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INTRODUCTION

Phytoplankton perform about half of global photo-
synthesis, form the base of the marine food web, and
are important drivers of biogeochemical cycles (Field
et al. 1998). Model projections of changes in phyto-
plankton primary production with climate over the
next century are extremely variable (Finkel et al.
2010, Finkel 2014). Projections of changes in commu-
nities and biogeochemical cycling usually depend on
mechanistic models of phytoplankton productivity
parameterized with traits of phytoplankton species
(Le Quéré et al. 2005, Litchman et al. 2006). The traits
used in models vary according to the research ques-
tions, but most commonly include maximum growth
rate, Arrhenius-like temperature effects on growth

rate, half-saturation parameters linking the growth
rate to resource availability, and grazing susceptibil-
ity (Litchman et al. 2007, Irwin & Finkel 2017). At
present, many of these parameters are not well con-
strained for phytoplankton communities (Anderson
2005, Irwin & Finkel 2017).

Phytoplankton are evolutionarily and ecologically
diverse and include many phyla and tens of thou-
sands of species (Sournia et al. 1991, de Vargas et al.
2015). This complexity presents several challenges
for trait-based modeling. Trait values measured in
the laboratory are almost always determined for a
few key species that in models of natural communi-
ties are usually applied to a range of dozens to thou-
sands of species. The aggregation of similar species
into functional types defined by biogeochemistry
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greatly simplifies models, but there is no clear way to
decide which species should be used as representa-
tives of each functional type (Merico et al. 2004, Le
Quéré et al. 2005, Hood et al. 2006). Trait values for
species in the same functional type and trait values
used in models vary widely, commonly by a factor of
10 to 100 (Anderson 2005, Irwin & Finkel 2017). It is
not clear how to average trait values across species to
represent a functional type since phytoplankton
growth rate is a non-linear function of trait values.
Furthermore, species well-adapted to laboratory
conditions may not be representative of their respec-
tive functional types growing in natural communi-
ties. A second set of challenges concerns the diffi-
culty of using laboratory-based estimates of trait
values in a field context. Trait values quantified using
laboratory cultures under controlled conditions are
stable under repeated measurement, but there is a
challenge in identifying the most appropriate condi-
tions for culture experiments. For example, the max-
imum growth rate is commonly estimated in the lab-
oratory, but differences in culture conditions from
one laboratory to another imply that there is always
some doubt about the true maximum growth rate for
a species (Boyd et al. 2013). Trait values, including
maximum growth rate and nutrient uptake rates,
estimated in the field can differ substantially from
those measured in the laboratory (Furnas 1991, Laws
2013, Lomas et al. 2014). Cultures grown under equi-
librium conditions in the laboratory may not reveal
key acclimation traits or the consequences of envi-
ronmental variability that can be crucial to the fate of
phytoplankton in natural communities (Grover 1991,
Raven 2011). In summary, trait values for most phyto-
plankton species are not available and currently
there is not enough data to strongly constrain trait
values used in functional type models (Anderson
2005, Flynn et al. 2015).

An approach that addresses many of these chal-
lenges for determining trait values for functional
types is to estimate those values from long-term time
series of natural communities observed in the field.
Our goal is to obtain quantitative estimates of trait
values that define the dynamics of the biomass of
phytoplankton functional types. These trait values
will be affected by the species that are present in the
community, the range of environmental conditions
observed, the spectrum of environmental variability,
as well as abiotic and biotic interactions. We call
them ‘realized traits’ in recognition that they are not
the fixed traits of a particular species. This label is an
echo of the difference between fundamental and
realized niches, where the realized niche is meas-

ured in a community and can differ from the funda-
mental niche (Hutchinson 1957, Colwell & Rangel
2009). Here we obtain realized trait values by fitting
a model of biomass dynamics to time series of phyto-
plankton functional type biomass and coincident
environmental conditions. The model describes tem-
poral biomass changes in terms of net growth rate
modified by temperature, irradiance, total available
nitrogen concentration, and a density-dependent loss
term. Realized trait values estimated from field data
may be quite different from trait values obtained in
the laboratory and may vary across communities in
different locations. The advantage of these realized
traits compared to species-level traits quantified in
the laboratory is that these traits by definition de -
scribe observed community dynamics.

MATERIALS AND METHODS

Data

We used data from the Western Channel Observa-
tory (WCO) oceanographic time series (www.west-
ernchannelobservatory.org.uk) in the Western English
Channel. The WCO data include phytoplankton, zoo-
plankton, and fish trawls together with measurements
of several physical and chemical environmental pa-
rameters such as temperature, salinity, and nutrient
concentrations. The data used here were collected at
Station L4 (50° 15.00’ N, 4° 13.02’ W) located about
10 km south of the Plymouth breakwater with a water
column depth of about 50 m (Harris 2010). We used
349 weekly observations, collected over a 7 yr period
spanning 15 April 2003 through 31 December 2009, of
taxonomically resolved phytoplankton abundance,
temperature, nitrate, nitrite, and ammonium concen-
trations sampled at 10 m depth in the upper mixed
layer, and sea-surface irradiance. Average biovolume
measurements were recorded for each species (Wid-
dicombe et al. 2010) and converted to carbon content
(Menden-Deuer & Lessard 2000) to obtain biomass
concentrations (mg C m−3) for each species. We used
observations of 193 taxonomic categories identified as
138 species, 27 genera, and 28 size-classes for broader
morphological categories. Biomass concentrations
were aggregated into 4 functional types: diatoms,
dinoflagellates, coccolithophorids, and phytoflagel-
lates. The phytoflagellate type is taxonomically di-
verse but is dominated (>50% of the biomass) by
unidentified flagellates <5 µm in diameter. Some spe-
cies may be benthic or tychoplanktonic. We added to-
gether the concentrations of nitrate, nitrite, and am-
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monium to obtain a single inorganic nitrogen (mg
m−3) concentration. Most of the variation in total nitro-
gen concentration is due to variation in nitrate con-
centration. Irradiance (mol m−2 d−1) was measured
continuously from Plymouth Marine Laboratory near
Station L4 and averaged over the day. Data for
missing weeks were imputed by linear interpolation
using the na.approx function from the zoo library in R
(R Core Team 2016).

Model

We describe the multiplicative growth rate of each
functional type’s biomass as the product of the fol-
lowing 5 components: (1) a net growth rate reduced
by limitation due to either low light or low nitrogen
concentration, (2) a temperature effect, (3) a density
feedback term dependent on the biomass of the focal
functional type, (4) a density feedback term depend-
ent on the biomass of all phytoplankton not in the
focal functional type, and (5) a positive multiplicative
noise term. The change in biomass from one week to
the next (from Week w − 1 to Week w) for each func-
tional type i is modeled by multiplying the biomass in
Week w − 1 by the (multiplicative) growth rate
according to a stochastic Gompertz model (Saitoh et
al. 1997, Mutshinda et al. 2009, 2011). We chose to
model the net growth rate as a linear combination of
density-independent growth rate and density-
dependent losses, which is most appropriate given
the lack of direct information about grazing rates,
grazer biomass, or viral abundance. Therefore, the
biomass concentration Yi,w (in mg C m–3) of the ith
functional type for each week after the first (w ≥ 2) is
described by:

Yi,w = Yi,w–1 exp{ri,w + αiln(Yi,w–1)+ φiln(Zi,w–1)}ηi,w (1)

where Zi,w is the combined biomass concentration
of all phytoplankton not including the ith functional
type during week w. The growth rate, which ap -
pears in the exponent of Eq. (1), is composed of a
density-independent component, ri,w, and a density-
dependent component, αilog(Yi,w–1) + φilog(Zi,w–1).
Stochastic noise enters the biomass dynamical
model (Eq. 1) through the random multiplicative
noise terms ηi,w >0, assumed to be serially inde-
pendent and log- normally distributed with median
1 and mean exp(σ2

i,w/2), so that the natural loga-
rithms, ln(ηi,w), are independently zero-mean nor-
mal with respective variances σ2

i,w. The species-
specific error variance σ2

i,w lumps together sampling
error and the variability due to other potentially
important factors not included in the model. Sam-
pling error can be re duced by using replicated
samples. The log-normal distribution adopted here
is widely used to describe species abundance and
biomass patterns (MacArthur 1960, Sugihara 1980)
on theoretical and empirical grounds. In an earlier
study (Mutshinda et al. 2016), we found phyto-
plankton biomass at this site to be well described
by the log-normal distribution. The notation is
summarized in Table 1.

The traits to be estimated appear in the multiplica-
tive growth rate. The density-independent compo-
nent of the growth rate for functional type i from
Week w − 1 to Week w, ri,w, depends on Michaelis-
Menten functions of irradiance (PAR, mol m−2 d−1)
and nitrogen concentration (N, µmol l−1), and a func-
tion of temperature (T, °C), according to:
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Symbol         Units           Interpretation

Yi, yi          mg C m−3       Biomass, log biomass of functional types or species in Week i
Ti                     °C             Temperature in Week i
Ni              µmol N l−1      Total inorganic N in Week i
PARi         mol m−2 d−1     Sea-surface irradiance in Week i
μ, μS               wk−1

                Maximum net growth rate for a functional type, species
r, rS                       wk−1                Realized net growth rate for a functional type, species
KN, KN

S     µmol N l−1      Half-saturation constant for growth as a function of N concentration for a functional type, species
KE, KE

S     mol m−2 d−1     Half-saturation constant for growth as a function of irradiance for a functional type, species
β, βS           wk−1 °C−1       Magnitude of linear increase in net growth rate with temperature, temperature sensitivity
                                         for a functional type, species
ρ, ρS                 °C             Temperature with maximum growth rate for a functional type, species
α, αS                                 Density-dependent loss coefficient within functional type, diatom species
φ, φS                                  Density-dependent loss coefficient due to other functional types, other diatom species

Table 1. Key symbols for data and traits in the models. Traits for diatom species (as opposed to functional types) have a 
superscript S
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where ρi denotes the optimum growth temperature
for the biomass of functional type i and βi > 0 is a tem-
perature sensitivity parameter quantifying the
increase in the density-independent growth rate ri,w

for a 1°C change in temperature towards the opti-
mum temperature ρi and vice versa. Saturating func-
tions of irradiance and nutrient concentration and
their combination with a minimum function are com-
monly used to moderate growth rate (Denman &
Peña 1999, Healey et al. 2009). The net growth rate μi

> 0 is the density-independent growth rate of the ith
functional type at optimal temperature, irradiance,
and nitrogen concentration. The effects of irradiance
and nitrogen concentration on the growth rate are
represented by saturating functions parameterized
by the half-saturation constants KE,i > 0 and KN,i > 0
representing, respectively, the irradiance level and
nitrogen concentration at which the net growth rate
at optimal temperature drops to μi/2. The Michaelis-
Menten saturating functions are combined with a
minimum function so that only the most limiting re -
source affects growth rate at a time, according to
Liebig’s law of the minimum (van der Ploeg &
Kirkham 1999). During model development, we
explored the possibility of a multiplicative interaction
between light and nutrients, but we found the results
to be more difficult to interpret.

To accommodate density-dependent factors in -
cluding grazing, viral attack, aggregation, and sink-
ing, we introduce density-dependent loss terms. In
the absence of direct observations of these losses, we
parameterize the density-dependent losses with αi

and φi to quantify the feedbacks on the growth rate of
the ith functional type from its own biomass and from
the combined biomass of the other functional types in
the community, respectively. The terms involving αi

and φi distinguish 2 different density-dependent loss
terms, which could result from specialist and gener-
alist grazer populations, respectively. For purposes of
estimating the parameters in the model, we rewrote
Eq. (1) on the natural logarithmic scale as:

yi,w = yi,w–1 + ri,w + αiyi,w–1 + φizi,w–1 + εi,w (3)

where yi,w = ln(Yi,w), zi,w = ln(Zi,w), and εi,w = ln(ηi,w).
We adapted the functional-type level model

described above to define traits at the species level.
This task was challenging for 2 reasons, namely the
greatly increased number of parameters to be esti-
mated and the fact that most species are absent from
the time series for most of the time, either because
they were absent or their abundance was below the
detection limit. By contrast, missing values were rare
in the time series of functional type biomasses. We

restricted the species-level analysis to the 10 diatoms
that were observed in about half of the sampling
occasions or more. These species may not be repre-
sentative of the functional type dynamics as a whole
because the selected species only represent 11% of
the diatom functional type biomass. In order to esti-
mate a growth rate, biomass observations for any
particular species must be available on numerous
pairs of successive weeks. We extracted pairs of
observations from the full time series to estimate the
growth rate from Weeks w − 1 to w, conditional on
the species being observed during Week w − 1. The
species-level model differed from Eqs. (1) to (3) only
in the definition of the biomass terms Yi,w and Zi,w,
and the interpretation of the density-dependent
terms α and φ. To emphasize the differences between
the functional type and species-level models, we
have added a superscript S to the notation for each
trait in the species-level model. In the species model,
Yi,w is the biomass of species i in Week w, and Zi,w is
the sum of the biomass of all species in the same
functional type as species i, except for species i, in
Week w. The density-dependent parameter α
reflects the effect of species i on itself while φ
describes the density-dependent effect due to all
species in the same functional type as species i,
except for species i.

The model is developed with a Bayesian approach
(Gelman et al. 2013). Briefly, Bayesian analysis
departs fundamentally from classical statistical meth-
ods in that it treats any unknown quantity θ as a ran-
dom variable. As a result, Bayesian inference re quires
the specification of a probability distribution p(θ),
called prior distribution, to describe the uncertainty
about plausible values of θ before taking the data into
consideration. Upon observing the data, y, the likeli-
hood function p(y |θ) of the data is combined with the
prior distribution p(θ) to produce the posterior distri-
bution p(θ |y ) which results from Bayes’ rule as:

(4)

The quantity p(y) that appears in the denominator
of Eq. (4) is the marginal distribution of the data, de -
fined as p(y) = ∫Θp(y |θ)p(θ)dθ , which is nothing but a
normalizing constant required to make p(θ |y ) inte-
grate to 1 over the parameter space Θ so that it is a
proper probability distribution. Therefore, Eq. (4) can
be written as p(θ |y )∝p(y |θ)p(θ), where ∝ stands for
‘proportional to’.

The posterior distribution p(θ |y ) represents the
data-updated information and, as such, is the basis
of Bayesian inference about unknown quantities

p( )
p( )p( )

p( )
y

y
y

θ =
θ θ
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including model parameters, missing values, and yet
unseen data (prediction). Having an entire distribu-
tion rather than mere point estimates allows one to
fully account for uncertainty. Bayesian conclusions
are essentially probability statements based on the
posterior distribution. All Bayesian computations are
based on probability rules, resulting in more intuitive
statements than counterparts in classical statistics.

The main problem of Bayesian inference comes
from the difficulty in evaluating integrals like the one
in the denominator of Eq. (4). In most practical cases
the posterior is not available in closed-form, and sam-
pling-based algorithms, mostly Markov chain Monte
Carlo (MCMC) methods (Gilks et al. 1996, Gilks
2005), are typically used to simulate from the joint
posterior distribution and base posterior inferences
on the simulated samples. The rationale of MCMC
sampling is to set up a Markov chain with a station-
ary distribution that is the distribution g of interest, in
this case the joint posterior distribution p(θ |y ). Con-
sequently, simulation of θ (1), θ (2), … from the chain
yields a series with the property that for some large
enough positive integer n, the density of θ (k), for k > n,
is approximately g. In other words, for a large
enough ‘burn-in’ period n, θ (n+1), θ (n+2), … can be
regarded as a dependent series with marginal den-
sity g. Therefore, empirical moments of this series
yield approximations of the moments of g. In dealing
with complex problems, an extension of the model
beyond the simple likelihood-prior-posterior scheme
is often required, yielding hierarchical Bayesian (HB)
models (Gelman et al. 2013).

The model fitting to the functional group biomass
data was based on independent priors defined to
be fairly uninformative for most parameters. More
specifically, we assigned standard normal priors on
the density-dependence parameters αi and φi, and
placed normal priors with mean value 13°C (the aver-
age temperature at Station L4 over the time series)
and variance 10 on the optimal temperatures ρi. We
imposed positively truncated standard normal priors
on the temperature sensitivities βi, i.e. βi~N(0,1)I(βi

> 0), where I(.) denotes the indicator function. We
also assigned Gamma(4,2) priors on the functional
group net growth, μi, and invGamma(1,1) priors on
the the functional group error variances. We com-
pleted the model specification with the following
statements of priors on the half-saturation constants
for irradiance and nitrogen: KE,i~N(0,100)I(KE,i>0)
and KN,i~N(0,0.1)I(KN,i>0). Based on our previous
experience with the L4 dataset, we defined relatively
informative priors on μ and KN to prevent model
identifiability issues. For the species model, we

defined the prior distributions on μ, KE, KN, and β to
be concentrated around the functional type estimates
with relatively small variances.

Since the joint posterior is not available in closed-
form, we used MCMC methods (Gilks et al. 1996) im-
plemented in OpenBUGS (Thomas et al. 2006) to sim-
ulate from it. We ran 40 000 iterations of 2 parallel
Markov chains starting from dispersed initial values,
discarded the first 15 000 samples from each Markov
chain as burn-in period and thinned the remaining
25 000 samples by a factor of 25. We assessed the con-
vergence of the Markov chains through visual inspec-
tion of traceplots and autocorrelation functions. For all
parameters, the Markov chains mixed well, with the
sampler jumping freely around the parameter space,
as illustrated by Figs. S1, S2 & S3 in the Supplement at
www. int-res. com/ articles/ suppl/ m576 p011 _ supp. pdf.
We also conducted a simulation study to evaluate per-
formance of our model in terms of inference and pre-
diction. We extracted from the L4 functional group
biomass data the biomass of the 2 functional groups
with complete data over the time series, namely di-
atoms and phytoflagellates. We fitted our model to the
data with all environmental variables (temperature, ir-
radiance, and nitrogen concentration) set to the ob-
served values at Station L4 over the time series. We
considered the posterior predictive means as simulated
data from the hypothetical 2 functional group system
under our model, with underlying parameter values
given by the posterior mean estimates. We fitted the
model back to the simulated data. The model was ef-
fective at retrieving the underlying parameter values
as indicated by Figs. S4 & S5 in the Supplement.

RESULTS

The 3 environmental drivers of phytoplankton
growth rate included in this study (temperature, irra-
diance, and nitrogen concentration) exhibited strong,
regular seasonal oscillations over the 7 yr time series
(Widdicombe et al. 2010, Mutshinda et al. 2016). The
phytoplankton biomass for the 4 functional types each
exhibited distinctive patterns of intra-annual variation
(Fig. 1). Diatoms bloomed first, increasing steadily in
biomass from Day 60 to Day 180. Dinoflagellates and
coccolithophorids bloomed slightly later, reaching a
maximum biomass at approximately Day 225. The
amplitude of dinoflagellate biomass was the greatest
across the 4 types and their sustained maximum
growth and loss rates were also the largest. Phytofla-
gellates had the least inter-annual variability, with 2
minor biomass peaks at approximately Day 110 and
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Day 215. Our model was able to reproduce the tempo-
ral patterns in the biomass of all functional groups
with narrow posterior predictive intervals relative to
the total variation in the data (Fig. 1). There was insuf-
ficient temporal resolution in the data to observe
short-term acclimation to changing conditions, so our
focus remained on steady-state traits similar to those
usually used in phytoplankton community models.

Functional type analysis

The maximum net growth rate trait, μi, is the
largest growth rate of functional type i under any
irradiance and nutrient conditions, at its optimal tem-

perature for growth, not including density-depen-
dent grazing, but incorporating linear grazing rates.
There is substantial variability in maximum net
growth rates between functional types (whiskers in
Fig. 2a). As a group, diatoms have the largest net
growth rate with a mean doubling time of 2.5 d, fol-
lowed by dinoflagellates and coccolithophorids with
mean doubling times of 3.5 and 4 d, respectively.
Phytoflagellates have the lowest net growth rate with
an approximate mean doubling time of 5 d.

The estimated optimal temperatures for growth
for diatoms, dinoflagellates, coccolithophorids, and
phytoflagellates are 15, 20, 20 and 11°C, respectively,
implying that higher temperature conditions would
favor dinoflagellate and coccolithophorid biomass
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accumulation (Fig. 2b). As a group, dinoflagellates
are the most responsive to temperature changes,
with a temperature sensitivity parameter roughly
twice those of diatoms and coccolithophorids. On the
other hand, phytoflagellates are essentially insensi-
tive to temperature changes at Station L4, with an

estimated temperature sensitivity parameter of close
to zero (Fig. 2c).

The nitrogen (nitrate, nitrite, plus ammonia) half-
saturation constants, KN, for all groups, are compara-
ble to those found in laboratory studies and used in
models (Fig. 2d). Phytoflagellates have the smallest
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half-saturation constants for irradiance, which is con-
sistent with their relatively small amplitude of bio-
mass variation over the time series. The irradiance
half-saturation constants for the other 3 functional
groups are not credibly different from one another
(Fig. 2e).

The half-saturation constants for nitrogen concentra -
tion (posterior means ranging from 0.008 to 0.04 µmol
l−1) are quite close to the minimum values of the cor-
responding environmental data observed over the
time series (0 to 15 µmol l−1), suggesting that this trait
may not be informative for predicting the biomass
growth rate of these functional types at this location
for most of the year. Conversely, the half-saturating
constants for sea-surface irradiance (posterior me -
dians ranging from 8 to 23 mol m−2 d−1) span most of
the lower half of the inter-annual variation in irra -
diance (10 to 50 mol m−2 d−1), indicating that phyto-
plankton growth rates vary with irradiance (light is
sub-saturating) for much of the year (Fig. 2e).

All 4 phytoplankton functional types are affected
by density-dependent loss rates (Fig. 2f). These
losses have the largest effect at high biomass concen-
trations and can explain the maximum biomass con-
centration for each functional type, but they are also
active at low biomass concentrations and are respon-
sible for decreases in biomass when growth condi-
tions are unfavorable. Density-dependent losses are
a combination of grazing, viral attack, and aggrega-
tion and sinking following bloom collapse. For each
functional type, we distinguished between density-
dependent feedback due to the functional type’s own
biomass (α) and the feedback due to the aggregate
biomass of all the other functional types (φ). If the
density-dependent loss terms are primarily due to
grazing, we could interpret α as representing the
losses due to grazers specializing on 1 functional type
and φ as representing losses due to generalist grazers
supported by populations of the other functional
types. Since α < 0 for all functional types (and φ ≈ 0),
the biomass of each functional type is largely regu-
lated by specialist grazers and generalist grazers
have weak density-dependent effects.

Species-level analysis

Net growth rates of the diatom species are lower
than the functional type counterpart for all 10 species
examined (Fig. 3a). For all species, the half-satura-
tion constants for nitrogen are roughly twice as large
as the functional group estimates, and the tempe -
rature sensitivity parameters (the βS) are close to

0.10 wk−1 °C−1 (which is within the 95% credible
interval of functional group estimate), except the 2
Pseudo-nitzschia strains, which stand out with tem-
perature sensitivity parameters twice as large (Fig. 3b).
The optimal growth temperatures are extrapolated
outside the range (7.5 to 18.8°C) of observed temper-
atures for most species (not shown). The half-satura-
tion constants for irradiance for the species (not
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Fig. 3. Species-level trait values for 10 diatom species:
Nitzschia closterium, Guinardia delicatula, Pseudo-nitzschia
delicatissima, Paralia sulcata, Meuniera membranacea,
Pleurosigma sp., Cerataulina pelagica, Pseudo-nitzschia se-
riata, Diploneis cabro, and Lauderia annulata. Species are
arranged in order of the number of weeks they are present
in the time series, from N. closterium (93% of weeks) to L.
annulata (48%). (a) Maximum net growth rate, μS (wk−1); (b)
temperature sensitivity, βS (wk−1 °C−1); (c) density-depen-
dent effects on the growth rate of each species attributed to
their own biomass (αS, d) and to the total biomass of the
other species in the same functional type (φS, h). Box plots
show median (thick line), the  interquartile range (box), and
the full range of the data or 1.5 times the interquartile range,
whichever is smaller (whiskers). In panels (b) and (c) error
bars indicate 95% credible intervals on the posterior means
and are used  because posterior distributions are approxi-

mately normal



Mutshinda et al.: Phytoplankton traits from time-series data

shown) vary from 25 to 30 mol m−2 d−1. For the spe-
cies model, the density-dependent loss terms were
redesigned to identify species-specific density-
dependent loss rates and generic functional-type
density-dependent loss rates. The posterior distribu-
tions of density-dependent parameters αS and φS (Fig.
3c) imply a stronger negative feedback on each
diatom’s biomass growth from its own biomass than
from the combined biomass of other diatoms (αS < φS),
consistent with niche differentiation within func-
tional types (Mutshinda & O’Hara 2011). Some of the
αS and φS for diatoms are positive, suggesting the
presence of mutually beneficial or commensal effects
in some species.

DISCUSSION

Trait-based models of phytoplankton productivity
promise to deliver robust projections of phytoplank-
ton community dynamics under future climate sce-
narios. In the laboratory, phytoplankton traits are
estimated one species at a time but are commonly
aggregated into functional types for ocean biogeo-
chemical models (Anderson 2005, Le Quéré et al.
2005, Litchman et al. 2006). There are several chal-
lenges that arise in the estimation of phytoplankton
traits for trait-based models. Most species in diverse
communities have not been systematically studied in
the laboratory. Trait values vary across species, even
within functional types, and it is not clear how to pro-
duce an average trait value for modeling functional
types. In addition, there is considerable phenotypic
plasticity in traits. Furthermore, grazing rates, viral
and parasitic loss rates, sinking rates, and biotic
interactions, such as allelopathy or mutualisms, can
be complex and highly variable from species to spe-
cies. It is difficult to get good estimates of loss terms,
such as grazing rate and viral lysis, that are inher-
ently species specific and patchy in time and space,
and we are just starting to learn about the conse-
quences of the many, complex biotic interactions
between phytoplankton and their microbial commu-
nities (Sher et al. 2011, Amin et al. 2015). It may be
possible to overcome some of these myriad chal-
lenges using phytoplankton traits estimated directly
from field data or by combining laboratory-based
traits with niches estimated from the field (Edwards
2016). Here, we extracted functional-type and spe-
cies-level phytoplankton traits from time-series data
from a well-studied coastal temperate phytoplankton
community in the Western English Channel (Harris
2010, Widdicombe et al. 2010). The variability in trait

values we extracted from field data likely reflects in
part true variability due to acclimation of species
within communities to changing environmental con-
ditions and changing community composition through
the seasons. While some of the traits estimated here
are consistent with laboratory estimates based on
single species analyses, many are not, indicating
more work is needed to understand how phytoplank-
ton respond in natural communities.

Our estimates (posterior means) of maximum net
growth rate for the phytoplankton functional types
range from 0.9 to 1.8 wk−1 (a mean doubling time of 5
to 2.5 d) and for the 10 individual diatom species,
from 0.5 to 1.5 wk−1 (a mean doubling time of 10 to
3 d). Our growth rate estimates are consistently lower
than laboratory-based estimates of growth rate from
unialgal cultures and in situ field estimates of the
growth rate of individual species (grazers excluded)
that can double more than once in a day (Furnas
1990, 1991, Raven et al. 2005). Maximum in situ
growth rates for 3 of our 10 diatom species have been
estimated from daily counts during April in the Irish
Sea: Pseudo-nitzschia sp., 0.24 d−1; Guinardia deli-
catula, 0.18 d−1; Lauderia annulata 1.42 d−1 (McKin-
ney et al. 1997). These growth rate estimates are sig-
nificantly higher than ours. Weekly counts, used in
our study, are likely to lead to smaller maximum net
growth rates than daily counts because the coupling
between growth and loss processes will be tighter
when averaged over a week instead of a day. Addi-
tionally, we expect our estimates of maximum growth
rates to be lower than traditional estimates of individ-
ual species growth rates in the laboratory and field
because our growth rate estimates include linear loss
terms due to grazing, viral, and parasitic loss, and are
therefore similar to a net phytoplankton community
growth rate. Our values for net growth rate are con-
sistent with satellite-based estimates of monthly
median phytoplankton growth rates in temperate
regions with strong seasonal blooms, 0.35 to 4.2 wk−1

(Westberry et al. 2008). Microzooplankton grazing at
Station L4 and elsewhere has been estimated to
account for about two-thirds of phytoplankton
growth (Fileman et al. 2002, Calbet & Landry 2004,
Chen et al. 2009, Bernard et al. 2012). Given that our
estimates of maximum growth rates tend to be much
lower than estimates of growth rate from laboratory
studies, this suggests that loss rates due to grazing
and parasitoid and viral attack may be higher than
often assumed.

It would be plausible for there to be no relation-
ships among our field-based estimates of maximum
growth rates across the functional types even if there
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are differences in maximum net growth rate, since
the grazing and other linear loss terms represent
such a large fraction of the maximum net growth
rate. We find that the rank order in our estimates of
net growth rates for the functional types (diatoms >
dinoflagellates > coccolithophorids > phytoflagel-
lates) is generally consistent with growth rates re -
ported from laboratory culture work and field obser-
vations (Furnas 1991, Cermeño et al. 2005, Raven et
al. 2005, Laws 2013). In the Western English Chan-
nel, we find diatoms have the largest maximum net
growth rate followed by dinoflagellates and cocco-
lithophorids, whereas phytoflagellates have the small-
est net growth rate (Fig. 2a). These results indicate
that laboratory-based maximum growth rates com-
bined with a constant loss rate, as used by many
models, may be a reasonable proxy for net growth
rates in natural communities.

The effect of temperature on phytoplankton spe-
cies growth rates is commonly described using the
Q10 approximation, which is the multiplicative effect
of a 10°C change in temperature on growth rate. This
value is typically about 2, ranging from 1.88 to 2.3 for
phytoplankton (Eppley 1972, Bissinger et al. 2008).
The range of temperatures at Station L4 (about 8 to
19°C) is narrow compared to the width of many
phytoplankton temperature niches (Irwin et al. 2012,
Boyd et al. 2013), so we used a linear model to
describe the effect of temperature on growth rate
(see Montagnes et al. 2003 for additional rationale for
using a linear model). The temperature sensitivity of
the functional types, β, is about 0.12 wk−1 °C−1 for
dinoflagellates, 0.07 wk−1 °C−1 for diatoms and cocco-
lithophorids, and 0.02 wk−1 °C−1 for phytoflagellates
(Fig. 2c). These estimates suggest that, on average,
growth rate would increase from 1 wk−1 to roughly
1.72 wk−1 for dinoflagellates, 1.42 wk−1 for diatoms
and coccolithophorids, and 1.12 wk−1 for phytoflagel-
lates, with an increase in temperature of 6°C (half the
annual amplitude in temperature), starting and end-
ing below their temperature optima. An analysis of
the change in maximum growth rate with tempera-
ture using unialgal laboratory cultures (Montagnes
et al. 2003) found slopes of 0.11 to 0.54 wk−1 °C−1 for
dinoflagellates, consistent with the posterior mean
(0.12 wk−1 °C−1) found in this study (Fig. 2c), and
0.084 to 0.97 wk−1 °C−1 for diatoms, which is larger
than the posterior mean (0.07 wk−1 °C−1) found here.
For phytoflagellates, our estimate of the temperature
sensitivity trait, β, is approximately 0.02 wk−1 °C−1,
which is close to zero with a narrow credible interval,
so we conclude that temperature has essentially no
effect on the growth rate of this functional type at this

site. Possible interpretations of this result are that the
phytoflagellates have broad temperature optima for
growth rate or the functional type is composed of
many species with specialized optimal growth tem-
peratures spread across the range of observed tem-
peratures (Eppley 1972, Boyd et al. 2013). This does
not appear to be the case for the other 3 functional
groups: even if there is species turnover during the
year, there is still a fairly strong imprint of tempera-
ture on the growth rate of the functional type as a
whole. An alternative explanation is that an increase
in water column stability favors dinoflagellate and
coccolithophorid biomass accumulation (Margalef
1978, 1997). The optimal temperature for growth at
the functional type level varies as expected. Phytofla-
gellates have the lowest, and coccolithophorids and
dinoflagellates the highest, optimal temperatures for
growth. However, the optimal temperature for dino-
flagellates, which, like coccolithophorids, bloom later
in the season than diatoms, exhibits more variability
(Fig. 2b), implying that dinoflagellates have a wider
temperature niche than the other functional groups.
Since temperature is correlated with stability and we
do not have an independent measure of stability, our
model is unable to distinguish between the direct
effects of temperature and the effect of water column
stability on the growth rate of phytoplankton.

Temperature optima estimates for individual
diatom species were not identified within the range
of observed temperatures. We interpret this result as
consistent with wide temperature response curves,
relative to the narrow temperature range at Station
L4, for the species under study (Boyd et al. 2013). The
estimated temperature sensitivity parameters for
individual diatom species (βS) are higher than that of
the functional type counterpart (Fig. 3b), which is to
be expected as aggregating species into functional
types should reduce the effective strength of temper-
ature on growth rate averaged over the portion of the
community belonging to each functional type.

Light and nitrogen limitation of net growth rate is
determined by the Michaelis-Menten half-saturation
trait values, KN and KE. Three sources of inorganic
nitrogen, nitrate, nitrite, and ammonium, are consid-
ered in our estimate of KN for inorganic nitrogen. As
a result, our estimate of KN at the functional type
level is largely determined by the inorganic nitrogen.
Nitrogen half-saturation constants for phytoplankton
species can vary from 0.08 to 8.4 µmol l−1 in the labo-
ratory (Litchman et al. 2006). Our estimates (posterior
means) of nitrogen half-saturation constants for indi-
vidual diatom species, many with large cell size,
ranged from 0.08 to 0.12 µmol l−1, which is within this
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range. Our values for functional types range from
about 0.008 to 0.04 µmol l−1, and are either on the
lower end or smaller than typical literature values for
unialgal cultures. The half-saturation constants for
inorganic nitrogen for functional types at this site are
also low relative to all nitrogen concentrations
observed in seawater at this site (ranging from 0.1 to
16 µmol l−1), indicating that nitrogen limitation is only
a significant factor affecting growth rates of func-
tional types, particularly diatoms and dinoflagellates,
in the warmest part of the summer. One reason KN

may be lower in the field relative to laboratory stud-
ies is that organic nitrogen may be an important
source of nitrogen for some species, particularly the
dinoflagellates and phytoflagellates, but also some
diatoms such as Pseudo-nitzschia delicatissima
(Loureiro et al. 2009). If organic sources are impor-
tant for these groups, for example following the crash
of a diatom bloom when inorganic nitrogen concen-
trations are low, estimated KN may be artificially low
since organic sources were not included in the
model. Alternatively, since nitrogen is taken up rap-
idly when available, bulk estimates of reactive nitro-
gen concentration sampled weekly may be relatively
uninformative at physiological scales (Laws 2013).
The phytoflagellates have the lowest KN of approxi-
mately 0.008 µmol l−1, which is much less than the
values for the other 3 functional groups, namely
0.03 µmol l−1 for dinoflagellates and 0.04 µmol l−1

for diatoms and coccolithophores. The phytoflagel-
late category is taxonomically diverse, but over half
the biomass is found in unidentified cells <5 µm in
diameter. The most significant feature of our results
is that the phytoplankton dynamics at Station L4 is
consistent with very low KN compared to values esti-
mated from laboratory cultures (Litchman et al.
2007). The KN at Station L4 are 5- to 10-fold smaller
than the half-saturation constants for nitrate often
employed in ecosystem models (Gregg et al. 2003,
Merico et al. 2004). The intermediate complexity
marine ecosystem model constructed by Moore et al.
(2001) is an exception; this model uses a very low KN

for ammonium of 0.004 µmol l−1 for small cells, much
lower than our values for Station L4 (Moore et al.
2001). Generally KN values for ammonium are
smaller than for nitrate (Merico et al. 2004, Litchman
et al. 2007).

Light limitation is frequently parameterized by a
half-saturation coefficient, KE, or the irradiance at
which light saturates growth, Ek. For comparison
between the 2, we divide Ek by 2 to roughly approxi-
mate KE. In natural populations in coastal regions, Ek

varies from 40 to 500 µmol m–2 s–1 (Kirk 2010), corre-

sponding to KE of about 2 to 22 mol m−2 d−1. Estimates
of KE in unialgal cultures range from 3.5 to 7.8 mol
m−2 d−1 (Litchman et al. 2006), and vary with steady
state irradiance (Gregg et al. 2003, Kirk 2010). At
Station L4, our estimates of KE for functional groups
range from 8 to 23 mol m−2 d−1, but these are based
on sea-surface irradiance and thus are larger than
they would be when based on average in situ irradi-
ances. Individual diatom species have KE ranging
from 25 to 30 mol m−2 d−1. These results suggest that
irradiance at Station L4 is limiting for diatoms, dino-
flagellates, and coccolithophorids during much of the
year, since sea-surface PAR ranges from 10 to 50 mol
m−2 d−1 and only exceeds Ek ≅ 2KE ≅ 40 mol m−2 d−1 for
these groups during short periods in the summer. By
contrast, phytoflagellates have KE near the minimum
levels of PAR and so they experience saturating irra-
diance for most of the year. One possible hypothesis
is that their small size confers a low pigment package
effect, meaning they have high light absorption per
unit of pigment, giving them an advantage over func-
tional types with larger cells under low light condi-
tions (Finkel & Irwin 2000, Finkel 2001, Finkel et al.
2004). Furthermore, if some of the phytoflagellates
use alternative energy sources, they may require less
chlorophyll and be less sensitive to changes in irradi-
ance. While some dinoflagellates are known to be
heterotrophic and mixotrophic (Stoecker 1999), un -
like phytoflagellates their growth rate is strongly
affected by low temperatures in winter, reducing
their growth rate in winter relative to phytoflagel-
lates (Fig. 1). Phytoflagellates appear to be able to
acclimate to very low light, giving them a competi-
tive advantage over other functional types, especially
in winter.

Many studies of zooplankton grazing focus on the
linear grazing rate (Landry & Hassett 1982, Calbet &
Landry 2004, Zheng et al. 2015), which in our model
is combined with gross phytoplankton growth rate to
obtain the maximum net growth rate trait, μ, which is
assumed to be constant for each phytoplankton func-
tional type. More complex formulations of zooplank-
ton grazing rates permit diel and seasonal variation
in grazing rates and non-linear grazing rates (Tsai et
al. 2005) or describe prey switching or selectivity by
grazers (Gentleman et al. 2003, Vallina et al. 2014),
but we do not consider these mechanisms. Our model
incorporates density-dependent loss terms to de -
scribe consumption of phytoplankton by grazers
along with other loss processes.

All 4 functional types exhibit strong density-
dependent loss. Assuming the loss term is primarily
attributable to grazing, all functional groups are pri-
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marily grazed by specialists (α < 0, Fig. 2). However,
while diatoms, dinoflagellates, and phytoflagellates
are virtually unaffected by generalist grazers (φ ≅ 0),
coccolithophorids are affected by both specialist and
generalist grazers. Each functional group is more
negatively affected by its own biomass than by the
combined biomass of other functional groups, which
provides evidence for niche differentiation between
functional groups.

The results at the species level are more variable.
Five of our 10 diatom species (G. delicatula, P. deli-
catissima, Meuniera membranacea, Cerataulina pe -
lagica and P. seriata) exhibit positive density-depen-
dent effects (φS > 0, Fig. 3c) with increased biomass of
all other diatoms. This could be an indication that
these species experience less grazing pressure when
the biomass of other diatoms is high (‘kill the winner’,
Vallina et al. 2014). Two species, G. delicatula and P.
seriata, have positive density-dependent effects
resulting from their own biomass (αS > 0), indicating
that increases in their biomass can increase their own
growth rates. Many strains of Pseudo-nitzschia have
been shown to produce the neurotoxin domoic acid
(Bates et al. 1998, Fehling et al. 2004), suggesting this
positive density-dependence may be a result of
allelopathy, although G. delicatula does not pro-
duce toxins and P. delicatissima has αS < 0. Finally,
the 3 species Nitzschia closterium, Paralia sulcata,
and Pleurosigma sp. have strong negative density-
dependent feedbacks from their own biomass (αS <
0). N. closterium is known to produce mucus and may
increase its export at high densities, which is consis-
tent with this result (Najdek et al. 2005).

Our analysis of 10 diatom species demonstrates the
potential and challenges of this approach for deter-
mining trait values and modeling dynamics of indi-
vidual species. These species were the most fre-
quently observed in the population, but account for
only 11% of the total biomass, on average. Species
with fewer observations are less likely to yield in-
formative estimates of trait values due to a lack of
data, but account for the vast majority of the biomass.
Since our 10 species sample is a minority component
of the diatom community and represents species
present much of the year, in contrast to species pres-
ent for only a few weeks at a time, there is no reason
to expect the trait values of these species to be repre-
sentative of the functional type as a whole. In fact, we
observed systematic differences between trait values
for these species and the diatom functional type: the
species-specific maximum growth rates are lower
and the half-saturation constants for light and nitro-
gen are higher relative to the functional group type

estimates. Even if we had a random sample of species
with trait values representative of the full distribution,
determining functional-type level trait values by av-
eraging over species with different traits and chang-
ing contributions to the total population can lead to
errors due to Simpson’s paradox (Chuang et al. 2009,
Williams & Hastings 2011). The uncertainties across
the diatom species are large enough to suggest that
the trait values may be largely indistinguishable
across many species, in particular the irradiance half-
saturation constants. An independent analysis
showed that diatom species at Station L4 exhibit neu-
tral dynamics within the diatom functional type most
of the time, indicating that predicting biomass dy-
namics of individual species may be much harder
than predicting the dynamics of the aggregated bio-
mass of a functional type (Mutshinda et al. 2016).
While it is appealing to estimate trait values for func-
tional types from knowledge of individual species, it
may be more prudent to deemphasize species-level
details and use realized traits estimated from biomass
dynamics aggregated to the functional-type level.

CONCLUSIONS

This study enables a comparative analysis of trait
values used in biogeochemical models of phyto-
plankton communities and the trait values estimated
from laboratory studies on individual phytoplankton.
The realized traits we quantified could be different
from those estimated in the laboratory because they
are functional-type level aggregates and include fac-
tors such as phenotypic plasticity and biotic interac-
tions that may vary across species and communities.
At Station L4 in the Western English Channel, we
found that diatoms have the highest maximum net
growth rates, an intermediate temperature sensitiv-
ity, and high specialist density-dependent loss rates.
Dinoflagellates have intermediate maximum net
growth rates and a high temperature optimum and
sensitivity. Coccolithophorids have a high tempera-
ture optimum, intermediate temperature sensitivity,
and are negatively affected by both specialist and
generalist density-dependent feedbacks. The phyto -
flagellates have the lowest maximum net growth
rate, low optimum temperatures and sensitivities,
and low half-saturation constants for light and nitro-
gen concentration. The relative differences in maxi-
mum net growth rate, specifically the relatively high
rates for diatoms, are consistent with differences esti-
mated in the laboratory and the field, but the
absolute magnitudes of the rates are considerably
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lower because our maximum growth rates include
linear loss terms. A comparison of our results with
traits estimated in the laboratory and used in models
yields a few insights. Grazing and other linear loss
rates, as reflected in a reduction of the gross growth
rate, appear be even more important than usually
appreciated. We see evidence of complex biotic
interactions that are difficult to assess in the labora-
tory: all functional types are more susceptible to spe-
cialist loss rates, perhaps indicating specialist grazers
or viruses. At the species level, there appears to be
evidence of species interactions increasing the net
growth rate of individual diatom species. The half-
saturation constants for nitrogen are lower than typi-
cal laboratory estimates, consistent with the use of a
wide range of reactive nitrogen sources and wide-
spread mixotrophy. There is considerable variation in
our estimates of the trait values within phytoplankton
functional types, which could be due to real physio-
logical changes arising from acclimation to environ-
mental conditions over time, variation across species
within a functional type, or a consequence of insuffi-
cient data. Time series of field data combined with
our analysis gives us insight into the mechanisms
affecting the dynamics of species and whole func-
tional types in natural populations that may improve
our ability to scale-up results from species-level stud-
ies in the laboratory to community dynamics in the
ocean.
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