean total length: 34.32±2.92 mm) per aquarium with three replicates per treatment (n=30 fish 151 

per treatment, total fish=150) (see Supplementary material, Appendix B). Aquariums equipped 152 

with an aerating filter system. Four types of fish meals with different protein content were used: 153 

salmon (72 % protein), two varieties of sardine (55% and 65% protein, respectively), and kilka 154 

(60% protein) fish meal.  155 



 156 

Each aquarium was provided with one type of fish meal. A control non-fish meal diet (soybean 157 

meal protein) was used. Soybean protein is the most available and economical plant protein 158 

source with relatively high digestible protein content and good amino acid composition (NRC 159 

2011). Soybean meal were also analyzed for microplastic extraction according to Karami et al. 160 

(2017b).  Fish meals were prepared under laminar flow cabinet by mixing with distilled water to 161 

form a dough. The prepared dough was passed through a hand pelletiser to make 2mm Pellets 162 

(Pradhan et al. 2019). Then, fish were fed at a rate of 5-10% of body weight three times d
-1

 for 4 163 

weeks. To avoid contamination, any uneaten food was removed after 1 h. A half of aquarium 164 

water was siphoned daily and replaced with UV-treated and aerated water from a storage tank. 165 

During the experimental period, the average ±SD water temperature, dissolved oxygen, pH and 166 

salinity were 25.5 ±1.1°C, 6.3 ±0.71 mg/L, 7.8 ±0.1, and <1, respectively. After 4 weeks, six 167 

individual fish (mean weight±SD: 55.21±9.10 g, mean total length: 14.10±2.18 cm; n=18) from 168 

each treatment were randomly euthanized by an overdose of Tricaine Methanesulfonate (MS222; 169 

Sigma, USA) washed twice with dechlorinated water, covered with foil and stored at -20˚C until 170 

MP extraction. MPs were extracted from gastrointestinal tracts (with digestive contents) and gills 171 

based on Karami et al. (2017b). Under laminar flow cabinet, gastrointestinal tracts and gills were 172 

placed separately into a 250 mL DURAN ® glass bottle sealed with a premium cap and pouring 173 

ring, and then KOH solution was added (1:10 w/v). Solutions were then incubated at 40°C for 72 174 

h. Digestates were then filtered through 149 µm filter membrane using a vacuum pump. To 175 

separate potential plastic particles from other digestion resistant materials, the 149 µm filter 176 

membrane was soaked in 10-15 mL NaI solution (4.4 M, 1.5 g/mL) and sonicated at 50 Hz for 5 177 

min., and eventually centrifuged at 500 × g for 2 min. Supernatant of the mixture containing 178 



plastic particles were filtered through another filter membrane with 8 µm pore size. Polymer 179 

compositions of MPs were identified by FTIR spectroscopy. 180 

 181 

2.4 Quality control 182 

To preclude potential contamination, glass bottles and instruments were washed using 183 

dishwashing liquid and tap water, then rinsed with deionized water and ethanol, and then dried in 184 

an oven at 50ºC for 5 h. All the solutions including deionized water (100 mL), 70% ethanol (10 185 

mL), 10% KOH (100 mL), and 4.4 M NaI (10-15 mL) were filtered prior to use through a GF/D 186 

filter paper (pore size 2.7 μm). Cotton lab coats and gloves were worn during the experiment to 187 

reduce airborne contamination of clothing. Aquariums were covered with a glass plate to prevent 188 

airborne contamination into water. Fish body surfaces were rinsed twice with ultrapure deionized 189 

water and ethanol to remove any potential particle contamination. In the laboratory, procedural 190 

blanks were run to account for potential contamination, including 10% KOH extraction and NaI 191 

density separation. 192 

 193 

2.5 Data analysis 194 

Statistical analysis was conducted using SPSS software version 23 (SPSS, Inc., Chicago, IL, 195 

USA). Figures were generated using Microsoft Excel 2013, the Shapiro–Wilk test was performed 196 

to analyze the normality of data. Differences of MPs between four varieties of fish meals and 197 

treatments was determined by one-way analysis of variance (ANOVA). Concentrations of each 198 

polymer composition were compared among fish meals and treatments using a one-way ANOVA 199 

followed by Tukey's honestly significant difference (HSD) test to determine significant 200 

differences (p < 0.05). Pearson's coefficient was chosen with a significance level of 0.05. 201 



 202 

 203 

3. Results 204 

3.1 Identification of MPs in fish meals with FTIR 205 

MPs were successfully extracted and identified from all types of fish meal. Sample 206 

contamination was prevented during MP extraction of fish meals and laboratory accumulation 207 

experiment, and no MPs were found in procedural blanks. A total of 226 MPs was isolated from 208 

four types of fish meal. Mean particle sizes were 452±161 μm (±SD). Smallest and largest 209 

particles were 158 μm and 810 μm, respectively (Fig. 1). Fragments were the most predominant 210 

morphology of MPs (67%) followed by films (19%), pellet (8%), and fiber (6%) (Fig. 2a). The 211 

most abundant plastic polymers in fish meals were PP (45%) followed by PS (24%), 212 

polyethylene (PE, 19%), polyethylene terephthalate (PET, 8%), and rayon (4%) (Fig. 2b). Fig. 3 213 

are some of the captured images of extracted MP particles.  214 

One-way ANOVA results showed statistically significant (p<0.05) differences in the number of 215 

extracted MPs among different types of fish meal. Salmon/sardine (65% protein) and sardine 216 

(55% protein) fish meals have significantly higher MPs (Tukey HSD, p˂0.05) compared to kilka 217 

fish meal. However, no significant difference was found in the number of isolated MPs between 218 

salmon/ sardine (65% protein) and sardine (55% protein) fish meals (Fig. 4a). In each type of 219 

fish meal, the mean number of extracted MP polymers were comparable in PET, PE, PS, and 220 

rayon, except salmon fish meal which significant differences were observed in PE and rayon 221 

(Fig. 4b). As such, significant difference was found between PP and Rayon in fish meal types 222 

separately (Fig. 4b). 223 



 224 

 225 

3.2 MP accumulation in C. carpio 226 

Soybean meal and the control groups aquariums (fish fed by soybean meal) was free of MPs 227 

contamination. Accumulation of MPs was observed in all C. carpio fed by different types of fish 228 

meal. A total of 57 MPs were extracted from gastrointestinal tracts and gills of C. carpio fed by 229 

all fish meal types [salmon (72 % protein), two varieties of sardine (55% and 65% protein, 230 

respectively), and kilka (60% protein)]. Gastrointestinal tracts contained the highest level of MPs 231 

(72%) compared to gills (28%). Similar to morphology of MPs in fish meals, fragments were 232 

also the most predominant morphology of MPs (65%), followed by films (25%), pellet (7%), and 233 

fiber (3%) (Fig. 2c). The most abundant plastic polymers in fish were PP (37%) followed by PS 234 

(33%), PET (13%), PE (12%), and rayon (5%) (Fig. 2d). One-way ANOVA results showed 235 

significant differences between salmon (72 % protein), sardine (65% protein), and sardine (55% 236 

protein) compared to the control group (Fig. 4c). The mean number of some plastic polymers 237 

were significantly different in all fish meal types except Kilka (Fig. 4d). A positive linear 238 

correlation was observed between the concentration of MPs in different types of fish meals and 239 

accumulation of MPs in fish (p<0.05). However, the abundance of MPs in fish meal were much 240 

higher than MPs abundance found in fish (Fig. 5).  241 

 242 

4. Discussion 243 



Fish meal is obtained through cooking, pressing, drying and milling of whole fish or its by-244 

product (Miles and Chapman 2006). Temperatures >90°C have been reported to reduce 245 

nutritional value of fish meal (FAO 1986), but cooking at 95–100°C for ~15–20 min. is 246 

commonly used to rapidly heat raw material. The purpose of the pressing section is to removed 247 

liquids from cooked materials to improve the quality of the fish meal. Furthermore, in the drying 248 

process, fish meal temperatures should not exceed 90°C in order not to impair nutritional value. 249 

Although it has been shown that high temperatures can impact integrity of plastic polymers and 250 

thus, might impede identification (Karami et al. 2017b), the lowest melting points among 251 

common LDPE plastic polymers are 110°C. Melting points in other common plastic polymers 252 

including PP, PS, PE, PET were 160, 240, 115-135, and 260°C, respectively. Therefore, it seems 253 

unlikely for MPs to change significantly their structure as a result of heat exposure during fish 254 

meal production (i.e. 95–100°C). It is possible that during fish meal processing, MPs might have 255 

been destroyed, contaminated or altered (e.g. morphological changes or fragmentation owing to 256 

grinding and heating). In the milling section, fish meals pass through a mesh screen ranging from 257 

10 to over 100 mesh. Hence, nanoplastics (˂100 nm) may also found in fish meals. Previous 258 

studies showed that nanoplastic particles are found in the aquatic environment (da Costa et al. 259 

2016; Mattsson et al. 2018). As such the adverse effects of these nanoparticles on the molecular 260 

and biochemical biomarkers were observed on marine fish (Dicentrarchus labrax) (Brandts et al. 261 

2018a) and mussel (Mytilus galloprovincialis) (Brandts et al. 2018b). Further studies are required 262 

to investigate the presence of nanoplastics in commercial fish meals.  263 

 264 

Previous studies were employed a KOH solution to extract MPs from aquatic (Besseling et al. 265 

2015; Foekema et al. 2013; Karami et al. 2017b; Rochman et al. 2015). According to results of 266 



this study, fish meals were fully digested in 10% KOH solution at 40 °C and digestion-resistant 267 

materials were successfully separated with NaI. Therefore, using KOH (10% w/v), filtration 268 

through 149 µm pore sized filter membrane, coupled with NaI solution suggests that most 269 

anthropogenic particles (˃150 μm) in fish meal samples were efficiently extracted. 270 

 271 

In the present study, the relatively high levels of MPs in different varieties of fish meal can be 272 

explained by the widespread presence of MPs in aquatic environments, and their ingestion by 273 

pelagic and demersal fish (Baalkhuyur et al. 2018; Lusher et al. 2013; Rummel et al. 2016). MPs 274 

of different shapes such as fragment, film, pellet and fiber were observed in fish meals. Fragment 275 

particles were the most abundant shape (67%) followed by film (19%), pellet (8%), and fiber 276 

(6%). Fragment values in this study were consistent with Phuong et al. (2016) who reported that 277 

MPs resembling filaments or fibers were mostly observed in lower trophic organisms (i.e. from 278 

zooplankton to Thaliacea) and fragments were mostly observed in higher trophic organisms (i.e. 279 

from fish to mammals).  280 

Similarly, in a study by  Digka et al. (2018) commercial  mussels (M. galloprovincialis) and  fish 281 

species (Sardina pilchardus, Pagellus erythrinus, Mullus barbatus) from waters in the Northern 282 

Ionian Sea (Mediterranean Sea), the majority of MPs were fragments both in mussels (77.8%  283 

fragments and 22.2% fibers) and fish (80% fragments and 20% fibers for S. pilchardus, 73.3% 284 

fragments and 26.7% fibers for P. erythrinus and 83.3% fragments and 17.7% fibers for M.  285 

barbatus). Another study conducted by Karami et al. (2017c), the presence of MPs was 286 

investigated in excised organs and eviscerated flesh of four commonly consumed dried fish 287 

species in Malaysia, and results showed the dominant type of anthropogenic particles (including 288 



plastic polymers, pigment particles, and non-plastic items) were fragments (85.7%), films 289 

(10.0%), and filaments (4.08%). According to a study by Akhbarizadeh et al. (2017) 290 

investigating the presence and location of MPs in commercially-important fish species from the 291 

Persian Gulf, a total of 828 MPs (filamentous fragments) were detected in gastrointestinal tracts, 292 

skin, muscle, gills and liver of demersal and pelagic fish (Akhbarizadeh et al. 2017).  293 

 294 

PP, PS, and PE were the most common recovered plastic polymers in fish meals, which is 295 

consistent with their high-volume of production and widespread pollution in terrestrial and 296 

marine environments (Andrady and Neal 2009; Duis and Coors 2016). Recently, a study on the 297 

presence of MPs in the contents of the gastrointestinal tract of 26 commercial and non-298 

commercial fish species in Saudi Arabian coast found PP (42%) and PE (42%) as the most 299 

abundant polymers in fish. Baalkhuyur et al. (2018) found MPs in the digestive tracts of 64 300 

Japanese anchovy (Engraulis japonicus) which mostly were PE (52.0%) or PP (43.3%) plastic 301 

polymer (Tanaka and Takada 2016). Low-density MPs such as PP (0.90–0.91 g. cm
3
) and PE 302 

(0.91–0.96 g. cm
3
) are predominantly floating within the sea-surface microlayer. Over time, 303 

biofouling causes MPs to become less negatively buoyant leading to a more homogeneous 304 

distribution throughout the water column (Karami et al. 2017c; Muthukumar et al. 2011).  305 

 306 

In this study, the dominant fish species used in production of fish meals were sardine, salmon, 307 

and common Kilka. Sardines and salmon inhabit both in coastal and open ocean waters 308 

(Chandrappa et al. 2011; Whitehead 1985). Persistent plastic pollution has been widely 309 

documented both in coastal and open oceans where degradation and weathering produces plastic 310 



fragments and MPs (Chae et al. 2015; Moore et al. 2011; Pettipas et al. 2016; Walker et al. 311 

2006). Presence of MPs was observed in 20 varieties of canned sardines originating from 13 312 

countries (Karami et al. 2018). Also, MP fibers and fragments were found in sardines (Sardina 313 

pilchardus) in the English Channel (Lusher et al., 2013). Three species of kilka (Clupeonella 314 

spp.) live in the Caspian Sea (Mamedov 2006) where industrial and municipal wastewaters and 315 

garbage are commonly discharged (Korshenko and Gul 2005). Disposal of municipal 316 

wastewaters contaminated with microfibers from washing of synthetic clothing has been reported 317 

as a major source of MPs to aquatic environments (McIlwraith et al. 2019; Ziajahromi et al. 318 

2017), leading to accumulation of MPs in aquatic biota (including fish) (Provencher et al. 319 

2018a). In a study by Naji et al. (2017) it was reported that PE, PET, and nylon were the most 320 

abundant polymer types along the beaches in the Persian Gulf. In Caspian Sea also, PS found as 321 

the most common items because of Tourism and recreational activities which are responsible for 322 

more than 90% of litter production (Sarafraz et al. 2016). Thus, in this study different 323 

percentages of plastic polymers in fish meals may be due to the ingestion of MPs by fish (e.g. 324 

salmon, kilka, sardine) living in the Persian Gulf and Caspian Sea, then production of fish meals 325 

from fish by-products.  326 

 327 

Similar shape (fragment, film, pellet, and fibre) and polymer composition (PP, PS, PE, PET, and 328 

Rayon) of MPs in fish meals and excised organs and gills of C. carpio highlighted the uptake and 329 

ingestion of MPs in fish. In this study, the presence of MPs in fish gills despite the exposure of 330 

fish through food may because of ingestion of MPs via ventilation processes. That is the uptake 331 

of MPs into the gill chamber onto the gills by water movement and separated MPs from food 332 

pellets.  Ingestion of MPs by C. carpio were similar to results reported previously for presence of 333 



HDPE in the digestive system of blue mussel (Mytilus edulis) after 3 h of exposure (Von Moos et 334 

al. 2012).  335 

 336 

Kashiwada (2006) found nanoparticles in liver, blood, gallbladder, and kidney of the See-337 

through Medaka (Oryzias latipes) after 7 d of exposure to 10 mg. L
-1

 fluorescent particles, and 338 

suggested gills and gut epithelium as two translocation pathways. This study showed prevalence 339 

of smaller particles in fish meal samples, however, might be higher than the larger ones. Smaller 340 

sizes could help their translocation into other organs (e.g. liver) through two assumptions: (1) the 341 

agglomeration of smaller pieces, and/or (2) the gut lumen takes up directly these large particles 342 

by endocytosis, phagocytosis, or another mechanism, and allow particles to pass through the 343 

intestinal barrier (Collard et al. 2017), causing a higher level of toxicity. Several toxicological 344 

studies reported adverse effects of MPs on organisms (Anbumani and Kakkar 2018; Au et al. 345 

2015; Choi et al. 2018; Deng et al. 2017). For example, physiological (swimming behaviours) 346 

and biochemical (enzymatic levels) toxicity of irregularly shaped and spherical MPs were 347 

observed in a marine teleost, the sheepshead minnow (Cyprinodon variegatus) (Choi et al., 348 

2018). In another study, Espinosa et al. (2018) suggested exposure of fish to polyvinylchloride 349 

(PVC) or PE MPs could impair fish immune parameters. Laboratory studies showed several 350 

negative effects of the ingestion of plastic particles including trypsin and chymotrypsin activities 351 

in silver barb (Barbodes gonionotus) (Romano et al. 2018), superoxide dismutase, glutathione 352 

peroxidase and catalase activities in discus fish (Symphysodon aequifasciatus) (Wen et al. 2018), 353 

and head-kidney leucocyte activities in gilthead seabream (Sparus aurata) and European sea bass 354 

(D. labrax) (Espinosa et al. 2018). Therefore, this study highlights that presence of MPs in fish 355 

meals might pose a health risk to organisms consuming it including poultry, and cultured fish. 356 



 357 

In this study, a positive relationship between MPs in fish meal and accumulation in fish was 358 

found. Thus, there is an urgent need to examine accumulation of MPs in aquatic organisms. 359 

Some laboratory studies have documented MPs uptake in fish, including D. rerio (Lu et al. 360 

2016), red tilapia (Oreochromis niloticus) (Ding et al. 2018), and goldfish (Carassius auratus) 361 

(Grigorakis et al. 2017). However, the accumulation of MPs may be a variation of different 362 

factors, such as species, time, size, and exposure systems (Ding et al. 2018). MP shape and 363 

plastic polymers composition were similar in both fish meal and C. carpio. As such, PP were the 364 

dominant MPs in fish meals and fish. Oliveira et al. (2013) showed PP MPs significantly reduced 365 

acetylcholinesterase (AChE) activity in common goby (Pomatoschistus microps). Because 366 

humans consume livestock, poultry, and cultured fish, they are a direct route of exposure to MPs 367 

via diet and increase concerns related to MP-associated risk to humans. In addition to risks from 368 

posed by physical plastic debris, the hazardous hydrophobic organic chemicals bound to MPs 369 

may be transferred to humans (Rochman et al. 2013). Because there are few studies related to the 370 

potential health risks from MPs, more efforts to address interactions between MPs and biota are 371 

critical (Smith et al. 2018). Hazard and dietary exposure data for plastic particles, ingested by 372 

humans via the food chain are very scarce (Karbalaei et al. 2018). Due to present lack of 373 

knowledge, more studies are required to assess potential human health risks from MP ingestion.  374 

 375 

5. Conclusion 376 

This was the first study to investigate MP loads and their relationships in fish meals and their 377 

subsequent accumulation in fish. The presence of MPs in fish meals highlights that farmed 378 



organisms could be exposed to high levels of MPs. A correlation between MPs in fish meals and 379 

in C. carpio showed uptake and ingestion of MPs in fish. This study shows that C. carpio can be 380 

used as an effective bioindicator to reveal presence and transfer of MPs from the marine 381 

environment to the human food chain.  382 

 383 

Partial or total replacement of fish meals by alternative protein sources might help to mitigate 384 

MP exposure to farmed organisms. However, the financial cost, ecological impact and dietary 385 

quality of such alternatives must also be considered. Also, greater attention and accuracy in the 386 

processing of fish meal production might help to obviate the presence of MPs inside these 387 

products. MPs pollution is an emerging area of concern related to their potential impacts of this 388 

plastic debris to human health. Recommendation for future research priorities is presented with a 389 

focus on the consequences of MPs for human health. 390 
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Table 1. Summary of fish meal samples analyzed in this study. 397 

Fish Meal type  Crude Protein % Fat % Moisture Content % 

Salmon  72 9 4 

Sardine  65 9 4 

Kilka  60 6 4 

Sardine  55 12 2 

 398 

 399 

Figure Legends 400 

Fig. 1. Histogram of number of isolated particles across different size categories (μm). 401 

Fig. 2. Shapes (a, b) and polymers (c, d) of MPs in fish meals (n=30) and gastrointestinal tracts 402 

and gills of fish (C. carpio) (n=18). 403 

Fig. 3. Microscopic images of MPs polymers from fish meal. Particles were identified as (a) 404 

Polypropylene (PP), (b) Polystyrene (PS), (c) Polyethylene (PE), (d) Polyethylene terephthalate 405 

(PET), and (e) Rayon. 406 

Fig. 4. Total microplastics (a), isolated plastic polymers (b), from different types of fish meals 407 

(n=30), and total microplastics (c), isolated plastic polymers (d) from gastrointestinal tracts and 408 

gills of fish (C. carpio) (n=18). Bars surmounted with different letters are statistically (P˂0.05, 409 

Tukey's multiple range test) different. 410 

Fig. 5. Comparison of MP abundance in exposure experiment on cultured Common carp 411 

(Cyprinus carpio) (n=18) by feeding commercial fish meal (a) Salmon (b) Sardine (65%) (c) 412 

Kilka, and (d) Sardine (55%). Lines indicate upper quartile, median, and lower quartile, and dots 413 

show individual observations in box plots.414 
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Fig. 3.  
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Fig. 4.  
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Fig. 5. 
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