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Abstract  19 

 20 

Macroalgae (seaweeds) represent an emerging resource for food and the production of 21 

commodity and specialty chemicals. In this study, a single-step microwave process was used 22 

to depolymerise a range of macroalgae native to the United Kingdom, producing a growth 23 

medium suitable for microbial fermentation. The medium contained a range of mono- and 24 

polysaccharides as well as macro- and micronutrients that could be metabolised by the 25 

oleaginous yeast Metschnikowia pulcherrima. Among twelve macroalgae species, the brown 26 

seaweeds exhibited the highest fermentation potential, especially the kelp Saccharina 27 

latissima. Applying a portfolio of ten native M. pulcherrima strains, yeast growth kinetics, as 28 

well as production of lipids and 2-phenylethanol were examined, with productivity and 29 

growth rate being strain dependent. On the 2 L scale, 6.9 g L
−1

 yeast biomass, a yield of 30 

0.15 g L
−1

 with respect to supplied macroalgae, containing 37.2 % (w/w) lipid was achieved 31 

through utilisation of the proteins, mono- and polysaccharides from S. latissima, with no 32 

additional enzymes. In addition, the yeast degraded a range of fermentation inhibitors released 33 

upon microwave processing at high temperatures and long holding times. As macroalgae can 34 

be cultured to food grade, this system offers a novel, potentially low-cost route to edible 35 

microbial oils as well as a feedstock for oleochemicals.  36 

 37 

Keywords: Microbial lipids, Metschnikowia pulcherrima, macroalgae, marine biorefinery, 38 

microwave treatment, Saccharina latissima 39 

  40 
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Introduction  41 

 42 

Microbial lipids offer a credible feedstock for advanced biofuel production to reduce the 43 

impact of fossil fuels as well as a potentially more sustainable source of edible oil. The 44 

concept of a marine biorefinery includes the utilisation of marine plants for the provision of 45 

food, proteins, minerals, commodity and fine chemicals, biofuels and/or energy. Due to their 46 

fast growth, high protein content, high diversity of carbohydrates and low lignin content, 47 

macroalgae (seaweeds) are of particular interest for a marine biorefinery
1–3

. Macroalgae are 48 

generally classified as brown (Phaeophyta), green (Chlorophyta) or red (Rhodophyta) type 49 

relating to their photosynthetic pigments, usually perceptible in the phenotype.  50 

 In 2014, wild and cultivated macroalgae harvesting more than doubled to 28.4 million 51 

tonnes from 10.4 million in 2000.
4
 Global production is overwhelmingly dominated by Asia 52 

(96.6 %), with America (1.7 %), Europe (1 %), Africa (0.6 %) and Oceania (0.1 %) 53 

accounting for the remaining continental production figures.
4,5

 Production in America and 54 

Europe is dominated by wild harvesting, whereas the main method for production in Africa 55 

and Asia is through formal cultivation.
4
 In the four years leading up to 2014, global red and 56 

brown (the predominant type produced in Europe) macroalgae production has increased by 57 

84 % and  47 %, respectively, whilst green macroalgae production decreased by 30 %.
5
  58 

Currently, the most common use of macroalgae is for food production. As a fuel or 59 

biorefinery feedstock macroalgae has the potential to compete with second generation 60 

lignocellulosic biomass such as crop residues or dedicated energy crops. Compared to 61 

terrestrial crops, marine plants do not require arable land, freshwater or fertilizer,
6
 and 62 

furthermore convert sunlight more efficiently,
7
 inducing their potential for carbon 63 

sequestration.
8
  For cultivation in northern Europe towards bioethanol and biogas production, 64 

brown macroalgae Laminaria digitata yields associated greenhouse gas emissions of 45 kg 65 
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CO2-equiv. per tonne of macroalgae produced.
9
 This can be compared to cultivation of wheat 66 

straw (54 to 236 kg CO2-equiv. per tonne
10

), miscanthus (51 kg CO2-equiv. per tonne
11

) and 67 

SRC willow (138 kg CO2-equiv. per tonne
11

). Environmental and techno-economic 68 

credentials for macroalgae cultivation can be further improved by integrating production into 69 

other established aquaculture activity. The potential for macroalgae as a major source for 70 

speciality and commodity products is significant; however, in the UK a bottleneck to 71 

expanding macroalgae biorefining activity is the lack of systematic wild feedstock appraisal, 72 

demonstration cultivation sites and pilot-scale downstream technology assessment.
5
  73 

Current research has developed techniques to enhance macroalgae valorisation 74 

through collaterally extracting proteins
1
 and/or utilising other available saccharides, for 75 

instance through purification
12

 or microbial processing.
13–18

 Whilst the high carbohydrate, 76 

sulphur and nitrogen content make macroalgae a promising feedstock for microbial 77 

fermentation within a biorefinery setting, pretreatment and fermentation within such as 78 

process should be cost efficient and sustainable, utilising a microbe with versatile 79 

characteristics and ideally yield high-value products to enhance the feasibility of such a 80 

process. Recent research for microbial macroalgae utilisation focussed on ethanol,
17–20

 81 

butanol
1,21

 and biogas
15,16

 production, with pretreatment often taking place via acid and/or 82 

enzymatic hydrolysis.  83 

 Depolymerisation via time- and energy-efficient
22

 microwave processing has been 84 

employed successfully for a range of lignocellulosic feedstocks.
23,24

 Considering the lack of 85 

lignin and the previous successful recovery of macroalgae constituents through microwave-86 

assisted extraction,
18,25

 this technology offers a potentially viable alternative to produce an 87 

inexpensive microbial growth medium from macroalgae.
18

 However, the thermochemical 88 

treatment of biomass generally produces mainly oligosaccharides and a range of inhibitors. 89 

To this end, we recently reported on the oleaginous yeast Metschnikowia pulcherrima that can 90 
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metabolise a range of carbon sources including oligosaccharides and has a high inhibitor 91 

tolerance,
23,26

 though the growth on macroalgae hydrolysate is yet to be assessed. This yeast 92 

demonstrates excellent suitability for industrial biotechnology since it produces a range of 93 

valuable metabolites, most prominently microbial lipids and 2-phenylethanol (2-PE), and it 94 

has the ability to outcompete other microbes through secretion of antimicrobial agents and 95 

iron sequestration.
26,27

 Whilst there are a few reports of producing microbial lipids from 96 

macroalgae recently,
13,14,28,29

 a system coupling low-energy microwave depolymerisation with 97 

M. pulcherrima offers additional benefits for a potentially more economic route to microbial 98 

lipid production.   99 

  100 
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Experimental  101 

 102 

Chemicals were purchased from Sigma-Aldrich and Fisher Scientific, for biological culturing 103 

suitable for cell culture and for standards analytical grade. Centrifugations were performed at 104 

1,680 × g and room temperature for 10 min (Rotina 380, Hettich) and lyophilisation at -40 °C 105 

and 60 mbar overnight (Modulyo, Thermo Savant). Fermentation vessels were sterilised with 106 

70 % (v/v) ethanol, media freshly prepared and actions involving biological reagents handled 107 

aseptically.   108 

 109 

Macroalgae preparation and hydrolysis 110 

Twelve different macroalgae species were harvested from the South West UK coast in August 111 

and Saccharina latissima (SL, formerly Laminaria saccharina) additionally in May, washed, 112 

chopped to around 100 mm long pieces, flash frozen in liquid nitrogen, lyophilised and 113 

ground using a pestle and mortar (Table 1). The dried macroalgae was then suspended in 114 

deionised water at 5 % (w/v), 40 mL placed in 75 mL PTFE vials (CEM Corporation) 115 

equipped with a PTFE magnetic stirrer bar, and digested in a MARS 6 microwave digestion 116 

system (CEM Corporation) with 1,800 W. Microwave conditions ranged from 150 to 210 °C 117 

final temperature, 5 to 15 min ramping time and 0 to 10 min holding time (hereinafter as 118 

ramping+holding time). One macroalgae hydrolysate (SL, May, 190 °C, 5+0 min) was 119 

prepared as 50 mM L-(+)-tartaric acid solution (pKa 4.34, 25 °C) (pH 4 with NaOH). Another 120 

microwave hydrolysate (SL, May, 190 °C, 5+0 min) was subjected to enzymatic hydrolysis 121 

according to published procedure with slight modification.
30

 Briefly, the enzyme preparation 122 

CellicCTec2 (Sigma-Aldrich) was added to the microwave hydrolysate without buffer 123 

(section S2) at 7 mg protein/g dried macroalgae and a solution of 20 mL incubated at 50 °C 124 

and 200 rpm in a shaking incubator (SI500, Stuart) for 20 h. Prior to fermentation, remaining 125 
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solids were removed from any hydrolysate by centrifugation to avoid interference with cell 126 

growth assessment. 127 

 128 

Table 1. Investigated macroalgae species, their type and notation. Macroalgae were harvested from 129 

the South West UK coast in August, and S. latissima additionally in May.  130 

Notation Scientific name Type 

UL Ulva lactuca green 
UI Ulva intestinalis green 

JR Jania rubens red 

PL Porphyra leucosticta red 
DC Dilsea carnosa red 

SC Soliera chordalis red 

SS Stypocaulon scoparium brown 

SM Sargassum muticum brown 

AN Ascophyllum nodosum brown 
HS Halidrys siliquosa brown 

FS Fucus serratus brown 

SL Saccharina latissima brown 

 131 

 132 

Media, strains and culture conditions 133 

Ten M. pulcherrima strains were used: locally (Bath, UK) isolated from fruit and flowers 134 

(section S1) ICS 1, 46 & 48; DH 3, 5, 10, 18 & 21; and commercially available NCYC 2580 135 

& 3047 (National Collection of Yeast Cultures, Norfolk, UK). Strains were kept at -80 °C as 136 

20 % (v/v) glycerol stocks, from which agar plates (YMD: yeast extract 10 g L−1
; malt extract 137 

20 g L
−1

; glucose 20 g L
−1

; agar 15 g L
−1

, pH 5; in deionised water) were inoculated, 138 

incubated at 20 °C for 4 days, then kept at 4 °C and renewed every four weeks. Soy-malt 139 

broth (SMB: soy peptone 30 g L
−1

; malt extract 25 g L
−1

; pH 5; in deionised water) was 140 

inoculated with a single colony in unbaffled Erlenmeyer (shake) flasks, incubated for 24 h 141 

and used as preculture for main cultures on macroalgae hydrolysate or nitrogen-limited broth 142 

(NLB: KH2PO4 7 g L
−1

; (NH4)2SO4 2 g L
−1

; NaHPO4 1 g L
−1

; MgSO4 7·H2O 1.5 g L
−1

; yeast 143 

extract 1 g L
−1

; carbon source 40 g L
−1

; pH 5; in deionised water). For shake flask and stirred 144 

tank reactor cultures preculture amounted to 2.5 % (v/v) of total culture volume, and for well 145 

plate cultivations, preculture was diluted to an OD600 of 1 through addition of phosphate-146 

buffered saline (PBS, Oxoid) before inoculation. Working volume in shake flasks was 20 % 147 
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(v/v) of flask volume (100 mL) and their incubation took place on orbital shakers (Unimax 148 

2010, Heidolph) at 180 rpm (unless specified otherwise) in temperature controlled cabinets 149 

(MLR-352-PE, Panasonic). All cultivations were carried out at 20 °C, balancing cell growth 150 

and lipid production with M. pulcherrima.
26

  151 

 152 

Well-plate cultivations on macroalgae hydrolysate 153 

In 96-well plates, 140 μL sterile filtered (0.22 μm, Millipore) macroalgae hydrolysate 154 

(August, 190 °C, 15+0 min) was inoculated with 10 μL of inoculum. Sealed with gas-155 

permeable film to avoid evaporation, the inoculated well plate was incubated at 11 Hz and 156 

3 mm amplitude (Multiskan FC, Thermo Scientific) for 72 h, with readings of OD600 157 

performed semi-hourly. The OD600 of inoculum cultured on deionised water and non-158 

inoculated macroalgae hydrolysates were subtracted from the final OD600.  159 

 160 

Shake flask cultivations on synthetic media and hydrolysate 161 

In shake flasks, M. pulcherrima ICS 1 was cultured on NLB with fucose, rhamnose, 162 

arabinose, glucose, mannose, mannitol, xylose and galactose (each separately) until stationary 163 

stage, determined through daily OD600 readings. Fermentations with selected macroalgae 164 

(August, 190 °C, 15+0 min) and yeast strain combinations were carried out for 12 days with 165 

readings of OD600 on Day 2, 5, 8 and 12. Further fermentations were performed with 166 

M. pulcherrima ICS 1 on S. latissima (May) hydrolysate, hydrolysed at different microwave 167 

conditions, enzymatically pretreated, buffered, at shaking frequency of 220 rpm (each 168 

separately), until stationary stage, determined through daily OD600 readings.  169 

 170 



 
      9 

 

Stirred tank reactor fermentations with mannitol and S. latissima hydrolysate 171 

In 2 L FerMac 320 stirred tank reactors (Electrolab), M. pulcherrima ICS 1 was cultured on 172 

1 L NLB with mannitol as well as S. latissima hydrolysate (May, 190 °C, 5+0 min) without 173 

sterility barrier. Prior to inoculation, 5 mL polypropylene glycol P 2,000 was added to control 174 

foaming, the pH lowered to 4 and kept constant with 5 M NaOH and 1 M HNO3. Aeration 175 

with 0 to 3 L min
−1

 air through a sparger with 100 µm pores and agitation with 150 to 500 176 

rpm kept the dissolved-oxygen (DO) concentration at 80 % air saturation (cascade PID 177 

control). Evaporation was minimised by a condenser (5 °C), but obtained concentrations 178 

rectified with respect to the amount of evaporated broth.  179 

  180 

Analytical methods 181 

Carbon, hydrogen and nitrogen content of dried macroalgae were determined with a CE440 182 

Elemental Analyser (Exeter Analytical) (calibrated against acetanilide with S-benzyl-183 

thioronium chloride internal standard), and further elemental analysis performed externally 184 

(Yara) via inductively coupled plasma (ICP) spectrometry. Briefly, dried macroalgae was 185 

digested in reverse aqua regia with a MARSXpress microwave digestion system (CEM 186 

Corporation), thereafter diluted, filtered and analysed on an axial Vista ICP (Varian). For 187 

determining hydrolysis solid residue, the hydrolysate solid and liquid phase were separated by 188 

filter paper (11 μm, Whatman) and the solid material oven-dried (Plus II Oven, Gallenkamp) 189 

at 105 °C until constant weight (B154, Mettler Toledo). Concentrations of monosaccharides, 190 

polyols, fermentation inhibitors, and 2-PE in hydrolysate and fermentation broth were 191 

assessed through high-performance liquid chromatography (HPLC) in a 1260 Infinity LC 192 

system (Agilent) (section S3). Total organic carbon (TOC) and total nitrogen (TN) analysis 193 

were carried out with an automated TOC-L analyser (Shimadzu) (section S3). Optical density 194 

of fermentation broth was assessed at 600 nm (OD600) in a spectrophotometer (Spectronic 195 
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200, Thermo Fisher Scientific). For determination of yeast DCW, the culture was centrifuged, 196 

the supernatant set aside, the pellet re-suspended in deionised water, centrifugation repeated 197 

and supernatant discarded. Subsequently, the pellet was frozen (-80 °C), lyophilised and its 198 

dry weight gravimetrically assessed (B154, Mettler Toledo). Lipids were extracted with an 199 

adapted Bligh and Dyer method
31

 and their fatty acid profile determined according to standard 200 

procedures (section S4). 201 

  202 

Replication and statistical methods 203 

Analysis of dried macroalgae and hydrolysates was performed in duplicates or triplicates and 204 

cultivations in singles to triplicates as stated in figure/table captions. The significance of 205 

differences in yeast growth characteristics was determined through one-way analysis of 206 

variance (ANOVA), normality and homogeneity tested through histograms, skewness-207 

kurtosis, Shapiro-Wilk and Levene’s test; and significantly different means identified through 208 

post-hoc analysis (Tukey), all carried out in SPSS Statistics (IBM).  209 
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Results and discussion 210 

 211 

Suitability of macroalgae for microbial lipid fermentation 212 

The macroalgae species investigated varied distinctly in their elemental composition, with 213 

carbon contents ranging from 15.0 % (w/w) in Jania rubens, through to 36.2 % (w/w) in 214 

Porphyra leucosticta (Figure 1). Seasonal compositional variation was observed with 215 

S. latissima, harvested in August and May (Figure 1). Macro- and micronutrients were 216 

abundant in all investigated species (Figure 1 & S1), demonstrating the suitability for 217 

microbial fermentation. However, the carbon-nitrogen (C/N) ratio of macroalgae varied 218 

between 9.4 and 34.0 g g
−1

 for Soliera chordalis and S. latissima (May), respectively (Figure 219 

1), and most oleaginous yeasts typically require C/N ratios of above 30 g g
−1

 for reasonable 220 

lipid production, with other nutrients in excess. The C/N ratio for S. latissima has previously 221 

been reported lower in the winter months,
32,33

 but specific harvesting location could have 222 

influenced this discrepancy.
32

 Furthermore, phosphorus is in an excess with carbon-223 

phosphorus (C/P) ratios of macroalgae ranging between 93.7 and 584.6 g g
−1

 (Figure 1).  224 

 225 

 226 

Figure 1. Macronutrients (semi-quantitively), carbon-nitrogen (C/N) and carbon-phosphorus 227 

(C/P) ratios (total carbon) of all species of dried macroalgae investigated (Table 1) (n=3, 228 
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mean). Twelve different macroalgae were harvested in August and S. latissima (SL) 229 

additionally in May.  230 

 231 

Different species of macroalgae exhibit large differences in their susceptibility to undergo 232 

hydrothermal decomposition (Figure 2a). No correlation could be elucidated between the 233 

extent of decomposition and the elemental composition of the macroalgae. Milder microwave 234 

conditions resulted in lower hydrothermal decomposition, associated with lower carbon 235 

release into the hydrolysate (Figure 2). Microwave hydrothermal pretreatment was found to 236 

be highly suitable for S. latissima, where 69.6 to 85.2 % (w/w) of macroalgal carbon could be 237 

recovered into the hydrolysate (Figure 2b). 238 

 239 

 240 

Figure 2. Solid residue (a) and efficiency of carbon release as well as carbon-nitrogen (C/N) 241 

ratio (total organic carbon) of the hydrolysate (b) for each species of dried macroalgae (Table 242 

1) after microwave (MW) hydrothermal pretreatment (n=3, mean). Twelve different 243 

macroalgae were harvested in August and hydrolysed at 190 °C, 15+0 min, and S. latissima 244 

(SL), harvested in May, at six different MW conditions.   245 
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 246 

The different microwave release efficiencies of carbon and nitrogen (Figure 2b & S2) resulted 247 

in C/N ratios from 5.0 to 68.3 g g
−1

 for J. rubens and S. latissima (May), respectively, thus 248 

only in favour of oleaginous yeasts for certain macroalgae (Figure 2b). Specifically, 249 

S. latissima (May) hydrolysate indicated C/N ratios suitable for most oleaginous yeasts, given 250 

the entire TOC can be accessed. 251 

 252 

 253 

Figure 3. Monosaccharide and polyol content in all hydrolysates used in this study with 254 

respect to the dried macroalgae supplied (a) and their share of the total organic carbon (TOC) 255 

(b) (n=3, mean). The first data set depicts twelve macroalgae (August, Table 1), 256 

depolymerised through microwave pretreatment (190 °C, 15+0 min). The second set includes 257 

S. latissima (SL, May) depolymerised at six different microwave (MW) conditions. The third 258 

set involves SL (May & August), depolymerised through microwave (190 °C, 15+0 min and 259 

5+0 min, respectively) and enzymatic pretreatment (50 °C, 20 h). Stars indicate the 260 

corresponding results prior to enzymatic pretreatment.  261 
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 262 

The percentage of monosaccharides and polyols comprising the hydrolysate TOC varied 263 

between macroalgae species, but also depended on harvesting time, as well as microwave 264 

conditions and additional enzymatic pretreatment (Figure 3). Dried S. latissima (August) 265 

constituted of over 17.1 %  (w/w) mannitol, which complies with published data
33,34

 and 266 

underlines its suitability for microbial cultivation. The considerable seasonal effect on 267 

macroalgae composition is demonstrated with hydrolysate of the same species harvested in 268 

May, containing 96.8 mg mannitol g
-1

 macroalgae (Figure 3a) – in line with observation in 269 

other studies, where mannitol concentration peaks typically between June and September,
33–35

 270 

constituting an ultimate carbon storage compound for growth in winter.
36–38

 The increased 271 

presence of glucose in hydrolysate obtained with longer holding time (190 °C, 5+10 min) 272 

indicates that some polysaccharides were broken down into their constituents.  273 

Through application of enzymes to degrade macroalgal structural (alginate, cellulose) 274 

and storage (laminarin) polysaccharides, as performed in many fermentation studies,
1,14,17,21

 275 

the monosaccharide yield for S. latissima (May) could be enhanced by 460 % (w/w) (Figure 276 

3a). For certain macroalgae, however, single-step microwave pretreatment is sufficient to 277 

release monosaccharides: they were only increased by 14 % (w/w) through additional 278 

enzymatic pretreatment of S. latissima (August) hydrolysate (Figure 3a), removing the benefit 279 

of this additional step representing up to 20 % cost of the overall process.
39

 Similarly, acid 280 

addition prior to microwave treatment to enhance monosaccharide yields may only be 281 

necessary for certain macroalgae such as A. nodosum
18

, as comparable monosaccharide yields 282 

have been achieved with only water herein.  283 

The results demonstrate that microwave processing can be applied to the feedstock 284 

effectively producing a fermentable medium containing polysaccharides, polyols and 285 

monosaccharides. To access the full range of carbon sources solubilised, coupling with a 286 
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suitable microorganism is necessary, to this end M. pulcherrima was selected due to the 287 

ability to catabolise certain oligosaccharides.
23

  288 

 289 

M. pulcherrima’s suitability for macroalgae fermentation 290 

The suitability of M. pulcherrima for fermentation of macroalgae hydrolysates was assessed 291 

through its growth, lipid and 2-PE production on a range of macroalgae-specific carbon 292 

sources.
40

 M. pulcherrima strain ICS 1 metabolised C6 monosaccharides glucose, mannose 293 

and galactose, polyol mannitol and C5 monosaccharide xylose (Figure 4). 294 

 295 

  296 

Figure 4. Final dry cell weight, lipids and 2-phenylethanol concentrations (a) and OD600 297 

profiles (b) for shake flask fermentations (20 °C, 180 rpm) of M. pulcherrima ICS 1 on 298 

synthetic nitrogen-limited broth with 40 g L
−1 

of monosaccharides and polyols typically 299 

present in macroalgae (n = 3, mean ± SE). The yeast was cultivated until stationary stage.  300 

 301 
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The DCW increased when switching from glucose to any other assimilable carbon source, the 302 

highest biomass yield of 0.41 g g
-1

 being achieved with galactose. Importantly, the DCW 303 

increase was 32 % (w/w) using mannitol – the polyol prevalent in brown macroalgae and 304 

available in highest quantities in the produced microwave hydrolysate (Figure 3). Growth 305 

kinetics and lipid accumulation favour utilisation of C6 monosaccharides and polyols (tstat = 306 

4 d) compared to C5 monosaccharide xylose (tstat = 7 d). Comparably slow assimilation of C5 307 

monosaccharides is frequently observed with oleaginous yeasts and diverse effects on lipid 308 

production have been reported.
41,42

 For M. pulcherrima, the lipid content was 10.7 % (w/w) 309 

below the average of 12.6 % (w/w). Similarly, 2-PE production was lowest for xylose 310 

(13.1 mg L
−1

), compared to the highest of 61.8 mg L
−1

 for mannitol. A final pH of 1.9 (table 311 

S1), contributable to the nitrogen source being NH4
+
 upon which assimilation H

+
 is released, 312 

together with the carbon source being fully utilised indicates that the yeast can grow under 313 

highly acidic conditions, a further mechanism to reduce bacterial contamination. A few 314 

carbon sources could not be assimilated under the given conditions, most prominently 315 

rhamnose, abundant in many green macroalgae such as Ulva spp.
1
, but not highly present in 316 

the herein produced hydrolysates (Figure 3).  317 

 As a major constituent of the microwave hydrolysates (Figure 3), mannitol was chosen 318 

as the carbon source in a model system to investigate performance in controlled 2 L stirred 319 

tank reactors (figure S3). Compared to respective shake flask results, both biomass and lipid 320 

synthesis were increased, reaching yields of 0.55 g g
−1

 and 0.13 g g
−1

, respectively (figure 321 

S3). Presumably the increased production on the larger scale was achieved through sustaining 322 

high dissolved oxygen throughout the fermentation, a major limitation in using shake flasks.  323 

Whilst the pH did not significantly influence final biomass and lipid production, emphasising 324 

the yeast’s acidophility, 2-PE production decreased from 142 mg L
−1

 at pH 4 to 80 mg L
−1

 at 325 
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uncontrolled pH (table S2), demonstrating the importance of pH control on the 2-PE 326 

biochemical pathway.
43

  327 

 328 

M. pulcherrima with different macroalgae species  329 

With M. pulcherrima identified as suitable microorganism for bioconversion of macroalgae 330 

hydrolysates, the twelve macroalgae species (August) were screened in combination with 331 

alternate M. pulcherrima strains, and growth kinetics and attainable cell density assessed. 332 

Significantly, different yeast growth characteristics were observed on different macroalgae 333 

hydrolysates (p < 0.001) containing different (amounts and types of) saccharides, inhibitors 334 

and other growth compounds (Figure 1 & 3). Variation was also observed between the M. 335 

pulcherrima strains, although not significant (p = 0.128) (Figure 5).  336 

 337 

 338 
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Figure 5. Final OD600 (a+b) and maximum growth rate (c) of ten M. pulcherrima strains 339 

grown on microwave hydrolysates (190 °C, 15+0 min) of twelve different macroalgae species 340 

(Table 1, August) in 96-well plates (20 °C) (n = 3). Contribution of inoculum and hydrolysate 341 

to the final OD600 were subtracted. Box plots indicate 25
th

 to 75
th

 percentile including median, 342 

+ the mean, whiskers upper and lower adjacent values; and plot colours in (a) type of 343 

macroalgae species. 344 

 345 

On average, highest OD600 of 0.50 was achieved on S. latissima and highest OD600 of 0.64 346 

was observed in combination with DH 21 (Figure 5a+b). Final OD600 was dependent on 347 

macroalgae type, with best growth achieved on the brown macroalgae, averaging a final 348 

OD600 of 0.37, when compared to green (0.19) and red macroalgae (0.16). It has been argued 349 

that brown macroalgae represents a “principal feedstock” due to high carbohydrate contents, 350 

availability for mass-cultivation
6,44

 and superior biosorbent characteristics
45

 – despite their 351 

photosynthetic efficiency being generally lower than those of green and red macroalgae.
44

  352 

Amongst the best growing yeast strains are ICS 1 & 48, both of which achieved an averaged 353 

OD600 exceeding 0.3. Highest maximum averaged growth rate of 0.24 h
−1

 was achieved by 354 

ICS 1 (Figure 5c).  Of note, flocculation of yeast cells was observed when growing DH 3 and 355 

10 on J. rubens and Ulva lactuca hydrolysate, respectively (figure S4). This could be 356 

considered beneficial in a bioprocess where rapid settling of biomass is desired.  357 

Scaling up to shake flasks, M. pulcherrima ICS 1 was selected to ferment the full 358 

range of macroalgae hydrolysates, based on favourable kinetics and balanced growth within 359 

each macroalgae type. As with 96-well plate cultures, highest growth was generally achieved 360 

on brown macroalgae hydrolysates, specifically S. latissima, yielding 5.65 g L
−1

 yeast 361 

biomass (Figure 6).  362 

 363 
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 364 

Figure 6. Dry cell weight and biomass yield with respect to total organic carbon (TOC) in the 365 

hydrolysate (a) and pH change (b) after 12-day shake flask fermentations (20 °C, 180 rpm) of 366 

M. pulcherrima ICS 1 on microwave hydrolysate (190 °C, 15+0 min) of different macroalgae 367 

species (Table 1, August) (n = 3, mean ± SE). Colours indicate type of macroalgae species. 368 

 369 

OD600 measurements (figure S5) showed that 83 % of cell growth was achievable in the first 370 

two days, indicating that the gross of assimilable carbon sources is readily available under 371 

these conditions. In contrast to growth on NLB, a pH increase to neutral or slightly basic 372 

conditions was observed in all cases (Figure 6b), due to the yeast metabolising proteins and 373 

amino acids, whereby NH4
+
 is released into the medium.  374 

To further narrow down the macroalgae/yeast strain combinations qualifying for 375 

potential larger scale fermentation, additional combinations were selected based on 96-well 376 

plate final cell densities, growth kinetics, and yeast flocculation (figure S6). Similar DCW 377 

values were achieved with other strains on S. latissima hydrolysate, including ICS 46 and DH 378 

21 (5.29 to 5.68 g L
−1

), indicating biochemical similarity between the strains in terms of their 379 

metabolic capability. While this might be unfavourable for directed evolution purposes, it is 380 
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beneficial from a stability point of view as – despite strain variation – the results are attainable 381 

with a range of M. pulcherrima wild type strains. Concentration of 2-PE ranged from 1.1 to 382 

47.2 mg L
−1

, with most yeast strains producing relatively minor amounts (figure S6). 383 

Importantly, distinct strain dependence was observed: for example, when grown on S. 384 

latissima hydrolysate ICS 1 & 46 produced just 7.8 and 5.1 mg L
−1

 2-PE, respectively, but 385 

DH 21 produced 47.2 mg L
−1

 from the same hydrolysate (table S3, figure S6). This versatility 386 

of M. pulcherrima could become key in a biorefinery setting in which products may be 387 

prioritised depending on constantly shifting commercial attractiveness.  388 

Under the given conditions, brown macroalgae constitute a superior substrate for 389 

fermentation with M. pulcherrima, with S. latissima standing out due to its high mannitol 390 

content. Its potential as a possible energy crop has been emphasised
6
 and it has previously  391 

been utilised to produce both biogas
15,16

 and bioethanol.
17

 As natural resources of S. latissima 392 

(mainly north Atlantic and Pacific
37

) are limited and to avoid ecological damage, locations for 393 

commercial aquacultures are being explored.
46,47

  394 

 395 

Factors influencing M. pulcherrima performance with S. latissima 396 

Further shake flask fermentations were carried out with S. latissima (May) hydrolysate 397 

investigating the effect of harvesting time, microwave conditions, pH buffering and aeration. 398 

Generally lower cell growth in the subsequent sections is a consequence of the different 399 

harvesting time of the macroalgae.  400 

 401 

Microwave conditions 402 

The hydrothermal pretreatment conditions included different temperatures, ramping and 403 

holding time. The liberation of additional monosaccharides through longer ramping time 404 

(Figure 3) did not lead to enhanced growth nor lipid production, hence ramping time was 405 
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reduced to 5 min (Figure 7a). The breakdown of S. latissima polysaccharides through longer 406 

holding time (Figure 3) ultimately led to higher DCW, though degradation compounds caused 407 

an inhibitory effect which led to a lag time of up to 24 hours (Figure 7b). During 408 

fermentation, 5-HMF and furfural were nearly fully degraded by the yeast (figure S7), as 409 

similarly observed with other oleaginous yeast.
48

 The proposed polysaccharide 410 

depolymerisation through microwave heating thus comes at the expense of inhibitor 411 

formation, a behaviour common to hydrolysates generated with most acid and thermal 412 

pretreatments.
20,44

 Previously, M. pulcherrima has been demonstrated to have a high inhibitor 413 

tolerance,
49

 indeed this is not necessarily a disadvantage as the hydrolysate would be less 414 

prone to contamination when utilised in an open system. A maximum lipid content of 415 

24.7 % (w/w) was achieved at mild microwave conditions (150 °C, 5+0), with the lipid 416 

content negatively influenced at higher inhibitor concentrations (Figure 7 & S7).  417 

 418 

Figure 7. Growth of M. pulcherrima ICS 1 on macroalgae S. latissima (May) hydrolysed 419 

through microwave hydrothermal pretreatment at different target temperatures and ramping + 420 
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holding times, for 3 days in shake flasks (20 °C, 180 rpm) (n = 3, mean ± SE). (a) Dry cell 421 

weight and pH change. (b) OD600 profile (error bars supressed for clarity).  422 

 423 

Culture conditions 424 

Culture conditions were changed to approach controlled stirred tank fermentation, meaning 425 

the pH was buffered around pH 4 and aeration enhanced through higher shaking frequency. 426 

Whilst pH control enhanced growth, similar lipid concentrations could be obtained despite 427 

lower lipid content at pH mediated around 4 (table S4). Cell growth could furthermore be 428 

enhanced by 16 % (w/w) through increased oxygenation.   429 

 430 

Enzymatic hydrolysis 431 

Compared to results from simple microwave hydrolysate of S. latissima (May), biomass and 432 

lipid concentrations could be increased by 135 % (w/w) and 168 % (w/w), respectively, 433 

through additional enzyme pretreatment (table S5). The increase is not as high as additionally 434 

released glucose may suggest (460 % w/w), which is due to the yeast favouring mannitol 435 

(Figure 4), but also the catabolism of polymers, substantiated by the carbon assimilation with 436 

respect to monosaccharides being as high as 94.4 % (w/w) when cultured on microwave 437 

hydrolysed S. latissima (May) (figure S8). When comparing the macroalgal total carbon 438 

assimilation through yeast biomass between microwave hydrolysed S. latissima (August) and 439 

additionally enzyme hydrolysed S. latissima (May), similar values were obtained (0.23 and 440 

0.20 g g
−1

) (figure S8). Together with the monosaccharide analysis (Figure 3), this 441 

demonstrates that the seasonal composition of a single seaweed species is crucial in deciding 442 

whether an additional enzymatic pretreatment step is required.  443 

 444 
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Stirred tank reactor fermentation on S. latissima hydrolysate 445 

Fermentation of macroalgae microwave hydrolysate was assessed on a 2 L stirred tank reactor 446 

scale to establish growth kinetics of macroalgae utilisation and investigate the viability of the 447 

proposed process under more controlled conditions (pH 4, DO 80 %). S. latissima microwave 448 

hydrolysate (May, 190 °C, 5+0 min) was selected from the shake flask results. During 449 

exponential stage, a maximum growth rate of 0.10 h
−1

 and corresponding doubling time of 450 

6.7 h was recorded (figure S9), largely through assimilation of mannitol (Figure 8a). 451 

Moreover, the yeast catabolised proteins/amino acids, indicated by the attempted pH increase 452 

counteracted by HNO3 addition from 12 to 41 h (figure S9), and polysaccharides (figure S10). 453 

With a final lipid content of 37.2 % (w/w), yeast biomass and lipid yields were 0.14 g g
−1

 and 454 

0.05 g g
−1

 with respect to supplied dried macroalgae, and 0.21 g g
−1

 carbon deposition in the 455 

yeast biomass in relation to the macroalgal carbon. The more than 2-fold DCW increase 456 

compared to shake flask fermentations on the same hydrolysate can be largely contributed to 457 

sustained oxygen availability. The high lipid content together with the high nutrient 458 

availability in macroalgae also means that nutrient limitation may not be such a key factor in 459 

M. pulcherrima as with other oleaginous yeasts.
14

 Saturation of produced lipids decreased 460 

with fermentation time, and the final product possessed similar composition to soybean oil 461 

(Figure 8b). 462 
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 463 

Figure 8. Dry cell weight, lipid and mannitol concentration (a) and fatty acid profile (b) in 464 

2 L stirred tank reactor fermentation of M. pulcherrima ICS 1 on S. latissima microwave 465 

hydrolysate (May, 190 °C, 5+0 min) at pH 4, 20 °C and DO 80 % (n=1). LC: lipid content. 466 

Each data point is average value from two independent measurements (SD < 23 %). 467 

 468 

The oleaginous yeast M. pulcherrima has shown versatile characteristics in breaking down 469 

macroalgae compounds, including growing on a wide pH range, degrading inhibitors and 470 

producing variable amounts of lipids and 2-PE. Although following microwave processing 471 

M. pulcherrima could degrade macroalgae polysaccharides, the majority remained in the 472 

fermentation broth, hindering higher biomass conversion ratios. To fully valorise the available 473 

polysaccharides, additional processing such as extraction or breakdown
1,29

 may be considered 474 

or genetic modification to expand the metabolic repertoire may be necessary.
19

 As non-475 

sterility and the absence of supplementary enzyme addition  potentially make the proposed 476 

process particularly low-cost, the benefit of those additional treatment must be economically 477 

assessed. Finally, the results emphasize the importance of using controlled reactors as part of 478 

an industrial biotechnology screening process.  479 
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Synopsis 617 

 618 

The proposed process provides a sustainable source of renewable edible oil from macroalgae 619 

through integration of low-energy microwave and microbial fermentation technology.  620 
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