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Summary

The essence of the generalised multivariate Behrens–Fisher problem (BFP) is how to test the
null hypothesis of equality of mean vectors for two or more populations when their dispersion
matrices differ. Solutions to the BFP usually assume variables are multivariate normal and
do not handle high-dimensional data. In ecology, species’ count data are often high-
dimensional, non-normal and heterogeneous. Also, interest lies in analysing compositional
dissimilarities among whole communities in non-Euclidean (semi-metric or non-metric)
multivariate space. Hence, dissimilarity-based tests by permutation (e.g., PERMANOVA,
ANOSIM) are used to detect differences among groups of multivariate samples. Such
tests are not robust, however, to heterogeneity of dispersions in the space of the chosen
dissimilarity measure, most conspicuously for unbalanced designs. Here, we propose a
modification to the PERMANOVA test statistic, coupled with either permutation or bootstrap
resampling methods, as a solution to the BFP for dissimilarity-based tests. Empirical
simulations demonstrate that the type I error remains close to nominal significance levels
under classical scenarios known to cause problems for the un-modified test. Furthermore,
the permutation approach is found to be more powerful than the (more conservative)
bootstrap for detecting changes in community structure for real ecological datasets. The
utility of the approach is shown through analysis of 809 species of benthic soft-sediment
invertebrates from 101 sites in five areas spanning 1960 km along the Norwegian continental
shelf, based on the Jaccard dissimilarity measure.

Key words: Behrens–Fisher problem; bootstrap; dissimilarity matrix; ecological community
data; PERMANOVA; permutation test.

1. Introduction

The Behrens–Fisher problem (BFP) is one of the oldest puzzles in problems (Behrens
1929; Fisher 1935; Welch 1938). The essence of this problem is how validly to compare the
means (or multivariate mean vectors) of two or more populations when their variances (or
multivariate dispersions) differ. Solutions to the BFP for univariate data generally assume
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Acknowledgement. This work was supported by a Royal Society of New Zealand Marsden Grant.

Australian & New Zealand Journal of Statistics



58 BEHRENS–FISHER SOLUTION FOR DISSIMILARITIES

variables to be normally distributed (e.g., Wang 1971; Brown & Forsythe 1974; Clinch &
Keselman 1982; Weerhandi 1993; Ghosh & Kim 2001). Similarly, the majority of solu-
tions to the multivariate BFP (e.g., Johnson & Weerhandi 1988; Coombs & Algina 1996;
Christensen & Rencher 1997; Gamage, Mathew & Weerhandi 2004; Belloni & Didier 2008;
Krishnamoorthy & Lu 2010) assume variables to be multivariate normal (MVN), and are
not amenable to high-dimensional problems where the number of variables may equal or
exceed sample sizes.

High-dimensional multivariate data are very frequently encountered, however, in ge-
netics, bioinformatics, ecology and environmental science. In ecology, high-dimensional
multivariate data often consist of counts of species’ abundances in a community. Such data
show intrinsic mean-variance relationships (Taylor 1961) and tend to be long-tailed and
overdispersed (Aitchison & Ho 1989), with each species having a unique degree of aggrega-
tion (McArdle & Anderson 2004) and potential zero inflation (McArdle, Gaston & Lawton
1990; Fletcher, Mackenzie & Villouta 2005). Promising new approaches to test the equal-
ity of mean vectors for high-dimensional heteroscedastic data on the basis of U -statistics
have recently been proposed by Ahmad, von Rosen & Singull (2012) and Ahmad (2014).
In ecology, however, interest more often lies in models of the associations (similarities,
or dissimilarities) between pairs (or sets) of whole communities of species, rather than in
models of individual variables.

Over the past 20+ years, several non- or semi-parametric methods have been developed
to analyse multivariate ecological data. Specifically, the analysis of similarities (ANOSIM,
Clarke) and permutational multivariate analysis of variance (PERMANOVA, McArdle &
Anderson 2001; Anderson 2001) are very widely used. These methods are based on dis-
similarities among sampling units which need not be Euclidean, so they flexibly allow tests
of hypotheses regarding changes in the structure of communities represented by ecological
measures, such as Jaccard, Bray-Curtis or Modified Gower (e.g., Anderson, Ellingsen &
McArdle 2006; Clarke, Somerfield & Chapman 2006). These dissimilarity-based tests hence
posit their hypotheses in (potentially) non-metric or semi-metric spaces, and use permutations
(random re-assignment of sampling units to groups) to calculate p-values, so assume only
exchangeability of the sampling units under the general null hypothesis of no differences
among groups (Clarke 1993; Manly 2006, pp. 162–163).

Permutation tests are, however, sensitive to differences in dispersion; groups with
different dispersions are not strictly exchangeable (Boik 1987; Clarke 1993; Hayes 1996). A
recent study of the effects of heterogeneity of dispersions on dissimilarity-based tests (An-
derson & Walsh 2013) found thatANOSIM was very strongly affected: rejection of the null hy-
pothesis could easily be caused by differences in location, differences in
dispersion, or both. Although PERMANOVA was robust to heterogeneity for balanced
designs (its null hypothesis, by virtue of the construction of its test statistic, being much
more focused on detecting differences in the location of the groups in the space of the cho-
sen dissimilarity measure – see Anderson & Walsh (2013) for more details), it nevertheless
demonstrated measurable effects on error rates for unbalanced cases. Specifically, the test
is conservative when high dispersion occurs in larger groups and liberal when high disper-
sion occurs in smaller groups (Anderson & Walsh 2013), reflecting directly what has been
observed for classical univariate ANOVA (Welch 1938; Horsnell 1953; Box 1954; Glass,
Peckham & Sanders 1972). A separate test for homogeneity of multivariate dispersions based
on dissimilarities is available (Anderson 2006), but the presence of significant heterogeneity
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may still obscure inferences regarding potential differences in location. Currently, there is no
test of the null hypothesis of equality in the location of groups of multivariate sampling units
in the space of a chosen dissimilarity measure that simultaneously allows for heterogeneity
of dispersions in that space among those groups.

Here, we propose some solutions to the multivariate BFP for dissimilarity-based anal-
yses. Specifically, we propose a modification to the PERMANOVA pseudo F test statistic
that differs from the original for unbalanced designs, using a direct analogue to the modified
F -statistic proposed by Brown & Forsythe (1974) for the generalised univariate BFP. A
p-value can then be obtained using either the usual permutation algorithm or by using a
bootstrap approach (e.g., Davison & Hinkley 1997, p. 161; Manly 2006, p. 71). A parametric
bootstrap has been used successfully to tackle the univariate BFP (Krishnamoorthy, Lu &
Mathew 2007). Here, we used a separate-sample bootstrap of residuals (groups must be
centred on a common centroid under a true null hypothesis), thereby explicitly conditioning
on unequal dispersions (Efron & Tibshirani 1993, p. 222; Manly 2006, p. 117). The bootstrap
is known to be biased (e.g., Efron 1982, p. 27), hence some form of bias-correction can
therefore also optionally be applied (e.g., Hall 1992, p. 36; Efron & Tibshirani 1993, p. 342;
Davison & Hinkley 1997, p. 103).

This paper is structured as follows. Section 2 provides a description of the new proposed
test statistic. The reader is also referred to Appendix A in which other relevant test statistics are
briefly described. Section 3 describes a simulation study used to compare the performance of
the new method with existing approaches, including ANOSIM, unmodified PERMANOVA,
Pillai’s trace (classical MANOVA) and a modification to Pillai’s trace that is a direct multivari-
ate analogue to Brown & Forsythe’s (1974) approach (Coombs & Algina 1996). The method
described by Coombs & Algina (1996) relies on multivariate normality, but in other respects
provides a multivariate solution to the BFP in Euclidean space that is highly comparable to
what we propose here more generally for dissimilarity-based analysis. This is the rationale
for including it in our simulations as opposed to other potential solutions to the multivariate
BFP — for purposes of comparison. An application of the new method, demonstrating its use
in providing meaningful statistical inferences for high-dimensional multivariate ecological
community data, is given in Section 4. Section 5 then describes a simulation study based
on real high-dimensional ecological datasets, with special emphasis on the investigation of
power. The paper concludes with a general discussion and directions for future research
(Section 6).

2. Description of methods

2.1. PERMANOVA

Let Y be an N ×p matrix of multivariate row vectors yij of length p, each belonging to
one of i = 1,…, g groups, with j = 1,…, ni sample rows in the ith group and N =∑g

i=1 ni.
In ecology, these are commonly counts (or biomass or cover) of each of p species in each
of N transects, quadrats, cores or other standardised sampling units. Thus Y describes the
positions of N sample points in a space of p dimensions. Let D be an N × N symmetric
matrix of distances or dissimilarities {dij,i′j′ } calculated between every pair of points. Any
appropriate measure may be used here, depending on the hypotheses of interest, including
those used to compare communities in ecology, such as Bray-Curtis, Jaccard, or Euclidean
on log(y +1)-transformed or proportional abundance data.
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Consider a multi-response permutation test formulated as follows. First, as in Gower
(1966), let matrix A= {(−1=2)d2

ij,i′j′ }. Centring A on its rows and columns gives G=
[I− (1=N)JN ]A[I− (1=N)JN ], where JN denotes an N × N matrix of 1s and I denotes
an N × N identity matrix. Next, construct a projection matrix of the design of rank r =
g−1 as H=diag[(1=n1)Jn1 ,…, (1=ng)Jng ]− (1=N)JN . The PERMANOVA pseudo F statistic
(Anderson 2001; McArdle & Anderson 2001) for comparing the centroids among the g
groups is:

F1 = tr(HG)=(g−1)

tr[(I−H)G]=(N −g)
, (1)

where ‘tr(·)’ denotes the trace of a matrix. A p-value is then calculated as P�
1 = Pr(F�

1 �
F1), where F�

1 is the value of F1 obtained by a random equiprobable permutation �
(re-ordering) of the 1,…, N rows of observations. The F�

1 are realisations of F1 under
a true null hypothesis (H0) of equality of centroids in the space of the chosen dissim-
ilarity measure with the row units being exchangeable among the g groups. Note that
F1 is equivalent in value to Fisher’s univariate F-ratio if D contains Euclidean distances
and p = 1. The denominator of F1 is a pooled estimate of within-group dispersion, and
exchangeability implies independence of row vectors and also homogeneity. In passing,
we also note that, for balanced designs (equal sample sizes per group), the random
re-ordering of observation rows results in there being an equal probability that any
observation will fall into any particular group. This property does not hold, however, for
unbalanced designs, for which we assert under H0 merely that any ordering of the existing
observations relative to the (fixed) grouping structure of specified sample sizes is equally
likely.

2.2. Modified PERMANOVA

Following Brown & Forsythe (1974), we propose a modified pseudo F statistic to
account for heterogeneity:

F2 = tr(HG)∑g
i=1(1− ni

N )Vi
, (2)

where Vi =
∑(n−1)

j=1

∑n
j′=(j+1) d2

ij,ij′=[ni(ni −1)] is the within-group dispersion for group i. The
construction of F2 explicitly acknowledges potential heterogeneity via estimation of these
separate individual dispersions for each group. Hence, the null hypothesis for F2 is equality
of centroids in the space of a chosen dissimilarity measure given potential diffferences in
dispersions. Note that F2 is equivalent to F1 for equal sample sizes and shares with F1

the property that the expectations of numerator and denominator are equal under a true
null hypothesis of no difference in the location of group centroids. Note also that for p=1
variable and if the entries of D are Euclidean distances, then Vi is the usual classical univariate
unbiased measure of the sample variance for group i.

Separate measures of within-group dispersion for each group can also be obtained
efficiently by considering the projection matrix for the residuals of the PERMANOVA
model in the space of the dissimilarity measure. Specifically, the projection matrix for the
residuals is HRes = (I−H) and a residualised G matrix is given by R= (I−H)G(I−H). Let ui

be an indicator vector of length N for group i that contains 1s in all positions k ∈{1,…, N}
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where the kth sample unit belongs to group i and zeros elsewhere. If we let Ui = diag(ui)
then a separate projection matrix for the residuals associated with group i only is given by:

H(i)
Res = (I−H)Ui(I−H). (3)

Note also that HRes =∑g
i=1H

(i)
Res. The within-group dispersions are then given by

Vi = tr(H(i)
ResG)=(ni −1). (4)

2.3. Calculating p-values

We shall consider here three potential methods for calculating a p-value for the modified
PERMANOVA test statistic, F2. First, a permutation test can be done in the usual way, as for
F1; namely, a p-value is calculated as P�

2 =Pr(F�
2 �F2), where F�

2 is the value of F2 obtained
by a random equiprobable permutation of the N rows of observations. Intuitively, this may
not seem satisfactory, as the act of exchanging observations appears to violate the key idea
that heterogeneity of dispersions is already acknowledged among these groups under H0

for the Behrens–Fisher case. However, permutation of raw data has been shown to provide
satisfactory approximate p-values when coupled with pivotal test statistics (such as the F-
statistic for balanced designs) in other contexts where conditioning on ancillary quantities
would be desirable; e.g., for tests of partial regression coefficients in multiple regression
models (Anderson & Robinson 2001) or for tests of individual factors in multi-way ANOVA
designs (Anderson & ter Braak 2003). See also Manly (1995), Manly & Francis (1999,
2002) and Francis & Manly (2001) for some proposed solutions to the univariate BFP using
approximate randomisation methods.

Second, we shall consider a separate-sample bootstrap of residuals (Efron & Tibshirani
1993, p. 222; Manly 2006, p. 117). Here, the basic idea is to condition on the known
differences among groups and obtain realisations of outcomes for the test statistic under a
true null hypothesis of equal centroids given unequal dispersions. This is achieved by: (i)
centring the data from each group onto a common centroid (i.e., by calculating residuals);
and (ii) taking a random bootstrap sample of ni observation vectors (with replacement) from
the ith group. As the bootstrap resampling is done separately within each group, any original
differences in the within-group dispersions among those groups are maintained.

Specifically, for the bootstrap, consider the indexing vector τ = (τ�
1 , τ�

2 ,…, τ�
g )�, where

τ i is of length ni for the ith group and τ simply contains integer values τ = (1,…, N)�

corresponding to the original ordering of the observation units. Let τ
�
i be a bootstrap sample

with replacement of the ni indices from group i alone. The complete index vector β ={�k},
k =1,…, N for the separate-sample bootstrap is then given by β = [(τ �

1)�, (τ �
2)�,…, (τ �

g)�]�.
Centred residuals of the full model in the space of the dissimilarity measure are represented
by the residualised G matrix, R={rkk′ }; hence, a separate-sample bootstrap of these residuals
is given by R� ={r�k ,�k′ }. The modified PERMANOVA test statistic obtained by a separate-
sample bootstrap of residuals in the space of the dissimilarity measure is then given by

F�
2 = tr(HR�)∑g

i=1(1− ni
N )V�

i

, (5)

where the within-group dispersions under bootstrapping are obtained as
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V�
i = tr(H(i)

ResR�)=(ni −1). (6)

Following Fisher & Hall (1990), the p-value based on the bootstrap for hypothesis-testing
is then calculated as P�

2 =Pr(F�
2 �F2).

Bootstrap estimation of dispersion is known to be biased (see Appendix B and Efron
1982, p. 27). The third method we shall consider here is an empirically bias-adjusted bootstrap
approach. Suppose a total of B empirical bootstrap re-samples are done, yielding `=1,…, B
bootstrap values of within-group dispersion V�

i` for each of the i =1,…, g groups. Let V̄�
i =∑B

`=1 V�
i`=B be the mean of the empirical bootstrap distribution of dispersions for group i.

One possible estimate of the bias for group i is:

bi = V̄�
i −Vi. (7)

Hence, one possible empirical bias-adjustment to the individual dispersions under bootstrap-
ping is V

�(ba)

i =V�
i −bi, and a possible bias-adjusted test statistic for a given bootstrap sample

may then be constructed as

F
�(ba)

2 = tr(HR�)∑g
i=1(1− ni

N )V
�(ba)

i

, (8)

and its associated p-value is P
�(ba)

2 =Pr(F
�(ba)

2 �F2).
We note in passing that no bias-adjustment has been performed for the numerator of

equation (8) above, as the construction of residuals (i.e., centring of groups onto a common
centroid) for the full set of data already asserts that the “true” among-group variation is
equal to zero under H0. Hence, there is no obvious empirical estimate of potential bias in the
numerator under bootstrap re-sampling. Note also that in the special case where the entries
of D are Euclidean distances based on p independent random variables, then we can use
the direct result: bi = (−1=n)(Vi) (Appendix B).

3. Simulation study – Type I error

We used simulations to measure and compare empirical type I errors under a range of sce-
narios for the following seven methods: (i) classical MANOVA using Pillai’s trace (‘Pillai’);
(ii) Pillai’s trace modified to accommodate heterogeneous dispersions (Coombs & Algina
1996) (‘Mod.Pillai’); (iii) ANOSIM (Clarke 1993); (iv) PERMANOVA based on F1 and
with p-values obtained by random permutations of raw observation vectors (‘F1(perm)’);
modified PERMANOVA based on F2 with p-values obtained by: (v) random permuta-
tions of observation vectors (‘F2(perm)’), (vi) separate-sample bootstraps (‘F2(boot)’), or
(vii) separate-sample bootstraps with bias-adjustment (‘F2(ba.boot)’). Simulation scenar-
ios were specifically designed to compare these methods under circumstances that have
already been shown to be problematic for PERMANOVA and ANOSIM by Anderson &
Walsh (2013). These circumstances consist of unbalanced designs having heterogeneous
dispersions where either the greater dispersion occurs in the group with a smaller sample
size (leading to overly liberal tests) or the greater dispersion occurs in the group with a
larger sample size (leading to overly conservative tests). For relevance and simplicity in
interpretation, as well as to allow comparisons with more classical techniques, we limited
this part of our investigation of type I error to g=2 groups from MVN distributions and to
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analyses based on Euclidean distances. More complex and realistic scenarios (non-normal
count data, with p>ni for all i and with analyses based on ecological dissimilarity measures)
are described in Section 5. We also calculated the type I error for F2 where p-values were
obtained using permutation of residuals (‘F2(perm.res)’), so as to differentiate the effect of
calculating residuals from the effect of bootstrapping in the comparison of F2(perm) with
F2(boot). All simulations described in Sections 3 and 5 were performed using R (R Core
Team 2015).

3.1. Methods

Simulated datasets under a true null hypothesis were drawn randomly from each of
g = 2 p-variate MVN populations having equal mean vectors (i.e., μ1 =μ2); every mean
in each group had a value of 10. All covariances were set equal to zero and the p × p
dispersion matrices for the two groups (�1 and �2, respectively) differed by a constant
scalar multiplier; i.e., �1 =m1Ip and �2 =m2Ip, where Ip is a p×p identity matrix. Under
any particular scenario, n1 �n2 and the ratio of sample sizes is denoted by rn =n2=n1. Note
that these simulations targetted cases where heterogeneity occurs as differences only along
the diagonal of dispersion matrices. This was our logical approach, as Anderson & Walsh
(2013) have demonstrated that the usual PERMANOVA test (F1) is unaffected by differences
in correlation structure among groups (although the ANOSIM test is not). See, for example,
the results of simulations labeled ‘Sim3’ in Anderson & Walsh (2013).

The full set of simulation scenarios is identifiable by all combinations of the following
variables: p ={2, 5, 10}, n1 ={10, 20, 40}, and rn ={1, 2, 3}, first for the conservative case
(m1 =1 and m2 ={5, 10}) and then for the liberal case (m1 ={5, 10} and m2 =1). Under each
scenario, 1000 datasets were simulated and the resampling methods (iii–vii above) each used
999 re-samples (either permutations or separate-sample bootstraps) to calculate a p-value
for each simulated dataset. The p-values for methods (i) and (ii) above were obtained by
referring to appropriate classical F-distributions (Appendix A). The a priori significance
level was set at �=0.05 and the empirical type I error for each method was calculated as
the proportion of p-values (out of 1000 simulated datasets) satisfying P ��. A useful test
is not only expected to have a type I error that matches �, but is also expected to have
a uniform distribution of p-values under a true null hypothesis; hence, we also formally
compared the distribution of p-values obtained by each test under each simulation scenario
with a uniform distribution, using the Anderson–Darling test (Anderson & Darling 1954;
Marsaglia & Marsaglia 2004).

3.2. Results

The results of all simulation scenarios are provided as Supporting Information. Table
S1 contains empirical type I errors and Table S2 the p-values of the Anderson–Darling tests
for all methods. As the results for F2(perm.res) mirrored those obtained for F2(perm) (see
Tables S1 and S2), F2(perm.res) is not discussed further here, and any differences in the
results for F2(boot) versus F2(perm) are interpreted as being due to the contrast of resampling
‘with’ versus ‘without’ replacement (and not due to the centring that is required prior to
implementing the bootstrap).

The proposed modification of the PERMANOVA test statistic makes a world of differ-
ence to the performance of the test under heterogeneity for unbalanced designs. The type
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Table 1. Empirical type I error for methods (i) - (vii) obtained from 1000 simulated MVN datasets
with p=5 and g=2 based on Euclidean distances and with p-values obtained using 999 re-samples
for methods (iii)–(vii). Scenarios were designed to examine balanced designs (n1 =n2) and unbalanced
designs (n1 �n2) in situations where existing methods are known to be either conservative (top-half,
higher dispersion in larger-sized group) or liberal (bottom-half, higher dispersion in smaller-sized
group).

n1 n2 m1 m2 (i) (ii) (iii) (iv) (v) (vi) (vii)
Pillai Mod.Pillai ANOSIM F1(perm) F2(perm) F2(boot) F2(ba.boot)

20 20 1 5 0.077 0.060 1.000 0.066 0.066 0.044 0.056
20 40 1 5 0.007 0.048 0.000 0.007 0.055 0.043 0.053
20 60 1 5 0.003 0.053 0.000 0.000 0.050 0.047 0.054
20 20 1 10 0.082 0.047 1.000 0.046 0.046 0.038 0.045
20 40 1 10 0.001 0.047 0.000 0.002 0.041 0.040 0.045
20 60 1 10 0.000 0.062 0.000 0.000 0.068 0.059 0.067

20 20 5 1 0.057 0.040 1.000 0.045 0.045 0.031 0.038
20 40 5 1 0.232 0.051 1.000 0.232 0.052 0.030 0.045
20 60 5 1 0.356 0.040 1.000 0.342 0.052 0.034 0.040
20 20 10 1 0.086 0.043 1.000 0.054 0.054 0.034 0.043
20 40 10 1 0.311 0.039 1.000 0.258 0.049 0.027 0.035
20 60 10 1 0.502 0.060 1.000 0.446 0.060 0.033 0.046

I error was much closer to the a priori significance level of �=0.05 when using F2 rather
than F1, regardless of whether permutation or bootstrapping was used to obtain a p-value
(Table 1, Table S1). This improvement in the dissimilarity-based PERMANOVA test when
using F2 versus F1 mirrored that observed for Mod.Pillai versus Pillai for scenarios which
can be modeled in Euclidean space on MVN data and where p is substantially less than
all ni. The distribution of p-values was not significantly different from uniform when using
Mod.Pillai or F2(perm) in such cases (e.g., Fig. 1).

The results obtained using F2(perm) tended to be closer to nominal � than those
obtained using F2(boot), which almost always yielded more conservative tests, particularly
when higher dispersion occurred in the smaller-sized group (e.g., see the lower half of
Table 1). The bias-adjusted bootstrap (F2(ba.boot)), although still conservative, did tend
to improve the performance of the unadjusted bootstrap, yielding type I errors closer to
nominal � (Table 1, Table S1). More generally, conservativism for F2(boot) and F2(ba.boot)
tended to increase with increasing dimensionality, increasing heterogeneity and increasing
differences in sample size (Table S1). The fact that ANOSIM has high rejection rates in
the presence of most types of heterogeneity (Table 1) is a direct reflection of it being a
more general ‘portmanteau’ test for differences of any sort among groups of samples (Clarke
1993; Anderson & Walsh 2013).

The distribution of p-values for F2(boot) and F2(ba.boot) deviated most from a uniform
distribution under scenarios where the number of variables became large relative to sample
sizes (Table 2, Table S2). In such cases, bootstrapping yielded unimodal distributions of
p-values under simulation (Fig. 2). Mod.Pillai also suffered under these scenarios, yielding
predominantly large p-values (Fig. 2). These issues disappeared for Mod.Pillai once the
individual sample sizes were about four times the number of variables (Table 2). Although
the type I error for F2(boot) and F2(ba.boot) similarly approached more acceptable levels
(closer to �) with increasing ni, their distributions of p-values still deviated significantly
from a uniform distribution (Table 2). In contrast, F2(perm) maintained type I error close
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Figure 1. Frequency distributions of 1000 p-values obtained from MVN simulated data for each of
four different methods: (i) Pillai, (ii) ModPillai, (iv) F1(perm) and (v) F2(perm) under a scenario of
an unbalanced design producing conservativism for methods (i) and (iv), specifically: p = 5, g = 2,
n1 =20, n2 =40, m1 =1 and m2 =5. Calculations for methods (iv) and (v) were based on Euclidean
distances and each p-value was obtained using 999 permutations. The p-value associated with the
Anderson–Darling test for uniformity is also shown on the plot for each method.

to the nominal � and also yielded uniform distributions of p-values for virtually all of the
scenarios we examined (Tables 1 and 2; Tables S1 and S2).

4. Ecological application

Ellingsen & Gray (2002) described spatial variation in marine biodiversity along the
Norwegian continental shelf, examining data consisting of counts of p = 809 species of
benthic soft-sediment macrofauna in N = 101 sites sampled from five areas (Areas 1–5,
from south to north) spanning 15◦ of latitude from the North Sea to the Arctic. Sample
sizes (the number of sites) differ across the areas: n1 = 16, n2 = 21, n3 = 25, n4 = 19 and
n5 =20. A non-metric multi-dimensional scaling (MDS) ordination plot based on the Jaccard
dissimilarities among sites, using only presence/absence (1,0) information (Fig. 3), shows
not only the gradient in community structure from south to north (along MDS axis 1), but
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Table 2. Results of empirical simulations for methods obtained from 1000 simulated MVN datasets
with p=10 and g=2 based on Euclidean distances, with m1 =10 and m2 =1 (i.e., larger dispersion
in the smaller-sized group) showing (a) empirical type I error and (b) p-value associated with the
Anderson–Darling test to compare the distribution of p-values obtained under simulation with a
uniform distribution.

n1 n2 (ii) (v) (vi) (vii)
Mod.Pillai F2(perm) F2(boot) F2(ba.boot)

(a) Empirical Type I error
10 10 0.000 0.063 0.009 0.027
20 20 0.037 0.059 0.027 0.041
40 40 0.053 0.054 0.036 0.040
10 20 0.000 0.061 0.017 0.035
20 40 0.037 0.056 0.020 0.027
40 80 0.046 0.037 0.016 0.024
10 30 0.000 0.057 0.013 0.026
20 60 0.031 0.052 0.019 0.026
40 120 0.056 0.060 0.037 0.046

(b) Anderson–Darling p-value (deviation from uniformity)
10 10 0.000 0.061 0.000 0.000
20 20 0.037 0.235 0.000 0.000
40 40 0.816 0.626 0.007 0.000
10 20 0.000 0.214 0.000 0.000
20 40 0.000 0.034 0.002 0.000
40 80 0.564 0.417 0.000 0.000
10 30 0.000 0.131 0.000 0.000
20 60 0.001 0.364 0.000 0.000
40 120 0.376 0.726 0.003 0.000

also clear heterogeneity in dispersions for sites from different areas. Area 3 has markedly
greater dispersion, while Area 1 has markedly less dispersion, than the other three areas
(2, 4 or 5). Recalling that Jaccard dissimilarity can be directly interpreted as the proportion
of unshared species, multivariate dispersion here provides a direct measure of ecological
beta diversity (variation in the identities of species, see Anderson, Ellingsen & McArdle
2006).

An overall test comparing the groups for changes in community structure in Jaccard
space is statistically significant, using either ANOSIM (R = 0.729, P = 0.0001, 9999 per-
mutations) or PERMANOVA (F4,96 =12.9, P =0.0001, 9999 permutations). However, the
test for heterogeneity is also statistically significant (PERMDISP, F4,96 =49.8, P =0.0001,
9999 permutations of residuals). Given the unbalanced design, one may ask whether the
differences among groups detected by either ANOSIM or PERMANOVA are caused by
differences in centroids, differences in within-group dispersions or both. The visual pattern
of separation of the sites from different areas observed in the MDS plot provides some
support for the notion of differences in centroids (Fig. 3, top), but does not yield a prob-
abilistic statement for direct statistical inference or interpretation. However, focussing on
centroids only and explicitly conditioning on the known differences in within-group dis-
persions among groups in Jaccard space, the modified PERMANOVA test we propose here
indeed yields a statistically significant result. This occurs whether the p-value is obtained
using permutations (F4,96 = 12.9, P = 0.0001), bootstraps (P = 0.0001), or bias-adjusted
bootstraps (P =0.0001). Thus, our new test provides unequivocal evidence against the null

© 2017 The Authors Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.



M. J. ANDERSON ET AL. 67

p−value

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

400 Modified Pillai's trace (ii)
p < 0.001

p−value

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200 F2, permutation (v)
p = 0.131

p−value

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200 F2, bootstrap (vi)
p < 0.001

p−value

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200 F2, bias−adjusted bootstrap (vii)
p < 0.001

Figure 2. Frequency distributions of 1000 p-values obtained from MVN simulated data for each
of four different methods: (ii) ModPillai, (v) F2(perm), (vi) F2(boot) and (vi) F2(ba.boot) under a
scenario where p=n1, producing conservativism for methods (ii), (vi) and (vii), specifically: p=10,
g=2, n1 =10, n2 =30, m1 =10 and m2 =1. Calculations for methods (v), (vi) and (vii) were based
on Euclidean distances and each p-value was obtained using 999 re-samples. The p-value associated
with the Anderson–Darling test for uniformity is also shown on the plot for each method.

hypothesis of no differences in centroids among the groups, and in the clear presence of
heterogeneous dispersions.

The utility of the proposed method is even more striking when we consider the pair-wise
comparison of Area 2 versus Area 3. Here, the MDS plot is dominated by high variability
in community structure for Area 3 (Fig. 3, bottom), which clearly represents an important
transitional area of high biotic turnover in species’ identities. Area 2 had an average distance-
to-centroid of 42.5% in Jaccard space, while Area 3 had an average distance-to-centroid
of 56.4%, a significant difference by PERMDISP (F1,44 =76.1, P =0.0001). The pair-wise
test is also highly statistically significant using either ANOSIM (R=0.313, P =0.0002) or
PERMANOVA (F1,44 =6.53, P =0.0001), but the MDS plot offers little additional help to
unravel the potential confounding of inferences regarding a difference in dispersions versus
a difference in centroids between these two groups. One could rely on the expectation that
greater dispersion in the group having a larger sample size (Area 3 in this case) should yield,
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Figure 3. Non-metric multi-dimensional scaling (MDS) ordination plots of benthic soft-sediment
assemblages based on Jaccard dissimilarities calculated on the presence/absence (0,1) of each of 809
species variables in 101 sites across five areas spanning 1960 km off the coast of Norway (labeled
1–5 from south to north, see Ellingsen & Gray (2002) for a map and further details).

if anything, a more conservative test via PERMANOVA. Thus, although the very small p-
value obtained certainly lends support to the notion of differences in centroids, unfortunately
such an inference is still, at best, indirect. In contrast, the modified PERMANOVA analysis
specifically homes in on the null hypothesis of no difference in centroids, given differences in
dispersion, and rejects this null hypothesis resoundingly (F1,44 =6.84, P=0.0001), regardless
of the re-sampling method used. (An equivalent p-value was obtained using permutations,
bootstraps or bias-adjusted bootstraps of residuals).

© 2017 The Authors Australian & New Zealand Journal of Statistics published by John Wiley & Sons Australia, Ltd
on behalf of Statistical Society of Australia.



M. J. ANDERSON ET AL. 69

5. Simulations based on real datasets – Power

Simulations to examine type I error and power of the newly proposed methods for
analysing changes in community structure based on dissimilarity measures for real ecologi-
cal data were based on two datasets. These were also used by Anderson & Walsh (2013) to
compare rejection rates for several existing multivariate tests. A full description of the simu-
lation methods and associated R code for implementation have been provided by Anderson
& Walsh (2013); brief descriptions are provided below.

5.1. Methods

The first dataset of interest was the benthic marine soft-sediment macrofaunal dataset
from Norway described by Ellingsen & Gray (2002) and analysed in Section 4 above. These
data are also provided here as Supporting information (Data S1). For simulations, we focused
on the pair-wise comparison of Area 2 versus Area 3 for presence/absence data only. These
areas had different sample sizes and differed significantly in their multivariate dispersions
(Section 4, Fig. 3).

The probability of occurrence of each species in each Area was estimated directly using
the method of moments. Presence/absence data were then simulated by taking a Bernoulli
random draw (separately for each species) with probabilities set equal to these estimated
parameters. First, the parameters for both Areas in the pair-wise comparison matched those
for Area 2 (i.e., H0 was true). Then, to generate a power curve, the parameters for Area 3
were gradually changed in 10 equal steps, eventually to match those originally estimated
from the real data for Area 3. At each step (and also under H0), 1000 simulated datasets
were produced from which Jaccard dissimilarity matrices were calculated. The empirical
proportion of rejections of the null hypothesis (using � = 0.05) was recorded for each of
the following tests: (iii) ANOSIM; (iv) F1(perm), (v) F2(perm), (vi) F2(boot), and (vii)
F2(ba.boot), with p-values estimated using 999 re-samples (permutations or bootstraps).

The second dataset consisted of counts of abundances of p = 173 taxa of benthic
macrofauna sampled from N =39 sites in a five-spoke radial design at increasing distances
from the Ekofisk oil platform in the North Sea (Gray et al. 1990). The sites were classified
into groups (A, B, C or D) to indicate increasing proximity to the oil platform. We focused
here on the pair-wise comparison of group B (1–3.5 km from the platform, nB =12) versus
group C (250 m–1 km from the platform, nC =10). Individual response variables (taxa) were
first classified as being well-modeled using either a Poisson or negative binomial (NB)
distribution. Means and dispersion parameters for each taxon in each group were estimated
using the method of moments. Power curves were generated as described for the Norway
data, in ten equal steps between the two sets of parameters for all taxa across the two
groups, but where counts of individual taxon abundances were simulated by a random draw
from their respective distribution (either Poisson or NB). This approach generally follows
the spirit of simulations of multivariate ecological data along gradients for power analyses
done by Somerfield, Clarke & Olsgard (2002). Empirical power was estimated as described
above, but the procedure was repeated three times, based on each of the following: Bray-
Curtis dissimilarities on fourth-root-transformed abundances, Chi-squared distances, and
Euclidean distances on log(y +1)-transformed abundances. For more details, see Anderson
& Walsh (2013). Of course, dispersion in dissimilarity space is often more about differences
in species turnover within different groups than it is about differing variation in individual
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Figure 4. Proportion of rejections of the null hypothesis (at � = 0.05) for each of five methods
based on Jaccard dissimilarities for 1000 presence/absence datasets simulated as random draws for
each species from a Bernoulli distribution with probabilities based on occurrences of Norwegian
soft-sediment benthic macrofauna (p=809 species). The x-axis depicts the proportional shift in the
parameters along a continuum for the comparison of Area 2 versus Area 3. P-Values for the tests
were calculated using 999 re-samples (permutations or bootstraps).

species variables, inevitably so when the dissimilarity measure (such as Jaccard) is based
solely on presence/absence information, or when a strong transformation such as fourth-root
or log has been used on quantitative data.

5.2. Results

Under all scenarios, F2(perm) had the greatest power, matching or exceeding that
obtained by F1(perm) (Figs 4 and 5). This was true even for simulations based on the
Ekofisk dataset, which did not show significant heterogeneity of dispersions for the two
groups being compared (PERMDISP: PBC = 0.458, PChi = 0.242, and PEuc = 0.936, 9999
permutations). The use of bootstrapping (F2(boot)) led to more conservative and hence less
powerful tests, and although the use of a bias-adjustment (F2(ba.boot)) improved power
markedly, it did not match the power obtained using permutations (Figs 4 and 5). For the
Norway data, ANOSIM had very low power, lagging far behind the other tests, presumably
due to the greater dispersion occuring in the group with the larger sample size (Fig. 4). The
oddly non-monotonic shape of the power curve for ANOSIM in this case was also previously
noted by Anderson & Walsh (2013). In contrast to the Norway example, ANOSIM had more
power than the bootstrapping methods for simulations based on the Ekofisk data, and came
close to that obtained by F2(perm) when the analysis was based on either Euclidean distances
of log(y+1)-transformed data or Bray-Curtis dissimilarities on fourth-root-transformed data
(Fig. 5). In summary, although these simulations are by no means exhaustive, the use of
F2(perm) clearly had the best overall performance in terms of both type I error and power
across all of the scenarios investigated here.
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Figure 5. Proportion of rejections of the null hypothesis (at �=0.05) for each of five methods based
on three different resemblance measures (Bray-Curtis on fourth-root-transformed counts, Chi-squared
distances and Euclidean distances on log(y + 1)-transformed counts) for 1000 species abundance
datasets simulated as random draws for each species from either Poisson or negative binomial
distributions, with parameters estimated from soft-sediment benthic macrofauna surrounding the
Ekofisk oil platform (p=173 taxa). The x-axis depicts the proportional shift in the parameters along
a continuum for the comparison of samples from group B versus group C. P-Values for the tests
were calculated using 999 re-samples (permutations or bootstraps).
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6. Discussion

The proposed Behrens–Fisher modification to the PERMANOVA test statistic (F2),
coupled with a simple permutation algorithm (F2(perm)) provides a test that maintains both
level accuracy and uniform distributions of p-values under a true null hypothesis in the face
of heterogeneity in multivariate dispersions for balanced or unbalanced designs. It matches
the robustness of Mod.Pillai for MVN data, and out-performs this classical multivariate BFP
approach for cases where one or more ni are small relative to p. The key motivation for
the development of F2, however, is to analyse ecological datasets, where interest lies in
modelling community structure in the space of a chosen dissimilarity measure. This cannot
be achieved using any other existing approaches to the multivariate BFP. Our simulation
studies provide evidence that F2(perm) is more powerful than the separate-sample bootstrap
(F2(boot) or F2(ba.boot)). Indeed, in our simulations its power matched or exceeded the
unmodified PERMANOVA test for alternative hypotheses simulated from real ecological
data, even in the absence of heterogeneity.

How does F2(perm) maintain the empirical probability of a type I error at the nominal
significance level (�)? It is likely that the construction of the F2 test statistic ensures that a con-
sistent under- or over-estimate of the pooled within-group dispersion that would arise under
permutation (which mixes the original unequal dispersions among all groups) simply cancels
out, as the numerator and denominator would still have equivalent expectations under a true
null hypothesis. Although the permutation method performed the best overall, the separate-
sample bootstrap is more satisfying conceptually, as it conditions explicitly on known differ-
ences in dispersion. We therefore consider that there remains a role for the bootstrap approach.
The known conservatism of the bootstrap test can be used to advantage. In the face of clear
differences in within-group dispersions, a statistically significant difference obtained using
either F2(boot) or F2(ba.boot) must be viewed as very solid (and not spurious) evidence against
the null hypothesis of equality of centroids in the space of a chosen dissimilarity measure.

Further work should be done to compare the performance of the methods proposed
here with other proposed solutions to the multivariate BFP that cater to non-normal high-
dimensional data, such as methods based on U-statistics (Ahmad, von Rosen & Singull 2012;
Ahmad 2014). Although the latter are based on analyses purely in the Euclidean space of the
original variables, their potential utility in non-Euclidean spaces may be explored through the
use of either principal coordinates (Gower 1966) or metric MDS of dissimilarity matrices.
Another potentially useful approach would be to generalise the approximate randomisation
test proposed by Manly (1995) for the univariate BFP to multivariate situations. The essential
idea here is to perform a permutation test after first standardising the data to have a distribution
with a common variance (the appropriate linear transformation to apply must be discovered
iteratively; see Manly (1995)). Further research would be required to uncover how this
might be achieved in the space of a chosen dissimilarity measure and also to clarify how
covariance structures would be treated in this context. With the development of additional
potential methodologies, a broader simulation study of these and other methods, across a
wider array of ecological datasets, as well as work investigating performance for other types
of high-dimensional data, would clearly be desirable.

Finally, we note that an additional important and useful property of the methods we
have proposed here is that they can be readily extended to multi-factor hierarchical ANOVA
designs, where one might wish to allow for differences in both the numbers of levels and
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in the dispersions of the centroids associated with those levels, either within or between
factors that occur at different positions in the hierarchy. Indeed one may wish to allocate
greater resources and increase the replication of sites within certain regions in which there is
known to be greater variability, generating a priori unbalanced designs (Cochran 1977, pp.
96–99). For example, consider an asymmetrical hierarchical design, with varying numbers
of sites nested within each of several regions, and with varying numbers of replicate sam-
ple units within each site. The F2 test statistic can be extended to allow for differences in
dispersions of replicates within sites, and differences in dispersions of site centroids within
regions, for relevant tests of individual factors at each spatial scale. Similar extensions can
be formulated and derived for tests of individual terms in fixed, random or mixed multi-way
ANOVA models including interactions. We shall leave these extensions (beyond the scope
of the current contribution) for a future endeavour.

Appendix A. Description of other comparative test statistics

Three other test statistics were compared for their performance in simulation studies
alongside the newly proposed techniques: analysis of similarities (ANOSIM; Clarke 1993),
Pillai’s trace from classical MANOVA (Bartlett 1939; Pillai 1955) and a modification to
Pillai’s trace that provides a direct multivariate analogue to Brown & Forsythe’s (1974)
solution to the univariate BFP (Coombs & Algina 1996).

A.1. ANOSIM

Let the M =N(N −1)=2 pair-wise dissimilarities (or distances) in the sub-diagonal of
matrix D be replaced by their ranks, with the lowest dissimilarity being given a rank of 1,
and let the average of the ranked values between sample units that are in the same group be
denoted by r̄W and the average of the ranked values between sample units that are in different
groups be denoted by r̄B. The ANOSIM R-statistic is a measure of the distinctiveness of
the groups, ranging from −1 to +1, and is defined as:

R = (r̄B − r̄W )

M=2
,

A p-value associated with the general null hypothesis of no differences among the groups is
obtained by calculating values of the test statistic R under random equiprobable permutation
� of the original i=1,…, N observation vectors to yield R�; then, P�

R =Pr(R� �R). For more
details regarding the null hypothesis and a comparison with PERMANOVA, see Anderson
& Walsh (2013).

A.2. Pillai’s trace

We wish to test the equality of g population mean vectors when independent random
samples are drawn from populations that are distributed as multivariate normal (MVN) with
equal dispersion matrices, using multivariate analysis of variance (MANOVA). Let yij denote
the jth multivariate sample unit (a vector of length p) from the ith group, let ȳi denote the
sample mean vector for each of i =1,…, g groups and let ȳ denote the overall sample mean
vector. Between-group variation is quantified by

B=
g∑

i=1

ni(ȳi − ȳ)(ȳi − ȳ)�,
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and within-group variation is quantified by W=∑g
i=1(ni −1)Si, where

Si = 1

(ni −1)

ni∑
j=1

(yij − ȳi)(yij − ȳi)
�.

The Pillai-Bartlett trace criterion (Bartlett 1939; Pillai 1955) is then

VP = tr[B(B+W)−1].

For MVN samples having equal dispersion matrices and under a true null hypothesis of
equality of the population mean vectors, the transformation

FVP = (2t + s +1)VP

(2q + s +1)(s −VP)

is approximately distributed as an F distribution with s(2q+ s+1) and s(2t + s+1) degrees
of freedom, where v1 = (g − 1), v2 = (N − g), s = min(v1, p), q = (|v1 − p| − 1)=2 and t =
(v2 −p−1)=2, and we must have v2 �p.

A.3. Modified Pillai’s trace

Following Coombs & Algina (1996), consider a modification to the matrix W above in
the spirit of the Brown & Forsythe (1974) univariate solution to the BFP, as

M= f

(g−1)

g∑
i=1

(
1− ni

N

)
Si,

where f is the degrees of freedom for M, and is defined in practice (where true but unknown
dispersion matrices for individual groups are replaced by Si) as

f = [tr(
∑g

i=1 ciSi)]2 + tr[(
∑g

i=1 ciSi)2]∑g
i=1{[tr(

∑g
i=1 ciSi)]2 + tr[(

∑g
i=1 ciSi)2]}=(ni −1)

where ci =1−ni=N for i =1,…, g.
The modified Pillai’s trace statistic is then defined as:

VÅ
P = tr[B(B+M)−1].

Let tÅ = (f −p−1)=2. An approximate p-value is obtained by using the transformed variable

FVÅ
P

= (2tÅ + s +1)VÅ
P

(2q + s +1)(s −VÅ
P )

,

which is distributed approximately according to an F distribution with s(2q + s + 1) and
s(2tÅ + s +1) degrees of freedom.

Appendix B. Bias in the bootstrap

B.1. Univariate

We show here that the exact downward bias in the bootstrap estimate of the variance of
the mean of a univariate random variable is (1−1=n). Consider a univariate random variable
(r.v.) Y with mean � = 0 and variance �2 = 1, so n samples from this distribution yield
r.v.s {Yj; j =1,…, n} and a single set of realised sample values {yj; j =1,…, n}, with sample
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average ȳ =∑n
j=1 yj=n. Next, obtain B random bootstrap samples with replacement of size

n from the sample values and let the r.v.s {Z`; `=1,…, B} denote B bootstrap averages. If
the bootstrap were unbiased, then we would have var(Z`)=1=n.

Conditioning on the sample values {Yj =yj; j =1,…, n}, {Z`} are independent and iden-
tically distributed for all `. Without loss of generality (w.l.o.g.), consider only the first
bootstrap sample and its mean, Z . Let Tj be the r.v. denoting the number of times yj is
picked (j =1,…, n), so

∑n
j=1 Tj =n and {Tj; j =1,…, n} are multinomial with

Pr(T1 = t1, T2 = t2,…, Tn = tn)= n!

t1!t2! · · · tn!

(
1

n

)t1 (1

n

)t2

· · ·
(

1

n

)tn

.

Then Z =∑n
j=1 Tjyj=n. The marginal distribution of Tj is binomial(n, p), where p=1=n; so

E(Tj)=np=1 and var(Tj)=npq = (1−1=n). Thus, E(Z)= (
∑n

j=1 yj=n) ·E(Tj)= ȳ, showing
the bootstrap average is an unbiased estimator for the sample average ȳ if the latter is
regarded as fixed. Unconditionally, E(Z) = EY1,Y2,…,Yn [E(Z|Y1, Y2,…, Yn] (from the formula
for conditional expection) so E(Z) = E(Ȳ ) = 0 and the bootstrap average is an unbiased
estimator of the mean of the underlying distribution. Next,

var(Z|{Yj = yj})=var

([
n∑

j=1

Tjyj

]
=n

)
= 1

n2

[
n∑

j=1

var(Tjyj)+
∑

j

∑
j′

j �=j′

yjyj′cov(Tj, Tj′ )

]
.

Now, the joint distribution of (Tj, Tj′ ) is trinomial; w.l.o.g., consider just (T1, T2):

Pr(T1=t1, T2=t2)= n!

t1!t2!(n−t1−t2)!

(
1

n

)t1 (1

n

)t2 (
1− 2

n

)n−t1−t2

So

E(T1T2)=
∑

t1

∑
t2

n(n−1)(n−2)!

(t1−1)!(t2−1)!(n−t1−t2)!

(
1

n

)2(1

n

)t1−1(1

n

)t2−1(
1− 2

n

)n−t1−t2

and the right-hand side can be written as [n(n−1)]=(n2) multiplied by

∑
t1

∑
t2

(n−2)!

(t1−1)!(t2−1)! [(n−2)−(t1−1)−(t2−1)]!

(
1

n

)t1−1(1

n

)t2−1(
1−2

n

)(n−2)−(t1−1)−(t2−1)

hence E(T1T2) = [n(n − 1)]=(n2) = 1 − 1=n, so cov(T1, T2) = E(T1T2) − E(T1)E(T2) =−1=n.
Thus,

var(Z|{Yj = yj})= 1

n2

⎡
⎣∑

j

y2
j

(
1− 1

n

)
−
∑

j

∑
j′,j �=j′

yjyj′
1

n

⎤
⎦

= 1

n2

⎡
⎣∑

j

y2
j − 1

n

⎛
⎝∑

j

yj

⎞
⎠

2⎤
⎦
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= (n−1)

n2

⎡
⎣ 1

(n−1)

∑
j

(yj − ȳ)2

⎤
⎦

=
(

1− 1

n

)
· s2

y=n,

where s2
y is the unbiased form of sample variance of the {yj}. Unconditionally,

E[var(Z)]=EY1,…,Yn [E(var(Z)|Y1,…, Yn)]

=EY1,…,Yn

[(
1− 1

n

)
s2

y=n
)

=
(

1− 1

n

)
· 1

n
E(s2

y)

=
(

1− 1

n

)
·var(Y )=n

=
(

1− 1

n

)
· 1

n

We are expecting a variance of 1=n, so there is an exact downward bias in the bootstrap
estimate of the variance of the mean of (1−1=n). Note that no normality assumptions are
needed for this; the result holds for any r.v. Y .

B.2. Multivariate

Let Y denote a p-dimensional multivariate system with n × p independent random
variables in matrix Y= {Yjk}, with each dimension k = 1,…, p having mean �k = 0 and
variance �2

k = 1, and realised sample matrix Y={yjk} for j = 1,…, n; k = 1,…, p. For each
dimension k =1,…, p, the sample mean is ȳk =∑n

j=1 yjk=n and s2
k = ∑n

j=1(yjk − ȳk)2=(n−1)
is an unbiased estimate of �2

k .
Suppose Euclidean distances are calculated among every pair of sample units based on

all p variables, yielding the n × n matrix D={djj′ }. Apply Gower’s (1966) transformation
to obtain G= (In − (1=n)Jn)A(In − (1=n)Jn) where A ={(−1=2)d2

jj′ }. Following McArdle &
Anderson (2001), we have

tr(G)= (n−1)
p∑

k=1

s2
k .

Hence, as Yjk are independent for all j, k,

E

{
1

(n−1)
tr(G)

}
=

p∑
k=1

�2
k =p.

Consider a bootstrap sample of multivariate data {y�jk}, where β = {�j} for j = 1,…, n is
a vector of length n containing a bootstrap sample of the integers from 1 to n. Gower’s
transformation of a Euclidean distance matrix from this bootstrap sample is then given by
G� and, from the univariate result above,

E

{
1

(n−1)
tr(G�)

}
=
(

1− 1

n

) p∑
k=1

�2
k =
(

1− 1

n

)
p
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We are expecting a variance equal to p, so there is an exact downwards bias in the bootstrap
estimate of the variance of (1−1=n).

Supporting information

Additional supporting information may be found in the online version of this article at
http://wileyonlinelibrary.com/journal/anzs

Data S1. Norway macrofauna dataset.
Tables S1 & S2. Tables reporting results of simulations.
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