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Environmental heterogeneity shapes the uneven distribution of resources

available to foragers, and is ubiquitous in nature. Optimal foraging theory

predicts that an animal’s ability to exploit resource patches is key to foraging

success. However, the potential fitness costs and benefits of foraging in a

heterogeneous environment are difficult to measure empirically. Heterogen-

eity may provide higher-quality foraging opportunities, or alternatively

could increase the cost of resource acquisition because of reduced patch den-

sity or increased competition. Here, we study the influence of physical

environmental heterogeneity on behaviour and reproductive success of

black-legged kittiwakes, Rissa tridactyla. From GPS tracking data at 15 colo-

nies throughout their British and Irish range, we found that environments

that were physically more heterogeneous were associated with longer trip

duration, more time spent foraging while away from the colony, increased

overlap of foraging areas between individuals and lower breeding success.

These results suggest that there is greater competition between individuals

for finite resources in more heterogeneous environments, which comes at

a cost to reproduction. Resource hotspots are often considered beneficial,

as individuals can learn to exploit them if sufficiently predictable. However,

we demonstrate here that such fitness gains can be countered by greater

competition in more heterogeneous environments.
1. Introduction
The spatial and temporal distribution of resources places a major constraint on

foraging success [1–3]. Therefore, heterogeneity in resource distribution, which

is considered a universal feature of natural environments [4,5], has played a

defining role in the evolution of animal foraging behaviour [1,3]. Theory pre-

dicts that key to an individual’s success is the ability to maximize gains from

areas with high resource density and minimize energy expenditure locating

resources, and therefore optimize energy allocation to fitness [2,3]. This

theory is supported by numerous empirical studies (e.g. [6–8]). In response

to resource heterogeneity, selection will therefore favour efficient foraging

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.0795&domain=pdf&date_stamp=2019-06-05
mailto:alice.trevail@liv.ac.uk
https://doi.org/10.6084/m9.figshare.c.4514741
https://doi.org/10.6084/m9.figshare.c.4514741
http://orcid.org/
http://orcid.org/0000-0002-6459-5213
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Ta
bl

e
1.

Hy
po

th
es

es
of

th
e

po
te

nt
ial

ef
fe

cts
of

gr
ea

te
r

en
vir

on
m

en
ta

l
he

te
ro

ge
ne

ity
on

re
so

ur
ce

s,
fo

ra
gi

ng
dy

na
m

ics
an

d
fit

ne
ss

at
th

e
po

pu
lat

ion
lev

el.
Up

wa
rd

s
an

d
do

w
nw

ar
ds

ar
ro

w
s

in
di

ca
te

an
ex

pe
cte

d
in

cre
as

e
an

d
de

cre
as

e,
re

sp
ec

tiv
ely

,a
nd

cro
ss

es
in

di
ca

te
no

ex
pe

cte
d

ch
an

ge
.

hy
po

th
es

is

po
te

nt
ia

le
ffe

ct
of

gr
ea

te
r

en
vi

ro
nm

en
ta

lh
et

er
og

en
ei

ty
on

re
so

ur
ce

s
ex

pe
ct

ed
ch

an
ge

in
po

pu
la

tio
n

fo
ra

gi
ng

dy
na

m
ics

ex
pe

ct
ed

ch
an

ge
in

fo
ra

gi
ng

m
et

ric
s

ex
pe

ct
ed

ch
an

ge
in

fit
ne

ss

tr
av

el
di

st
an

ce
(m

ax
im

um
,

to
ta

la
nd

pr
op

or
tio

n
of

tim
e

tr
an

sit
in

g)

tim
e

fo
ra

gi
ng

(tr
ip

du
ra

tio
n

an
d

pr
op

or
tio

n
of

tim
e

fo
ra

gi
ng

)
co

m
pe

tit
io

n
(o

ve
rla

p
be

tw
ee

n
in

di
vi

du
al

s)

(H
1)

fo
ra

gi
ng

op
po

rtu
ni

ty

re
so

ur
ce

pa
tch

es
pr

es
en

th
ig

he
r

qu
ali

ty
fo

ra
gi

ng
op

po
rtu

ni
tie

s

sm
all

er
fo

ra
gi

ng
ra

ng
e

�
�

X
�

(H
2)

re
du

ce
d

pa
tch

de
ns

ity

re
so

ur
ce

pa
tch

es
of

fe
rin

g
su

ffi
cie

nt

fo
ra

gi
ng

op
po

rtu
ni

tie
s

ar
e

fu
rth

er
ap

ar
t

lo
ng

er
fo

ra
gi

ng
di

sta
nc

e
�

�
or

X
X

or
�

�

(H
3)

co
m

pe
tit

ion
re

so
ur

ce
s

co
nc

en
tra

te
d

in
to

sm
all

er
pa

tch
es

in
cre

as
ed

co
m

pe
tit

ion
X

�
�

�

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190795

2
behaviour, whereby individuals minimize the energetic costs

of searching and transiting between high-resource locations

and maximize resource intake [1,3].

However, not all heterogeneous environments are equal

[9–11], as high-prey locations vary in distribution, predict-

ability and numbers of competing individuals. Studies

often present these ‘prey hotspots’ as beneficial resource

patches [12–14]; however, the optimality of foraging strat-

egies in response to resource heterogeneity may be

constrained by both the nature of resource heterogeneity

[15,16] and the behaviour of other foragers [17,18]. First, the

travel distance to reach foraging patches in heterogeneous

environments will determine the trade-off between resource

intake and the additional energetic costs to the animal’s

own fitness [16,19,20]. Second, higher levels of intraspecific

competition at resource patches in heterogeneous environ-

ments may also limit resource acquisition from a patch

[17,18,21,22] through competitive exclusion [18,22] and prey

disturbance [17] and depletion [23]. The key knowledge

gap is whether greater environmental heterogeneity has

positive or negative consequences for fitness.

Underlying variability in the physical environment is a

strong driver of heterogeneous resource distributions, and

therefore can be used as a proxy for resource heterogeneity,

particularly where resource availability to foragers is difficult

to measure directly. Indeed, because of effects on resources,

physical environmental heterogeneity, hereafter ‘environ-

mental heterogeneity’, is known to be an important driver

of community dynamics [11,24] and life-history strategies

[25,26]. Marine environments provide a model study system

of environmental heterogeneity, with numerous physical fea-

tures (such as fronts, eddies and currents) that together define

resource availability to foragers [12,27]. Furthermore, the

degree to which any given marine environment is hetero-

geneous can vary [9], and therefore offers the opportunity

to study the influence of heterogeneity on behaviour and

fitness.

In this study, we test the influence of environmental

heterogeneity on behaviour and reproductive success using

data from black-legged kittiwakes (Rissa tridactyla, hereafter

‘kittiwakes’) at 15 colonies across their UK and Irish breeding

range. Studying such a comprehensive dataset is ideal to

understand how environmental heterogeneity affects behav-

iour and fitness. As with many seabirds, kittiwakes are

central place foragers during the breeding season, and are

therefore constrained to forage within their local environ-

ment. As such, greater travel distances away from the

breeding location are considered indicative of poorer resource

availability nearby [28,29]. Furthermore, as surface feeders,

kittiwakes are thought to suffer from direct competition

with conspecifics for prey as fish schools are forced lower

down in the water column to inaccessible depths [30,31].

We first calculate a measure of local environmental hetero-

geneity at each colony based on six environmental metrics

that can all influence kittiwake prey distributions. Second,

we consider kittiwake foraging behaviour along the gradient

of environmental heterogeneity between study colonies, and

then test the link between the degree of environmental het-

erogeneity and reproductive success. Our analyses tested

the following alternative hypotheses (see table 1) based on

the literature reviewed above. (H1) Foraging opportunity

hypothesis: greater environmental heterogeneity is associated

with higher fitness because it features greater amounts of
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profitable habitat within the foraging range of the colony that

animals can learn to exploit, which enables individuals to

remain closer to the colony [16], provision offspring more fre-

quently [32] and relieve partners of nest-attendance duties

[33]. (H2) Reduced patch density hypothesis: greater environ-

mental heterogeneity is detrimental to fitness because habitat

patches with sufficient resources to support foraging are

located further apart within the foraging range. This, there-

fore, would prompt individuals to more readily switch

between patches [2], requiring an increase in travel distance

away from the colony, time spent commuting and foraging

area size [16], and resulting in greater expenditure to transit

between patches. (H3) Competition hypothesis: greater

environmental heterogeneity is detrimental to fitness because

it increases competition between individuals at relatively

profitable habitats, which results in greater overlap between

individuals, greater time investment in foraging behaviour

and increased duration of foraging trips [17].
286:20190795
2. Methods
(a) Quantifying environmental heterogeneity
To quantify environmental heterogeneity, we used a multivariate

dispersion analysis [34] to identify the dissimilarity of spatial

environmental characteristics. Multivariate dispersion analyses

have primarily been used for species diversity studies [34]; how-

ever, they have also been used to quantify environmental

heterogeneity using multiple continuous variables in studies of

freshwater ecosystems [35,36], marine ecosystems [34] and grass-

lands [37]. Multivariate dispersion analysis is suitable for this

study because it incorporates variance in multiple environmental

parameters that can all influence resource distribution into a

single metric, in contrast to measures such as standard deviation

or range of a single continuous variable [10,38], or the diversity

of categorical habitat variables [39].

We calculated environmental heterogeneity using six

environmental metrics: (1) bathymetry, (2) potential tidal stratifi-

cation, (3) sea surface temperature, and ocean front (4) strength,

(5) distance and (6) persistence, all of which have been shown to

influence resource location for foraging seabirds. (1) Bathymetry,

or sea floor depth, can shape the flow of horizontal water cur-

rents and control vertical water column structure [40,41], both

of which are physical processes that can influence the availability

and accessibility of prey fish to surface foragers such as kitti-

wakes [27,40,41]. (2) Potential tidal stratification incorporates

both depth and tidal currents [12], to quantify the vertical

water column structure—a key physical driver of marine ecosys-

tem dynamics [42], prey fish distribution [43] and seabird

distribution [27]. (3) Sea surface temperature can be a proxy for

oceanographic processes that influence nutrient availability,

such as upwelling of cold nutrient-rich water [44], and has

been linked to the at-sea distribution and breeding success of kit-

tiwakes [27,42,45,46]. (4–6) Ocean fronts are horizontal

boundaries between different water masses where physical pro-

cesses cause upwelling of deeper, nutrient-rich water and

entrain plankton at the surface [47,48]. Fronts are known to be

an important feature of marine environments, shaping resource

distribution and thus marine vertebrate behaviour [43,49]. Full

details of data sources are described in electronic supplementary

material, appendix A.

We used a principal coordinate analysis (a type of multi-

variate dispersion analysis) [50] to determine the heterogeneity

of environmental conditions at each colony and year (hereafter

‘colony-year’) from within the maximum foraging range of kitti-

wakes. We used the overall maximum foraging range across all
years as a measure of the environment available to each colony

(electronic supplementary material, appendix B). Principal coor-

dinate analyses place values from all colonies along all axes (or

principal coordinates) in unconstrained ordination space based

on a Euclidean distance matrix of standardized environmental

data, using the functions vegdist and betadisper in the R package

vegan [51]. Herein, we use the average distance of observations

from the colony-year centroid (or spatial median) in the principal

coordinate analysis ordination space (using all axes) as a continu-

ous measure of environmental heterogeneity, with higher values

indicating greater heterogeneity. As such, environmental hetero-

geneity can vary independently of the absolute values of the six

environmental variables. Permutation tests of dispersion (PERM-

DISP [34]) calculate an F-statistic to compare the average

distances of observations from the colony-year centroid between

each colony-year in the analysis to test for differences in hetero-

geneity. We used a two-way ANOVA to test whether

environmental heterogeneity differed between colonies and

between years (as factors), and Tukey HSD post hoc tests for pair-

wise differences. To understand whether environmental

heterogeneity was simply associated with availability of a par-

ticular habitat type or was a proxy of overall prey abundance

within the foraging range of kittiwakes (maximum foraging dis-

tance across years at each colony from tracking data; H1 and H2,

table 1), we used linear regression to test whether environmental

heterogeneity was linked to the mean value of any of the individ-

ual environmental metrics. To determine whether environmental

heterogeneity was influenced by the size of the foraging radius

used to extract environmental data (maximum foraging distance

across years at each colony), we compared environmental hetero-

geneity values with the maximum foraging range of kittiwakes at

each colony across all years using linear regression.
(b) Quantifying kittiwake foraging behaviour
To determine the foraging behaviour of kittiwakes around the

UK, adults from multiple colonies were tracked using GPS log-

gers (Mobile Action i-GotU GT-120), while raising small chicks.

Tracked individuals were selected randomly with respect to

brood size and were assumed to be representative of each

study population. Loggers were attached to the back feathers

between the wings (or infrequently to the tail) using waterproof

tape, and total instrument mass was less than or equal to 5% of

body mass (or less than or equal to 3% where tail attachments

were used; mean+ s.e. body mass at Skomer, Rathlin and

Puffin Island: 327.9+ 5.1 from Trevail et al. [9]). Full details of

tracking procedures can be found in the first publications of

the data: Wakefield et al. [27] and Trevail et al. [9]. Here, we

use data from a total of 1567 trips from 415 chick-rearing kitti-

wakes at 15 colonies in Britain and Ireland between 2010 and

2017 (figure 1): Bardsey (NW Wales; 2011, n ¼ 8), Bempton

Cliffs (E England; 2010–2013 and 2015, n ¼ 59), Copinsay

(Orkney Islands; 2010–2012, n ¼ 26), Coquet (NE England;

2011–2012, n ¼ 26), Colonsay (W Scotland; 2010–2014, n ¼ 69),

Filey (E England; 2013 and 2015, n ¼ 26), Fowlsheugh (E Scot-

land; 2012, n ¼ 13), Isle of May (E Scotland; 2013, n ¼ 16),

Lambay (E Ireland; 2010, n ¼ 10), Muckle Skerry (Orkney

Islands; 2012–2014, n ¼ 26), Puffin Island (NW Wales; 2010–

2016, n ¼ 63), Rathlin (Northern Ireland; 2017, n ¼ 17), Skomer

(SW Wales; 2016–2017, n ¼ 14), St Martins (Isles of Scilly;

2010–2011, n ¼ 28) and Whinnyfold (E Scotland; 2012, n ¼ 14).

Full sample sizes, including colony coordinates, tracking dates

and number of individuals per year are given in electronic sup-

plementary material, table B1. For further analyses, we

excluded points closer than 500 m to the colony, and attributed

sequential points to a foraging trip if the total trip duration

was over 14 min [9] to eliminate departures from the colony

due to disturbance [52]. At all colonies, we included trips
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where individuals were away from the colony overnight.

At Rathlin, Skomer and Puffin Island, loggers did not record

data between 23.00 and 03.00, to save battery power overnight

while kittiwakes exhibit minimal foraging activity [9,53]. At all

other colonies, we excluded locations during this period.

To understand the influence of environmental heterogeneity

on foraging behaviour, we calculated three different measures of

behaviour, all predicted to vary with each hypothesis (table 1).

First, for each year and at each colony, we calculated the follow-

ing trip metrics: mean trip duration, mean total distance travelled

during a foraging trip, and mean maximum distance from the

colony, all important indicators of resource accessibility for cen-

tral place foragers as they seek to remain close to the colony and

minimize travel times [16,17,28]. Second, we examined move-

ment behaviours while away from the colony using a hidden

Markov model to classify behaviour into rest, forage (including

searching) or transit [54]. Time spent in each behaviour can

signal the energetic trade-off between travel costs and resource

gains from exploiting prey patches [55]. We used the R package

moveHMM [56] for behavioural classification based on distri-

butions of step lengths and turning angles, after interpolating

GPS data to regular time steps to fulfil HMM assumptions,

using the R package adehabitatLT [57]. We used a gamma distri-

bution to describe step lengths and a von Mises distribution to

describe turning angles, and the Viterbi algorithm to estimate

the most likely sequence of movement states based on the

fitted hidden Markov model (electronic supplementary material,

appendix C). We used values from the previous classification of
kittiwake behaviour to inform model starting parameters [9], and

found that model outputs were robust to different values of start-

ing parameters when tested on a subset of tracking data. For each

bird, we quantified the proportion of time away from the colony

while on a foraging trip spent in each behaviour classified by the

HMM (forage, transit and rest). Third, we determined at-sea area

use of kittiwakes by calculating the size of 50% core foraging

areas of individuals from utilization kernels on a 1 km grid

using the kernelUD function in the R package adehabitatHR

[57]. The appropriate smoothing parameter (h) was determined

by the default ad hoc method, which assumes a bivariate

normal distribution [57]. As a proxy for intra-specific compe-

tition, we calculated the overlap of 50% core foraging areas

between all individuals tracked in the same year at each colony

using Bhattacharya’s affinity (BA). Values of BA range from 0

when there is no overlap between foraging areas to 1 when

utilization distributions are identical [58].

(c) Quantifying kittiwake reproductive success
To test the effect of environmental heterogeneity on kittiwake

reproductive success, we used colony-average reproductive suc-

cess data from the Seabird Monitoring Programme, collated by

the UK Joint Nature Conservation Committee (JNCC; http://

jncc.defra.gov.uk/smp) and the Centre for Ecology & Hydrology

for the Isle of May [59]. Reproductive success data were available

for 11 colonies, for 1–8 years between 2010 and 2017 (electronic

supplementary material, table B3). Reproductive success was

http://jncc.defra.gov.uk/smp
http://jncc.defra.gov.uk/smp
http://jncc.defra.gov.uk/smp
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calculated as the total number of chicks fledged divided by the

number of nests/pairs monitored at each colony in each year

(electronic supplementary material, table B4 and figure B1).

(d) Effect of environmental heterogeneity on kittiwake
foraging behaviour and reproductive success

In all analyses described below, explanatory variables were stan-

dardized to a mean of 0 and standard deviation of 1. Model

structure and effect significance were determined using

ANOVA comparisons (x2 for linear regressions and GLMMs,

and F tests for quasi-binomial), for which p-values are presented.

To understand the effects of environmental heterogeneity on

foraging metrics and reproductive success, we used the mean

environmental heterogeneity for each colony across all years

because colony and year, by definition, explained a large pro-

portion of the variation in environmental heterogeneity

(electronic supplementary material, figure A3), and did not

include colony or year as variables in regression analyses. We

refer to this mean value as ‘colony-mean environmental

heterogeneity’. To understand the effect of environmental hetero-

geneity on foraging behaviour in relation to the hypotheses

(table 1), we undertook the following statistical tests. First, we

compared the colony-mean environmental heterogeneity to the

annual mean of trip metrics for each colony (trip duration,

total distance and maximum distance; log-transformed to meet

the assumptions of Gaussian models) using linear regression.

Second, we compared the colony-mean environmental hetero-

geneity to the proportion of time spent away from the colony

in each behavioural state (forage, transit and rest) by each indi-

vidual using linear regression with a quasi-binomial logit-link

to account for overdispersion. Lastly, we compared the colony-

mean environmental heterogeneity with the size of 50% core

foraging area of each bird using linear regression, and overlap

between trips of all pairs of individuals using a GLMM with

the focal BirdID as a random effect and a Gaussian distribution.

To understand the effect of environmental heterogeneity on

reproductive success, we compared the colony-mean environ-

mental heterogeneity with the annual reproductive success for

each colony using linear regression.

To verify that observed patterns in foraging dynamics and

resource success could be attributed to environmental heterogen-

eity, we tested for potentially confounding effects of colony size

and individual environmental variables on reproductive success

(electronic supplementary material, appendix D). We used data

from the most recent census of UK breeding populations, Seabird

2000 [60], to compare breeding success with colony size and the

number of breeding kittiwakes within the foraging radius of each

colony using linear regression. Seabird 2000 data may no longer

provide currently accurate estimates of breeding numbers; how-

ever, they offer the most useful indicator of relative colony size

for the purpose of this study. In support of results presented

below, we found no link between reproductive success and any

environmental metric in isolation (bathymetry, stratification,

sea surface temperature and ocean front metrics; electronic sup-

plementary material, table D1), suggesting that heterogeneity

in resource distribution is key in this system.
3. Results
(a) Environmental heterogeneity at colonies
Environmental heterogeneity varied significantly between

colony and year combinations in the principal coordinate

analysis (figure 1; F119,17880 ¼ 16.6, p , 0.001). The first two

coordinate axes from the principal coordinate analysis

together explained 63% of the total variation between
colonies (first axis: 43.1%, all others presented in electronic

supplementary material, table A1). Environmental heterogen-

eity differed significantly between colonies (figure 1;

ANOVA: F14,98 ¼ 42.8, p , 0.001), and between years

(ANOVA: F7,98 ¼ 3.0, p ¼ 0.007), although the effect of year

was driven by a significant difference between 2011 and

2014 (electronic supplementary material, appendix A).

Environmental heterogeneity was highest at Copinsay

(mean+ s.e. between years ¼ 2.37+0.05), and was lowest

at Coquet (1.16+ 0.06), the Isle of May (1.17+ 0.04) and

Whinnyfold (1.19+0.07). Values of environmental hetero-

geneity at each colony, and pairwise comparisons between

colonies and years are given in electronic supplementary

material, appendix A. Comparisons of environmental hetero-

geneity with individual environmental metrics showed no

strong relationships (electronic supplementary material,

appendix E). There was no link between environmental het-

erogeneity from the principal coordinate analysis and the

size of the radius (maximum foraging distance from the

colony across all years) used to select environmental data

(F(1,118) ¼ 0.76, p ¼ 0.386).
(b) Hypothesis testing: effect of environmental
heterogeneity on kittiwake foraging behaviour and
reproductive success

We found most support for the competition hypothesis (H3)

that environmental heterogeneity was associated with greater

competition between individuals, and consequently lower fit-

ness. We found that trip duration (time spent away from the

colony) was positively correlated with environmental hetero-

geneity (figure 2b; parameter estimate+ s.e.: 0.27+0.12,

F1,33¼ 5.11, p ¼ 0.03). Furthermore, the proportion of individ-

uals’ time spent foraging was significantly higher in more

heterogeneous environments (figure 2a; parameter estimate+
s.e.: 0.14+0.03 F1,415 ¼ 18.8, p , 0.01), and environmental het-

erogeneity was positively correlated with overlap of the 50%

core foraging area between individuals (figure 2c; parameter

estimate+ s.e.: 0.012+0.004, x2
1 ¼ 9:85, p , 0.01). Reproduc-

tive success was significantly lower in colonies with greater

environmental heterogeneity (figure 3; parameter estimate+
s.e. ¼ 20.18+0.05; F1,59¼ 15.44, p , 0.01), equivalent to a

63% decrease in reproductive success across the observed

range of environmental heterogeneity. This relationship is

robust to removal of the apparent outlier of Copinsay. We

did not find support for the foraging opportunity hypothesis

(H1) that environmental heterogeneity was associated with

greater amounts of profitable habitat: there was no link

between environmental heterogeneity and the mean maxi-

mum distance kittiwakes travelled from the colony (table 2;

F1,33¼ 1.11, p ¼ 0.30). Lastly, we did not find support for the

reduced patch density hypothesis (H2) that environmental het-

erogeneity is associated with greater distances between

relatively profitable foraging areas, since there was no link

between environmental heterogeneity and the mean maxi-

mum distance travelled (detailed above) or the total distance

travelled (table 2; F1,33¼ 2.59, p ¼ 0.12). The proportion of

individuals’ time spent transiting was significantly lower in

more heterogeneous environments (figure 2a; parameter

estimate+ s.e.: 20.17+0.04, F1,415 ¼ 23.5, p , 0.01), and

there was no change in the time spent resting (figure 2a;

F1,415 ¼ 0.08, p ¼ 0.78). There was no link between
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environmental heterogeneity and the size of an individual’s

50% core foraging area (table 2; F1,414 ¼ 0.34, p ¼ 0.56). In sup-

port of the above results that environmental heterogeneity is

an important mechanism driving fitness, reproductive success
was not linked to colony size (F1,51¼ 0.96, p ¼ 0.33) or the

number of kittiwakes breeding within the foraging radius of

the colony (F1,59¼ 1.64, p ¼ 0.21).
4. Discussion
Heterogeneous resources are inherent within nature [4,5,61],

and are typically assumed to be beneficial to foragers

[12,13,62]. However, our study demonstrates that in areas

of higher environmental heterogeneity (or greater patchi-

ness), kittiwakes undertook longer foraging trips, spent

proportionally more time foraging while away from the

colony, overlapped more with other individuals and had

reduced breeding success. Together, these results are consist-

ent with our hypothesis that environmental heterogeneity

may have concentrated resources into relatively more profit-

able patches; however, this resulted in greater intraspecific

competition, with negative consequences for fitness.

Heterogeneous environments can concentrate resources

into patches that animals can adapt their behaviour to, in

theory to optimize foraging efficiency [1,63]. Indeed, here

we show differences in foraging behaviour with environ-

mental heterogeneity; specifically, in more heterogeneous

environments kittiwakes undertook longer foraging trips,

and while away from the colony spent more time foraging.

If overall resource availability was higher in heterogeneous

environments, such changes in foraging behaviour could be

an adaption to increase resource acquisition. However, by

contrast, we found that reproductive success was lower in

heterogeneous environments, suggesting that greater time

investment in foraging behaviour was not compensated for

by higher energetic returns [64]. Furthermore, we show that

in colonies with more heterogeneous local environments,



Table 2. Changes in kittiwake behaviour and reproductive success over the range of environmental heterogeneity observed in this study. Rows in italic type
showed a significant relationship ( p , 0.05).

response variable
relationship with
increasing heterogeneity

parameter
estimate units test statistic p-value

proportion of time foraging increase 0.09 + 0.04 proportion F(1,415) ¼ 18.8 p ¼ 0.029

proportion of time transiting decrease 20.17+ 0.04 proportion F(1,415) ¼ 23.5 p , 0.001

proportion of time resting no difference 0.04+ 0.05 proportion F(1,415) ¼ 0.08 p ¼ 0.479

mean trip duration increase 0.27 + 0.12 hours (log-scale) F(1,33) ¼ 5.11 p ¼ 0.031

mean total distance no difference 0.19+ 0.12 km (log-scale) F(1,33) ¼ 2.59 p ¼ 0.117

mean maximum distance no difference 0.12+ 0.11 km (log-scale) F(1,33) ¼ 1.11 p ¼ 0.299

foraging area: overlap increase 0.01 + 0.00 BA index x 2
1 ¼ 9:85 p ¼ 0.002

foraging area: size no difference 42.2+ 71.7 km2 F(1,414) ¼ 0.34 p ¼ 0.561

breeding success decrease 20.18+ 0.05 fledglings per nest F(1,59) ¼ 15.4 p , 0.001
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pairs of individuals overlapped more in their core foraging

areas, despite no difference in individual foraging area size.

These results suggest that in more heterogeneous environ-

ments there is more competition between individuals for

finite resources, with costs for reproductive success. While

this may be balanced by lower competition elsewhere,

lower resource availability away from resource patches will

limit resource gains, and where resources are concentrated,

resource density may still not be sufficient to benefit all

competing individuals. Increased competition between

individuals also explains extended foraging trip duration,

as acquiring sufficient resources takes more time [17,31],

which could incur additional energetic costs on adults,

reduce offspring provisioning rates and increase the risk of

offspring predation during brood neglect [17,18]. Bio-logging

devices can cause a slight increase in trip duration [65]; how-

ever, we would expect such effects to be equal across colonies.

As such, fitness gains from resource patches may in fact be lim-

ited by the degree of environmental heterogeneity, because of

the potential cost of competition.

Environmental heterogeneity may also decrease repro-

ductive success if a greater variability of habitat types

reduces the amount of productive habitat and/or is associ-

ated with generally lower primary productivity. If that were

the case, we would expect foragers in heterogeneous environ-

ments to have to travel further from the colony in order to

access high-quality habitat [16,29,66,67]. However, we

found no difference in how far kittiwakes travelled away

from the colony in heterogeneous environments, even

accounting for the size of breeding populations. Maximum

foraging distances recorded here (mean maximum distance:

23.3+ 0.8 km) were within both theoretical and observed

ranges of the species (e.g. theoretical based on Isle of May

data and kittiwake flight speeds: 73+ 9 km [27,53], observed

at Pribilof Islands, Bering Sea, Alaska: 206.7+ 6.7 km [68]

and observed at Sør-Gjæslingan, Norway: 303.7+ 6.1 km

[69]). We can therefore assume that individuals were not fora-

ging at, or near, their maximum physiological capability, but

rather that sufficient resource availability facilitated individ-

uals to remain within relative proximity of the colony.

Alternatively, heterogeneity may decrease reproductive

success if profitable resource patches are more dispersed in

space [18], requiring greater travel distances to reach suffi-

cient resource patches [16]. However, we found no
difference with environmental heterogeneity in the total dis-

tance travelled during a foraging trip, and no increase in

the proportion of a trip spent transiting or the size of an indi-

vidual’s 50% core foraging area, suggesting no increase in

space use to acquire resources. Heterogeneous environments

may, however, require behavioural adaptations that, if not

compensated for by energetic gains, could contribute to the

reduced breeding success observed in this study [70]. For

example, environmental heterogeneity can drive the magni-

tude of temporal variability in resources, which in turn

prompts a greater behavioural response to temporal cycles

in heterogeneous environments [9].

Foraging behaviour (in particular, foraging range) is

typically linked to colony size in central place breeders.

Density-dependent prey depletion can increase the colony

foraging radius [29,67], up to the physiological constraints

of a species, which can then limit the carrying capacity [66].

As such, when considering foraging adaptations and repro-

ductive consequences of environmental heterogeneity here,

it is important to recognize the potential effect of colony

size. However, we found no link between reproductive suc-

cess and colony size, nor the number of kittiwakes breeding

within the foraging range of the colony, in contrast to pre-

vious studies of seabird population dynamics [31]. Our

results therefore suggest that the spatial distribution of

resources, as shaped by environmental heterogeneity, could

be the predominant mechanism driving differences in levels

of intraspecific competition, and therefore reproductive suc-

cess, between kittiwake colonies in the UK and Ireland.

Colony size data were from the most recent full census of

the UK and Ireland seabird breeding colonies in 2000 [60].

Many sites have documented population declines both

before and after the Seabird 2000 survey, and kittiwakes

have been reclassified as vulnerable on the IUCN Red List

of threatened species [71]. It is therefore likely that during

the years of this study, population numbers were well

below historic carrying capacity; however, the Seabird 2000

data provide a useful indication of population numbers for

this study.

The degree of environmental heterogeneity at each colony

remained relatively consistent over time, which may favour

an individual to switch breeding colony in favour of homo-

geneous sites where reproductive success was higher

[72,73]. Reproductive success was, however, generally low;
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at all but one colony in this study (Coquet) kittiwakes reared

less than one fledgling per nest on average. This may mean

that the potential increase in reproductive success in more

homogeneous environments is not worth the risk of switch-

ing breeding site, but instead is outweighed by other

factors driving strong site fidelity common among seabirds

such as pair bonds [74], familiarity with conspecifics [75]

and natal philopatry [76]. Future study could, however,

shed light on the effect of environmental heterogeneity on

recruitment of prospecting breeders, as well as long-term

population trends [77].
l/rspb
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5. Conclusion
In this study, we demonstrate that, in contrast to common

assumptions, environmental heterogeneity is detrimental to

breeding success in this species. Environmental heterogeneity

can concentrate resources into hotspots, which could offer

foraging opportunities; however, it may also increase compe-

tition between individuals. Reproductive success is an

important driver of population dynamics across taxa

[78,79], including adult recruitment in kittiwakes [77], and

therefore the results of this study highlight the potential

importance of environmental heterogeneity for driving popu-

lation success and species distributions. Furthermore,

environmental heterogeneity may be a key consideration in

future studies of species resilience to environmental stressors,

particularly given that many species, including kittiwakes,

are undergoing population declines.
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