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Key Points: 

 The density of BGC-Argo float network enables identification of episodic mixed layer 

pump events on a basin-scale. 

 Intra-seasonal dynamics of the mixed layer pump drives episodic inputs of fresh organic 

material to the mesopelagic during the winter to spring transition. 

 This mechanism provides a significant source of energy to the mesopelagic food-web 

before the spring bloom period. 
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Abstract 

The detrainment of organic matter from the mixed layer, a process known as the mixed layer 

pump (ML pump), has long been overlooked in carbon export budgets. Recently, the ML pump 

has been investigated at seasonal scale and appeared to contribute significantly to particulate 

organic carbon export to the mesopelagic zone, especially at high latitudes where seasonal 

variations of the mixed layer depth are large. However, the dynamics of the ML pump at intra-

seasonal scales remains poorly known, mainly because the lack of observational tools suited to 

studying such dynamics. In the present study, using a dense network of autonomous profiling 

floats equipped with bio-optical sensors, we captured widespread episodic ML pump-driven 

export events, during the winter and early spring period, in a large part of the subpolar North 

Atlantic Ocean. The intra-seasonal dynamic of the ML pump exports fresh organic material to 

depth (basin-scale average up to 55 mg C m-2 d-1), providing a significant source of energy to 

the mesopelagic food web before the spring bloom period. This mechanism may sustain the 

seasonal development of overwintering organisms such as copepods with potential impact on 

the characteristics of the forthcoming spring phytoplankton bloom through predator-prey 

interactions. 

 

1 Introduction 

The export of organic matter from the surface to the ocean interior has traditionally been 

attributed to the gravitational settling of particulate organic carbon (POC), namely the 

biological gravitational pump (Sanders et al., 2014; Siegel et al., 2016). The gravitational pump 

at high latitudes is closely related to the spring phytoplankton bloom (Martin et al., 2011). 

Large phytoplankton cells such as diatoms (> 20 µm) that thrive during the spring bloom 

contribute significantly to the downward carbon flux due to their high sinking rate (up to 50 m 

d-1, Villa-Alfageme et al., 2016), and their ability to form large aggregates (Smetacek, 1985, 

1999). Zooplankton also play a key role by repackaging organic matter into fecal pellets, 

thereby enhancing the speed at which it sinks out of the euphotic zone (Turner, 2002, 2015). 

Up to 90% of the exported material may be consumed and remineralized back into dissolved 

inorganic carbon (DIC) by heterotrophic activity in the mesopelagic zone (~100 - 1,000 m; 

Buesseler & Boyd, 2009; Kwon et al., 2009). Finally, a small fraction of this material may be 

sequestered in the bathypelagic zone (> 1,000 m) on timescales of months to millennia 

(Ducklow et al., 2001; Poulton et al., 2006). 

In complement to the biological gravitational pump, Lévy et al. (2001), Omand et al. (2015) 

and Llort et al. (2018) provided evidence that export of organic matter also occurs through 
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localized (1-10 km) eddy-driven subduction of non-sinking particles, and possibly dissolved 

organic carbon (DOC). In subpolar oceans, the eddy-driven subduction pump may contribute 

up to half of the total springtime export of POC (Omand et al., 2015). Through eddy-driven 

stratification, these submesoscale processes can also enhance the production of organic matter 

at the surface which will potentially be exported by subsequent eddy-driven subduction 

(Mahadevan et al., 2012; Omand et al., 2015). Submesoscale subduction thus leads to episodic 

injections of POC- and DOC-rich waters below the mixed layer, possibly outside the spring 

bloom period. As current estimates of metabolic activity in the mesopelagic region exceed the 

influx of organic substrates generally attributed to the biological pump (Burd et al., 2010; 

Giering et al., 2014; Steinberg et al., 2008), submesoscale subduction has been invoked as an 

alternate pathway allowing a better balance of the carbon budget (Barth et al., 2002; Lévy et 

al., 2001; Omand et al., 2015). The spatial heterogeneity of this process could indeed stimulate 

hotspots of organic substrates, likely missed by conventional sampling methods. 

Recently, Dall’Olmo et al. (2016) highlighted the global impact on carbon export budgets of 

seasonal detrainment of organic matter, a process known as the seasonal mixed layer pump 

(ML pump). A few localized studies had first described this mechanism at the diurnal 

timescale, showing that alternation of night convection and daily restratification can lead to an 

entrainment-detrainment cycle of particles from the mixed layer (Gardner et al., 1995; Ho & 

Marra, 1994; Woods & Onken, 1982). Indeed, the mixed layer deepens due to the effect of 

wind and heat loss to the atmosphere (Price et al., 1986) but does not shoal smoothly, as 

commonly assumed for the sake of simplicity. Instead, the upper-ocean stratifies due to solar 

heating or other sources (e.g. freshwater flux, slumping of isopycnals) and eventually a new 

mixed layer re-forms from the surface, thereby isolating phytoplankton cells and other particles 

in the so-called remnant layer (Franks, 2015; Ho & Marra, 1994; Fig. 1). At the diurnal 

timescale, the amplitude of the mixing layer depth variation is small (Woods & Onken, 1982) 

and much of the detrained organic material can be entrained back into the mixing layer. 

Thereby, the net export of carbon by the ML pump is accordingly weak. At the seasonal scale, 

however, the ML pump is a process of greater significance (Carlson et al., 1994; Dall’Olmo et 

al., 2016; Dall’Olmo & Mork, 2014). In springtime, the seasonal stratification of deep mixed 

layers contributes to export large amounts of carbon as dissolved organic matter or small non-

sinking particles. In high-latitude regions with deep winter mixing, the seasonal ML pump 

amounts on average to 23% of the carbon supplied by fast sinking particles (Dall’Olmo et al., 

2016). 



 

 
© 2019 American Geophysical Union. All rights reserved. 

The winter to spring evolution of the mixed layer depth (MLD) does not correspond to a smooth 

shoaling but rather is interspersed with restratification and deep mixing events (Lacour et al., 

2017). Such intermittent mixing can enhance both phytoplankton production and POC export  

through the so-called intra-seasonal ML pump (Bishop et al., 1986; Garside & Garside, 1993; 

Giering et al., 2016; Koeve et al., 2002). When detrainment fluxes exceed entrainment fluxes, 

the intra-seasonal ML pump can lead to a net export of carbon to the mesopelagic. In the north-

east Iceland basin, Giering et al. (2016) have shown that the pre-bloom flux of small particles 

driven by the ML pump can be of similar magnitude to the total particle export rate by 

sedimentation observed during, and after, the spring bloom period. However, the analysis of 

long-term sediment trap data from 3000 m at the Porcupine Abyssal Plain (49°N, 16°W) 

revealed that pre-bloom deep fluxes are small (Lampitt et al., 2010). This discrepancy suggests 

that most of the particulate material exported by the ML pump is consumed in the mesopelagic 

zone (Giering et al., 2016), and potentially ventilated back into the atmosphere the following 

winter as inorganic carbon. Thus, this process may be less relevant to the long-term 

sequestration of carbon than for supplying energy to the mesopelagic food-web. In particular, 

zooplankton populations, especially overwintering organisms, inhabiting cold, dark and low 

turbulence environments at depth (Jónasdóttir et al., 2015; Steinberg & Landry, 2017; Visser 

et al., 2001) could benefit from the ML pump. 

These three main pathways of carbon (i.e. the gravitational pump, the eddy-driven pump and 

the mixed layer pump) all contribute to the biological carbon pump (Dall’Olmo et al., 2016; 

Siegel et al., 2016; Llort et al., 2018). Indeed, they transfer organic matter from the productive 

mixing layer to the ocean interior where light and mixing are reduced. The amount of exported 

material determines the strength of the biological pump while the sequestration timescale 

controls its efficiency (Buesseler & Boyd, 2009). For the particular case of the intra-seasonal 

ML pump, the strength is defined as the net flux of particulate organic carbon resulting from 

an entrainment-detrainment cycle. 

Despite the recent discoveries mentioned above, the intra-seasonal dynamics of the ML pump 

and its potential role in sustaining mesopelagic ecosystems still remain poorly understood. The 

reason is twofold. First, current methods to estimate the depth of the mixed layer are not 

appropriate. Brainerd et al. (1995) highlighted the importance in distinguishing the mixed layer, 

the zone of relatively homogenous water formed by the history of mixing, from the mixing 

layer, the zone in which mixing is currently active. They showed that current density-derived 

methods fail to capture the high-frequency variability of the mixing layer. Second, most 

existing observational tools are not well suited to study such unpredictable episodic and 
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widespread events. Using high-frequency sampling from autonomous profiling floats equipped 

with bio-optical sensors, we investigate here the intra-seasonal dynamics of the ML pump in 

the subpolar North Atlantic Ocean, a region that exhibits a strong spatiotemporal variability of 

the MLD. More specifically, we attempt to quantify the strength of the intra-seasonal ML pump 

on a basin scale, and explore the nature and the fate of the exported material in the mesopelagic. 

The efficiency of this process in terms of long-term sequestration of carbon is not addressed. 

Rather, we discuss its importance in supplying pulses of fresh organic substrate to the 

mesopelagic ecosystem. 

 

2 Material and Methods 

2.1 The BGC-Argo dataset: description and data processing 

The data used in this study were acquired by a fleet of 14 BGC-Argo floats that were deployed 

in the subpolar North Atlantic Ocean. These floats provided 2126 profiles spanning all seasons 

between 2014 and 2016 (Fig. 2). These floats (NKE PROVOR CTS-4) were equipped with: an 

SBE 41 CTD; a WET Labs ECO3 (Combined Three Channel Sensors) composed of a 

chlorophyll a (Chla) fluorometer, a Colored Dissolved Organic Matter (CDOM) fluorometer, 

and an optical backscattering sensor at 700 nm (bbp); and an OCR-504 radiometer measuring 

Photosynthetically Available Radiation integrated over 400-700 nm (PAR). Measurements 

were collected during ascent every 2, 5 or 10 days, from 1,000 m (parking depth) to the surface. 

Vertical resolution of acquisition was 10 m between 1,000 m and 250 m, 1 m between 250 m 

and 10 m, and 0.2 m between 10 m and the surface. Radiometric measurements were acquired 

only in the upper 250 m. Data were transmitted through Iridium communication each time the 

floats surfaced, usually around local noon.  

A “real time” quality control procedure was performed on the CTD data (Wong et al., 2015), 

Chla (Schmechtig et al., 2014) and PAR measurements (Organelli et al., 2016) after the factory 

calibrations were applied. The instrumental dark signal was removed from the Chla profile 

following the method in Xing et al. (2011) and the non-photochemical quenching (NPQ) was 

corrected as follows: the maximum Chla value above MLD, defined as a density difference of 

0.01 kg m-3 with a reference value at 5 m, is extrapolated toward the surface. As an additional 

condition, the depth of the extrapolated Chla value has to be shallower than the depth of the 

isolume 20 µmol photons m-2 s-1 (derived from smoothed PAR profile), which marks 

approximatively the lower limit of the potential NPQ effect for mixed waters in this area 

(Lacour et al., 2017; Xing et al., 2018). Chla values were divided by a factor of 2 to account 

for a calibration systematic error in Wet Labs fluorometers (Roesler et al., 2017). Spikes were 
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removed from Chla and bbp profiles using a 5-point running median filter and a 7-point running 

mean filter similar to Briggs et al. (2011). The spike signals from bbp profiles were used to 

detect large particles or aggregates following Briggs et al. (2011). Note that, because of the 

lower vertical resolution sampling below 250 m, deep spikes are not well resolved which 

potentially leads to an underestimation of large particles and aggregates. For the same reason, 

the depth correction for carbon loss relative to bbp in aggregates used by Briggs et al. (2011) 

was not applied. Both baseline and spike signals from bbp profiles were converted into POC 

using an empirical factor of 37,537 mg POC m-2 in the mixing layer and  31,519 mg POC m-2 

below (Cetinić et al., 2012). This relationship might be biased by a background bbp signal that 

is not necessarily related to POC. Consequently, before converting to POC, the median of deep 

(950-1,000 m) bbp values measured by each float was subtracted from each profile of the 

corresponding time series. POC derived from the baseline bbp signal likely corresponds to small 

particles (0.2-20 µm; Dall’Olmo & Mork, 2014) whereas POC derived from spike signal 

corresponds to large particles or aggregates (Briggs et al., 2011). When not used as POC 

proxies, bbp profiles are presented without the correction described above (i.e. removing deep 

values). 

 

2.2 Atmospheric data 

Net heat flux data were extracted from the ECMWF ERA Interim data set (reanalysis), freely 

available at http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc. These data were 

averaged over 24-hour periods, with spatial resolution of 0.25°. 

Wind stress data were extracted from the Ifremer CERSAT Global Blended Mean Wind Fields 

data set, freely available at http://marine.copernicus.eu/. This data set was estimated from 

scatterometers ASCAT and OSCAT retrievals and from ECMWF operational wind analysis 

with a horizontal resolution of 0.25° and 6 hours in time. Wind stress data were subsequently 

averaged over 24-hour periods to match net heat flux data. Wind stress 𝜏 was used to calculate 

the Ekman vertical length scale as follows: 𝑍𝐸𝑘 = 𝛾 
𝑤∗

𝑓
 , where 𝛾 is an empirical constant of 

0.5 (Wang & Huang, 2004), 𝑓 = 2 ×  7.29 × 10−5 × 𝑠𝑖𝑛(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) is the Coriolis parameter 

and 𝑤∗ is the turbulent friction velocity 𝑤∗ = √
𝜏

𝜌𝑤
 with 𝜌𝑤 the density of the surface water. 

 

2.3 Estimation of mixing and mixed layer depths 



 

 
© 2019 American Geophysical Union. All rights reserved. 

A single criterion, the maximum vertical gradient, was used to estimate the mixing and mixed 

layer depths from Chla (maximum negative gradient) and density profiles (maximum positive 

gradient), respectively. To suppress the influence of spikes or noise, these profiles were 

additionally smoothed (Butterworth filter) before calculating the maximum gradient and the 

NPQ correction, which may erase a potential gradient, was performed after calculating the 

maximum gradient.  

The maximum density gradient (MLDdens) is interpreted to match the depth of the seasonal 

pycnocline (i.e. mixed layer depth), which is the envelope of the maximum depth reached by 

the mixing layer (Brainerd & Gregg, 1995). In contrast, the maximum Chla gradient (MLDbio) 

should mark the mixing layer depth with time scales typical of phytoplankton growth (Boss & 

Behrenfeld, 2010; Zawada et al., 2005) (Fig. 1). The underlying concept is that Chla is 

homogeneous over the whole mixing layer, if turbulent mixing overcomes vertical variations 

in the phytoplankton net growth rate (Huisman et al., 1999; Taylor & Ferrari, 2011). Indeed, 

while phytoplankton cells grow within the euphotic layer, mixing redistributes them throughout 

the mixing layer. However, as soon as cells are detrained from the mixing layer, the Chla signal 

starts to decrease in the remnant layer (Murphy & Cowles, 1997), hence intensifying the Chla 

gradient between mixing and remnant layers (Fig. 1). Figure 3 illustrates how MLDbio can 

change within 2 days in response to change in atmospheric forcing, while MLDdens remains 

deep as a signature of the past mixing event (on March 28th). As doubling time of phytoplankton 

cells is on the order of a day or more (Eppley et al., 1973; Goldman et al., 1979) MLDbio is not 

likely able to capture the diurnal variability of the mixing layer. Thus, the typical timescale of 

the MLDbio dynamics is 1-2 days. Considering the difference in timescale between MLDbio and 

MLDdens, we do not expect to have MLDbio deeper than MLDdens except in summer stratified 

conditions where phytoplankton can grow a few tens of meters below MLDdens, depending on 

light penetration (see supplementary Fig. S1). Thus, MLDbio estimation > 100 m deeper than 

MLDdens is considered as an outlier. These outliers represent only 141 profiles, or 7% of the 

total data set. 

 

2.4 Detection of submesoscale subduction events  

Subduction is a 3-dimensional (3D) process involving lateral advection of water masses. Such 

a lateral advection can be identified on a 1D profile using a state variable called spice, based 

on anomalous temperature-salinity properties (Flament, 2002; McDougall & Krzysik, 2015; 

Omand et al., 2015). This variable is a useful indicator of interleaving of water masses. The 

relative standard deviation of a spice profile (RSDspice, standard deviation / mean) from 
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surface (5 m) to MLDdens is used to detect a potential intrusion of water in this layer. 

Application of this method over the entire dataset enables to roughly identify the submesoscale 

subduction events at a basin scale (Llort et al., 2018).  

 

3 Results 

3.1 Mixing versus Mixed layer dynamics 

As proxies of the mixing and mixed layer depths, MLDbio and MLDdens, show different seasonal 

dynamics (Fig. 4). MLDbio and MLDdens are similar in fall and early winter, when strong 

atmospheric forcing induces turbulent mixing down to a depth that will define the upper limit 

of the seasonal pycnocline. During these periods, temperature, salinity and phytoplankton 

biomass are homogeneous down to MLDdens. In late winter, MLDbio and MLDdens start to 

diverge. Shallower mixing layers form above remnant layers, delimited by MLDbio at the top 

and by MLDdens at the bottom (Fig. 1). Phytoplankton in these remnant layers thus become 

isolated from the surface layer. In summer, MLDbio is generally deeper than MLDdens and likely 

corresponds to the lower limit of the euphotic zone. Light penetrates deeper than MLDdens and 

allows phytoplankton growth below this layer (Fig. S1). Hence, regardless of the season, 

MLDbio is a good indicator of the depth of the productive layer.  

 

3.2 Impact of the mixing layer dynamics on POC export 

The time series of a specific float (WMO 6901516, see the float trajectory in Fig. 2) is used to 

illustrate the impact of the mixing layer dynamics on POC export (Fig. 5). While MLDdens 

roughly varies at the seasonal time scale, MLDbio varies at higher frequency (Fig. 5b). MLDbio 

oscillates between MLDdens during convective mixing events (negative net heat flux, see Fig. 

5c) and a shallower depth during stratification (positive heat flux) or shallow mixing events 

(i.e. wind-driven mixing, see ZEk on Fig. 5b).  

High variability of the mixing layer occurs when net heat flux (Q) oscillates around zero during 

the winter-spring transition (March-May, Fig. 5c). The switch from negative to positive net 

heat flux is not a rapid smooth transition. Rather, it occurs over more than a one-month period 

and is associated with an intermittent reversal of the sign of this flux. This intermittency drives 

the high variability of MLDbio which acts as a physical pump. Interestingly, zero-crossing net 

heat flux, in fall, does not affect the dynamics of MLDbio which remains closely related to 

MLDdens. 

The water mass history of mixing can be retraced using a single 1D profile. Indeed, MLDbio 

marks the depth limit of recently active mixing, while MLDdens marks the depth limit of past 
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mixing. Thus, the presence of a remnant layer can be identified and used as a signature of the 

ML pump. However, submesoscale subduction, which involves 3D processes, may also lead 

to similar signatures (Fig. S2). Therefore, profiles with RSDspice higher than 5% were removed 

from the analysis in order to focus exclusively on ML pump-driven mechanisms. For the 

remaining profiles with a ML pump signature, it is assumed that each POC stock isolated in 

the remnant layer has been exported by the ML pump. In the present study, export is defined 

as the transfer of carbon from the turbulent productive layer to the low-turbulence remnant 

layer. In the area sampled by float 6901516, the POC stock transferred by the ML pump is 

maximal during the winter-spring transition when net heat fluxes switch from negative to 

positive values (up to 1.1 g C m-2, see Fig. 5d). This maximum occurs before the main spring 

bloom (Fig. 5d and 5a). Occasionally, the contribution of large particles or aggregates to the 

POC stock can be significant (up to 88% during the winter-spring transition, see Fig. 5d). 

On the basin scale, the temporal distribution of POC stocks transferred to the remnant layer 

presents a similar pattern. POC stocks significantly increase when the sign of the smoothed 

heat flux changes from negative to positive, with maximum values occurring 15 to 30 days 

later (Fig. 6a), and appear to be widespread over the whole subpolar region (Fig. 6b). Note that 

changing the RSDspice threshold from 2.5 to 10% does not impact the distribution of POC stocks 

exported by ML pump events (see Fig. S3). 

 

3.3 A quasi-Lagrangian approach to the ML pump 

BGC-Argo floats are not Lagrangian floats and thus do not necessarily track coherent water 

masses. However, depending on the temporal resolution of the floats, some successive profiles 

may sample the same water mass, as evidenced by only subtle changes in hydrographic 

properties. Here, within 3 pre-defined layers (surface, remnant and deep layer), we used 

temperature, salinity and density differences of 0.1°C, 0.02 psu and 0.01 kg m-3 among 

consecutive profiles as criteria to identify sections of float trajectories with quasi-Lagrangian 

behaviors. We found only two sections that complied with these highly selective criteria (top 

panels in Fig. 7a and b). The first section contains 3 profiles from float 6901516 (yellow dots 

in Fig. 2) with 2-day intervals, and the second one contains 4 profiles from float 6901480 (green 

dots in Fig. 2) also with 2-day intervals. The first profile of each section is well mixed up to 

250 m depth and 600 m depth for float 6901516 and 6901480 respectively. Then, mixing stops 

and a new mixing layer forms to a depth of around 100 m in both sections. The quasi-

Lagrangian framework allows us to investigate the fate of Chla and bbp within these 3 pre-

defined layers (Fig. 7).  
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In new mixing layers (i.e. surface layers), both Chla and bbp increase as a response to 

phytoplankton growth (triangles in Fig. 7). However, the accumulation rate of Chla 

(
1

𝐶ℎ𝑙𝑎

𝑑𝐶ℎ𝑙𝑎

𝑑𝑡
=0.15 d-1 and 0.16 d-1) is higher than the accumulation rate of bbp (

1

𝑏𝑏𝑝

𝑑𝑏𝑏𝑝

𝑑𝑡
=0.04 

d-1 and 0.05 d-1) for the full section period (4 days and 6 days) of float 6901516 and 6901480 

respectively. In remnant layers, located in the twilight zone, both Chla and bbp decrease, 

probably as a response to a change in the balance between production and heterotrophic 

consumption (circles in Fig. 7). As in surface layers, the loss rate (i.e. negative accumulation 

rate) of Chla (0.1 d-1 and 0.06 d-1, for float 6901516 and 6901480 respectively) is higher than 

the loss rate of bbp (0.03 d-1 and 0.005 d-1). In deep layers, Chla and bbp are stable with values 

near zero for Chla and values higher than 1x10-4 m-1 for bbp (squares in Fig. 7). This deep bbp 

signal is considered to be a constant background value.  

As soon as the remnant layer forms and traps particles at depth, the Chla to bbp ratio in this 

layer starts to decrease (Fig. 8). Thus, the Chla to bbp ratio in the remnant layer can be 

considered as a relative proxy for the freshness of the exported material. A power law function, 

similar to the one used to calculate particle degradation in the ocean interior (Martin et al., 

1987), has been fitted to the data to estimate an attenuation rate. Interestingly, in the remnant 

layer, the attenuation rate of the Chla to bbp ratio over time is similar for both floats located in 

different regions of the subpolar North Atlantic (similar exponent in equations of Fig. 8a). Time 

series of Chla to bbp ratio at each depth along the trajectory of float 6901516 (February-July 

2014) show that the ML pump exports fresh material to depths ranging 0-340 m (mean 90 m) 

below MLDbio during the whole winter-spring transition period (Fig. 9). Hence, the intermittent 

behavior of the ML pump in the winter-spring transition generates pulses of fresh organic 

material into the mesopelagic zone. 

 

3.4 ML pump-driven POC flux estimates 

We present here a method to estimate intra-seasonal ML pump-driven POC fluxes. The 

approach consists of calculating POC fluxes over a fixed time period on a basin scale (i.e. 

spatiotemporal binning), based on independent ML pump signature profiles, i.e. without any 

assumption regarding float Lagrangian behavior. This means that initial conditions prevailing 

before the time of float measurements are unknown. Thus, we next lay out a framework to 

model the properties preceding each individual ML pump signature profile. 

A single ML pump event is defined by three successive steps: shallow mixing at time t0 (i.e. 

initial conditions), deep mixing at time t1 that leads to the entrainment of deep POC and 
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restratification that leads to the detrainment of POC and the formation of the remnant layer 

observed at time t2 (i.e. ML pump signature; Fig. S4). The net POC flux is defined as the 

difference between the detrainment and entrainment fluxes, calculated as: 

 

< 𝐸𝑒𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 >  =

< ∫ 𝑃𝑂𝐶𝑡0
(𝑧)

𝑧=𝑀𝐿𝐷𝑑𝑒𝑛𝑠𝑡2

𝑧=𝑀𝐿𝐷𝑏𝑖𝑜𝑡0

𝑑𝑧 >

2 < ∆𝑡 >
  

(1) 

 

< 𝐸𝑑𝑒𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 >  =
 < 𝑃𝑂𝐶𝑡1

(𝑀𝐿𝐷𝑑𝑒𝑛𝑠  𝑡2
−  𝑀𝐿𝐷𝑏𝑖𝑜  𝑡2

) >

2 < ∆𝑡 >
  (2) 

 

< 𝐸𝑛𝑒𝑡 >  = < 𝐸𝑑𝑒𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 > − < 𝐸𝑒𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡 >   (3) 

The numerator of equation 1 stands for the POC entrained by the deep mixing event at time t1 

while the numerator of equation 2 stands for the POC detrained during the restratification event 

(Fig. S5). 𝑀𝐿𝐷𝑑𝑒𝑛𝑠  𝑡2
marks the depth limit of the deep mixing event and (𝑀𝐿𝐷𝑑𝑒𝑛𝑠  𝑡2

−

 𝑀𝐿𝐷𝑏𝑖𝑜  𝑡2
) represents the thickness of the remnant layer observed at time t2.  𝑃𝑂𝐶𝑡1

, the POC 

concentration within the deep mixing layer at time t1, is estimated as the mean 𝑃𝑂𝐶𝑡0
 from the 

surface to 𝑀𝐿𝐷𝑑𝑒𝑛𝑠  𝑡2
(Fig. S5). Brackets indicate spatiotemporal binning. ∆𝑡 is the time 

elapsed between the observation at time t2 and the last mixing event at time t1, and can be 

derived from the best-fit power law function in Fig. 8b as: 

 

∆𝑡 = 𝑡2 − 𝑡1 = (
𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄

𝑡2
−𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄

𝑡1

−0.11 𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄
𝑡1

)

1
0.55

 (4) 

where 𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄
𝑡2

 is the ratio of the median Chla to the median bbp within the remnant layer 

and 𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄
𝑡1

 is the ratio within the deep mixing layer at time t1. 𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄
𝑡1

is estimated 

the same way as  𝑃𝑂𝐶𝑡1
, by averaging 𝐶ℎ𝑙𝑎𝑡0

 and 𝑏𝑏𝑝𝑡0
 from the surface to 𝑀𝐿𝐷𝑑𝑒𝑛𝑠  𝑡2

. While 

𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄
𝑡2

, 𝑀𝐿𝐷𝑑𝑒𝑛𝑠  𝑡2
, and 𝑀𝐿𝐷𝑏𝑖𝑜  𝑡2

 are measured at time t2 when a remnant layer is 

identified, initial conditions prevailing at time t0 (i.e. 𝑀𝐿𝐷𝑏𝑖𝑜𝑡0
, 𝑃𝑂𝐶𝑡0

, 𝐶ℎ𝑙𝑎𝑡0
, 𝑏𝑏𝑝𝑡0

), from 

which variable at time t1 are derived, are unknown. In order to provide a set of potential initial 

conditions for each profile with a ML pump signature, all available profiles, from 2014 to 2016, 

within a radius of 300 km and a time period of 15 days (all years included), are collected (Fig. 

S6). To keep only realistic initial conditions, three requisites are needed: 1) 
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𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄
𝑡1

, derived from 𝐶ℎ𝑙𝑎𝑡0
 and 𝑏𝑏𝑝𝑡0

, is higher than 𝐶ℎ𝑙𝑎 𝑏𝑏𝑝 ⁄
𝑡2

, 2) 𝑀𝐿𝐷𝑏𝑖𝑜𝑡0
 is 

shallower than 𝑀𝐿𝐷𝑑𝑒𝑛𝑠  𝑡2
, 3) ∆𝑡 is less than 20 days. The choice of a threshold of 20 days is 

based on the basin-scale analysis of the cumulative density function of 𝐶ℎ𝑙𝑎 𝑏𝑏𝑝⁄  both within 

the mixing and remnant layers (Fig. S7). Using the attenuation rate of 𝐶ℎ𝑙𝑎 𝑏𝑏𝑝⁄  shown in Fig. 

8b, we modeled the cumulative density function within the remnant layer for ∆𝑡 ranging from 

1 to 5, 20 or 35 days (see caption of Fig. S7) and compared it with the measured cumulative 

density function. The cumulative density function for ∆t ranging from 1 to 20 days is the one 

which best fit the measured density function within the remnant layer. Therefore, a threshold 

of 20 days seems appropriate to reject unrealistic initial conditions. All the initial conditions 

that complied with these 3 requisites are used to calculate a mean ∆𝑡  and associated standard 

deviation for each profile presenting a ML pump signature. Over a fixed time period, the mean 

duration of ML pump events is estimated as 2 < ∆𝑡 > (Fig. S8). Indeed, as the profiling time 

t2 is random between the last mixing event at time t1 and the next one, potentially at t3, ∆𝑡 

should range from 0 to (𝑡3 − 𝑡1), with mean value < ∆𝑡 > = (𝑡3 − 𝑡1)/2.  Here, a time period 

of 10 days is used, with a minimum of 6 profiles as an additional requirement to correctly 

estimate the mean duration of ML pump events. 

Figure 10 presents estimates of entrainment, detrainment and net POC fluxes averaged over 

10-day periods in the whole subpolar North Atlantic Ocean. As expected, the temporal pattern 

in detrainment fluxes (Fig. 10c) is similar to the pattern observed in POC stock in the remnant 

layer (Fig. 6a) and the pattern in detrained POC stocks estimated from initial conditions (Fig. 

10a, numerators in equation 2, blue color). Maximum detrainment fluxes and net export fluxes 

(125 and 55 mg C m-2 d-1, respectively) both occur few days after the switch in the sign of the 

heat flux. Approximately 40 days later, detrainment fluxes decrease by a factor of 2 to 3 and 

net POC fluxes are reduced to near zero. The length of error bars represents the average 

standard deviation of initial conditions associated to each ML pump signature detected within 

a 10-day time period. Note that fluxes were not estimated between days 70 to 90 because the 

number of profiles presenting a ML pump signature was below the critical threshold of 6 

profiles (Fig. S8). 

 

4 Discussion 

4.1 Mixing versus mixed layer depth 

Observations of vertical profiles of density and Chla in late winter and spring (Fig. 4) suggest 

that density-derived methods to estimate MLD have to be interpreted with caution when 
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considering controls on phytoplankton processes. A simple comparison (linear correlation 

analysis, Fig. S9) between MLDbio and MLD estimated with different density-difference 

criteria revealed that most of these criteria do not detect subtle changes in density, which affect 

the phytoplankton vertical distribution (Lacour et al., 2017). As a consequence, studies 

estimating depth-integrated Chla by multiplying the concentration of surface Chla (measured 

by satellite) by the depth of a density-derived mixed layer could overestimate the Chla stock, 

especially during the winter to spring transition. Indeed, the widely used density difference 

criteria of 0.1 kg m-3 leads, in the present study, to a mean overestimation of 46% of the spring 

phytoplankton stock (comparison of the real stock measured by the float in the mixed layer 

with the estimated stock based on surface Chla). However, a density criterion of 0.01 kg m-3, 

which shows the best correlation with MLDbio, leads to a mean overestimation of only 3%. 

Most density difference thresholds are not suited to capture the intra-seasonal dynamics of the 

mixing layer which affects the vertical distribution of phytoplankton biomass. 

 

4.2 The ML pump signature 

The ML pump is a complex mechanism which can occur on a variety of timescales, from 

diurnal to seasonal scales. Observing this mechanism at specific scales requires appropriate 

approaches. Combining Argo float data with satellite estimates of POC, Dall’Olmo et al. (2016) 

provided first estimates of the carbon flux induced by the seasonal ML pump at global scale. 

The rate of change of the MLD at a time interval of 10 days along Argo float trajectories was 

exploited. Therefore, the high-frequency variability (< 10 days) was not considered and 

assumption of spatial homogeneity was required. This approach revealed the importance of the 

ML pump in seasonal carbon fluxes but the episodic nature of carbon export was not 

considered. The innovative approach, here, is to use a single profile to retrace the water mass 

history of mixing and thus relax the assumption of spatial homogeneity. Using MLDbio as the 

depth limit of a recent mixing and MLDdens as the depth limit of a past mixing, the presence of 

a remnant layer can be identified and used as a signature of the ML pump. Although the typical 

timescale of MLDbio is known (~1-2 days), the timescale of MLDdens is more difficult to assess. 

Figure 3b shows that MLDdens is still deep 4 days after deep convection stopped and figure 5b 

reveals a ~10-day delay between the permanent shoaling of MLDbio around 100 m and the 

shoaling of MLDdens. It is thus assumed that MLDdens roughly corresponds to a mixed layer on 

a 10-day timescale. Thereby, the signature of ML pump likely reveals recent export of organic 

matter thus allowing the assessment of the episodic nature of this mechanism. Although this 
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approach allows exploration of the intra-seasonal dynamics of the ML pump, the diurnal 

timescales are not assessed. 

The strongest signatures of the ML pump (i.e. maximum POC stock in the remnant layer) were 

recorded when the net heat flux switches from negative to positive values in early spring. 

Interestingly, the switch from positive to negative values in fall did not affect MLDbio which 

remained closely related to MLDdens (Fig. 5). This dissymmetry was likely due to the 

mechanical effect of wind, that mixes the upper layer (Woods, 1980). The Ekman length scale, 

which is the dominant mixing length scale when heat fluxes are small (Brody & Lozier, 2014), 

indicated that mixing reached depths as deep as MLDdens at this time of the year (Fig. 5b). 

Phytoplankton can be redistributed within MLDdens even if net heat fluxes become positive, 

thus inhibiting the formation of remnant layers.  

Warming of the upper layer is not the only source of stratification. In addition to freshwater 

flux, 3D processes involving lateral advection are known to quickly restratify deep mixed 

layers (Brainerd & Gregg, 1993; Hosegood et al., 2006, 2008; Johnson et al., 2016). 

Submesoscale eddies or Ekman buoyancy flux can slump horizontal density gradient to create 

vertical stratification (Boccaletti et al., 2007; Thomas & Lee, 2005). These processes, which 

generate a signature similar to the ML pump, are often associated with submesoscale 

subduction (Omand et al., 2015). Based on a RSDspice threshold of 5%, it can be estimated that 

almost 40% of the profiles displaying a ML pump signature were affected by lateral water 

intrusion. As mentioned by Ho and Marra (1994), quantifying ML pump export is difficult 

since local and advective effects have to be distinguished. Here, a RSDspice threshold of 5% 

appeared adequate to identify and subsequently remove profiles affected by advective effects. 

However, it is worth noting that lateral restratifications could contribute to the export through 

the ML pump. Indeed, lateral restratification can stimulate phytoplankton production 

(Mahadevan et al., 2012), even during winter (Lacour et al., 2017), and the resulting biomass 

could be exported later, following a deep mixing event. Although this study focuses on 1D 

processes, lateral restratification may also stimulate the ML pump export, especially in winter 

when positive heat flux events are scarcer. 

 

4.3 Fate of Chla and bbp signal in the remnant layer 

Quasi-Lagrangian sections of float trajectories allowed us to investigate the fate of Chla and 

bbp signals in surface and remnant layers after a stratification event (Fig. 7). Chla signals 

increased faster in the surface layer and decreased faster in the remnant layer compared to the 

bbp signals. The main reason for this discrepancy rests on the nature of the particles contributing 
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to both Chla and bbp signal. While phytoplankton cells contribute nearly all of the Chla signal 

(colored dissolved organic matter may also contribute slightly to the Chla signal; Xing et al., 

2017), bacteria, protists, detritus and mineral material also contribute to the bbp signal 

(Martinez-Vicente et al., 2012; Stramski et al., 1991, 2001, 2004). Therefore, in the surface 

layer, an increase in phytoplankton production does not lead to a similar relative increase in 

the Chla and bbp signals. In addition, taxonomic changes in the phytoplankton community could 

further increase the Chla signal relative to the bbp signal. Indeed, the local restratification could 

enhance the light environment and stimulate larger phytoplankton, such as diatoms, with higher 

Chla to bbp ratio (Cetinić et al., 2015; Lacour et al., 2017; Rembauville et al., 2017). In the 

twilight remnant layer, change in the balance between production and consumption leads to a 

decrease in both Chla and bbp. However, the faster decrease in the Chla signal may be explained 

by multiple factors. First, fresh phytoplankton (i.e. Chla signal) are possibly preferentially 

consumed compared to detritus and other material contributing to the bbp signal. Second, the 

consumption of phytoplankton cells could enhance the growth of heterotrophic organisms such 

as bacteria or protists which would also contribute to the bbp signal. Third, physical and 

biological disaggregation of large particles at depth (Alldredge et al., 1990; Burd & Jackson, 

2009; Cho & Azam, 1988) may enhance the bbp signal, which likely corresponds to small 

particles (0.2-20  µm; Dall’Olmo & Mork, 2014), and counteract the decrease in bbp due to 

consumption. Finally, additional decrease in Chla could be attributed to physiological 

adaptations to darkness which involve a reduced fluorescence per unit of Chla (Murphy & 

Cowles, 1997).  

 

4.4 Towards global event-based ML pump-driven POC flux estimates 

Present carbon flux estimates are mainly based on a limited number of observations at specific 

times and locations. Scaling up these observations to obtain regional and global estimates may 

neglect or underestimate the contribution of episodic events, leading to our inability to balance 

biogeochemical budgets in the mesopelagic (Burd et al., 2016). The ML pump is a typical 

mechanism driving episodic export of organic carbon to depth. Based on high-resolution 

observations from a dense BGC-Argo float network, we assessed for the first time the intra-

seasonal dynamics of ML pump-driven POC fluxes on a basin scale (Fig. 10). This approach 

required three main assumptions: 

(1) We assumed that initial conditions (i.e. Chla bbp ⁄
t0

,  POCMLDbio  t0
) prevailing before a 

ML pump event can be predicted from a “climatology” of profiles collected in the area 
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of the event location. Three selection criteria (see section 3.4) have been applied to 

ensure that only realistic initial conditions have been used. Error bars in figure 10a and 

b show that the variability related to these initial conditions remains reasonably small. 

(2)  We assumed that the mean duration of ML pump events is twice the mean time < ∆t > 

between the observation of the ML pump signature and the last mixing event. An 

analysis of ML pump events recorded by a Lagrangian float revealed that the absolute 

error related to this assumption is less than 0.2 days as long as the number of events 

averaged is more than 6 (Fig. S6). As the BGC-Argo dataset will expand in the future, 

we will be able to reduce the spatiotemporal binning with the goal of quantifying event-

based POC fluxes on a basin scale.  

(3) The attenuation rate of the Chla to bbp ratio in the remnant layer is assumed to be 

constant on a basin scale. The present analysis demonstrated that this attenuation rate 

is similar within two different regions of the subpolar North Atlantic, over a limited 

time period. However, additional measurements in remnant layers are clearly needed to 

better constrain the attenuation rate of the Chla to bbp ratio, especially its seasonal 

variability, and reduce uncertainties associated to this approach. More generally, further 

investigations on particle composition, microbial metabolism and transformation 

processes occurring in remnant layers are required to better understand the fate of the 

organic material exported by the ML pump. 

The mean ML pump-driven net POC flux peaks at 55 mg C m-2 d-1 in late winter and drops 

down to negative values when the water column stabilizes in summer. During this period, the 

entrainment flux due to wind-driven mixing events can exceed the detrainment flux, as the light 

penetration allows phytoplankton to grow below the mixing layer. The net amount of POC 

exported during the winter-spring transition (i.e. positive net export) is the fraction of fresh 

organic material that we expect to be consumed in the mesopelagic. Therefore, the intra-

seasonal ML pump may sustain the mesopelagic ecosystem before the spring bloom period. 

 

4.5 Role of the ML pump in sustaining mesopelagic ecosystems 

The recurrence of widespread ML pump events during a relatively large time period (> 90 

days) implies that this mechanism may be of great significance in supplying the energy required 

by the mesopelagic heterotrophic community (Dall’Olmo et al., 2016). The particles mixed 

downward through the ML pump are rich in fresh phytoplankton and detritus, so potentially of 

high nutritional content for grazers located below the mixing layer (Steinberg & Landry, 2017). 
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Export of both small and large particles to the mesopelagic region suggests that this mechanism 

could sustain zooplankton populations with different feeding preferences (Fenchel, 1980; 

Irigoien et al., 2000; Turner et al., 2001; Turner, 2004). Products from zooplankton activities 

would then sustain microbial populations and higher trophic levels (Steinberg & Landry, 2017). 

Therefore, the ML pump could supply a major source of energy to the whole mesopelagic 

ecosystem during the winter to spring transition.  

Many studies reported that the bulk of zooplankton populations resides just below the turbulent 

mixing layer (Incze et al., 2001; Lagadeuc et al., 1997; Mackas et al., 1993). The turbulence-

avoidance behavior of grazers has been invoked to explain their vertical distribution in the 

water column (Franks, 2001). However, the reason for this behavior is not clear. Turbulence is 

known to influence encounter and ingestion rate of zooplankton and larger predators, but both 

positive and negative effects have been reported (MacKenzie, 2000). During the winter to 

spring transition, the vertical distribution of grazers could be a direct consequence of the ML 

pump. These organisms could swim deep during turbulent mixing events, then immediately 

return to the remnant layer upon restratification to take advantage of fresh food supplied by the 

ML pump. For this reason, export is defined here as a transfer from the turbulent productive 

layer to the remnant non-productive layer. 

Finally, the ML pump during the winter-spring transition could trigger the seasonal 

development of overwintering organisms such as copepods so that their reproduction would 

coincide with the forthcoming spring bloom (Bishop & Wood, 2009). We can thus speculate 

that the frequency of episodic ML pump export events during the pre-bloom period may 

modulate the timing of the maturation phase of copepods and indirectly impact the magnitude 

of the spring bloom. 

 

5 Conclusion 

The density of the BGC-Argo float network has enabled, for the first time, investigation of the 

intra-seasonal dynamics of the ML pump on a basin scale. ML pump signatures are widespread 

over the subpolar North Atlantic Ocean and span a large temporal window preceding the spring 

bloom. To date, the high-frequency dynamics of bio-physical mechanisms had clearly been 

overlooked due to the lack of well-suited observational tools. Yet, ML pump episodic events 

may contribute significantly to the export of fresh organic matter during the late winter and 

early spring periods. This mechanism may sustain the development of overwintering organisms 

such as copepods with potential impact on the characteristics of the forthcoming spring 

phytoplankton bloom through predator-prey interactions. Further investigations of episodic 
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events will undoubtedly provide new insights on life strategies and food web interactions, and 

potentially address the fundamental limitations of assuming steady-state conditions.  
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Figure 1. Schematic of the functioning of the intra-seasonal mixed layer pump.  
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Figure 2. Location of the BGC-Argo float profiles in the subpolar North Atlantic Ocean during 

2014-2016. Orange dots indicate the location of float 6901516 trajectory (January-December 

2014) shown in Fig. 5. Yellow and green dots indicate the location of profiles shown in Fig. 7a 

and b respectively. 
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Figure 3. Three BGC-Argo float profiles along the float 6901516 trajectory (yellow dots in 

Fig. 2) sampled in the same water mass (see Fig. 7a) from March 28th to April 1st 2014. a) Chla 

profiles and b) density profiles with 2-day intervals. Horizontal dashed lines mark the depth of 

the maximum Chla gradient (MLDbio) in a) and maximum density gradient (MLDdens) in b).  

Constant Chla in the upper layer in a) is due to NPQ correction. c) Daily net heat flux and d) 

wind speed along the float trajectory. 
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Figure 4. Seasonal difference between MLDbio and MLDdens for all the profiles shown in Fig. 2 (top) and examples 

of Chla and density profiles by season (bottom). Horizontal dashed black and green lines mark MLDdens and MLDbio 

respectively. 
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Figure 5. Impact of the mixing layer dynamics on POC export. a) Chla and bbp integrated over 

0-1,000 m depth (integrated bbp is dimensionless), b) MLDdens, MLDbio, MLD0.1 estimated with 

a density threshold of 0.1 kg.m-3, and the Ekman length scale ZEk, c) Daily-averaged net heat 

flux (Q) and d) POC stocks trapped in the remnant layer along the float 6901516 trajectory 

(January-December 2014). Continuous grey line and vertical dashed grey line in c) show 30-

day smoothed net heat flux and the date of zero-crossing net heat flux respectively. 
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Figure 6. a) POC stock transferred to the mesopelagic by mixed layer pump events measured 

by the floats over the whole subpolar region. The time axis refers to the day of observation 

relative to the day where the sign of heat flux changes from negative to positive (see Fig. 5c). 

b) Location of profiles presenting ML pump signature. Color and dot size denote the stock of 

small particles trapped in the remnant layer. 
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Figure 7. A quasi-Lagrangian approach to the ML pump. BGC-Argo float profiles along 2 

sections of a) float 6901516 and b) float 6901480 acquired in 2014 (see location in Fig. 2). Top 

panels show potential temperature and salinity diagram for each profile of the 2 sections. Bottom 

panels show time evolution of mean Chla and bbp from each profile over 3 different layers: 

surface (triangle), remnant (filled circle) and deep layer (square). Vertical error bars indicate the 

range of data points within each layer. Color of the symbols differentiates each profile. 
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Figure 8. Time evolution of the Chla to bbp ratio in the remnant layer. a) Absolute and b) 

normalized (by the maximum value) Chla to bbp ratio for sections of float 6901516 (black line) 

and 6901480 (blue line) shown in Fig. 2 and 7. The red line represents the best-fit power law 

function for both float sections. The vertical error bars indicate the range of data points within 

the remnant layer.  
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Figure 9. Time series of Chla to bbp ratio at each depth along the float trajectory 6901516 

(February-July 2014). Solid black line and dashed black line represent MLDbio and MLDdens 

respectively. Time interval (dt) between successive profiles is indicated at the top of the panel. 
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Figure 10. a) POC stock entrained and detrained from the mixing layer, as estimated from 

initial conditions, b) duration of ML pump events (i.e. 2 < ∆𝑡 > ) and c) Entrained, detrained 

and net ML pump-driven POC fluxes averaged over 10-day time periods in the whole subpolar 

North Atlantic Ocean. The length of error bars represents the average standard deviation of 

initial conditions associated to each ML pump signature detected within a 10-day time period. 

The time axis refers to the day of observation relative to the day where the sign of heat flux 

changes from negative to positive (see Fig. 5c). 


