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INTRODUCTION

Generally, marine ecosystems are thought to be
regulated by bottom-up control, emphasizing the
importance of phytoplankton as the base of the food
web (Frederiksen et al. 2006). Chlorophyll a (chl a)
is the major photosynthetic pigment occurring in
phytoplankton, so its concentration serves as a con-

venient index of phytoplankton abundance and bio-
mass, with the additional advantage that it can be
measured from space (Platt et al. 2010, Pettersson &
Pozdnyakov 2012). The link between phytoplankton
and planktivorous small pelagic fishes is influenced
by the physical and chemical features of the habitat
(Schwartzlose et al. 1999). Pronounced changes in
the yields of small pelagics were studied by Long -
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ABSTRACT: Coastal waters of Kerala, which form an integral part of the Malabar upwelling zone
off the southwest coast of India, constitute an important fishing region for small pelagics. Satellite
remote sensing data from 1998−2014 were used to test the hypothesis that fluctuations in the land-
ings of Sardinella longiceps, the major pelagic fish landed in the area designated as the South
Eastern Arabian Sea (SEAS), are influenced by seasonal variability in phytoplankton biomass
(measured as chlorophyll a [chl a] concentration), under the changing strength of physical para -
meters such as sea surface temperature (SST), alongshore wind stress, Ekman mass transport, sea
level anomaly (SLA) and Kerala rainfall. Multiple linear regression analysis (MLRA) was used to
assess the influence of physical forcing mechanisms on chl a concentration on monthly and sea-
sonal scales. We found that SLA, alongshore wind stress, SST and rainfall were ranked 1 to 4,
respectively, and the first 3 factors significantly influenced the chl a concentration of SEAS. Pear-
son’s correlation analysis between monthly chl a and sardine landing (with chl a leading) showed
a maximum positive correlation (+0.26) at 2 and 3 mo lags, emphasizing that the influence of chl a
on the fishery of S. longiceps is seasonal (r = 0.35 for seasonal lead−lag correlation) in the coastal
waters of SEAS. Variation in phytoplankton biomass, as evidenced by chl a fluctuations, seems to
have a decisive role in regulating the physiological condition of larvae spawned during the south-
west monsoon season, their juveniles and finally the adults that are recruited into the fishery in the
next season. Using the quantity of phytoplankton as a predictive tool will exploit the presumptive
trophic link to aid understanding of sardine fishery dynamics in upwelling zones.
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hurst & Wooster (1990), who formulated indices relat-
ing the total annual sardine catch to environmental
factors. However, over time in Indian waters, these
indices failed due to large variability in landings and
the complex correlations between factors (Mad-
hupratap et al. 1994).

Waters off the southwest coast of India, better
known as the Malabar upwelling zone (Bakun et al.
1998), contribute nearly 30% of the total marine fish
catch from India (Manjusha et al. 2013). This area,
extending from Ratnagiri in the north to Cape
Comorin in the south, is characterized by its annual
cycle of upwelling associated with the southwest
monsoon (Krishnakumar et al. 2008). The ensuing
productivity sustains a lucrative fishery for commer-
cially important pelagic fin fishes such as Indian oil
sardine Sardinella longiceps and Indian mackerel
Rastrelliger kanagurta (Krishnakumar et al. 2008).
The Indian oil sardine is the single largest contributor
to the total marine fish landings of India (15%)
(Mohanty et al. 2005). Seasonal, annual and decadal
fluctuations have been observed in the fishery of this
species, the reasons for which still remain enigmatic. 

S. longiceps, the model organism of the present
study, is an epipelagic fish that forms dense neritic
shoals. Although oil sardines are present in waters
up to 50 m depth, most of the fish are caught between
the 30 m isobath and the coast, where they form a
major inshore fishery exploited by both traditional
and mechanised gears (Manjusha et al. 2013). The
spawning and recruitment of oil sardines overlap
with the up welling occurring during the summer
monsoon along the Malabar coast. Oil sardines grow
rapidly during the first few months and mature early
within their life span of about 2.5 yr. The age at first
maturity occurs at less than 1 yr, or about 15 cm size.
Being a zero year class fish, their availability in catch
depends on the prevailing environmental conditions
during the time of spawning and recruitment to fish-
ery (Jaya prakash & Pillai 2000). Management of the
sardine fishery has several challenges due to its wide-
spread distribution along almost the entire Indian
coast, and also as it is closely linked to the economic
prosperity and food security of the fishing community
(Jayaprakash & Pillai 2000).

Sardines are planktivorous, with a preference for
diatoms, especially the centric diatoms that dominate
the phytoplankton community of the Eastern Arabian
Sea during monsoon. This enabled us to hypothesize
that the fluctuations in the landings of S. longiceps,
the major pelagic fish landed in Kerala, are influ-
enced by the seasonal variability in phytoplankton
biomass brought about by the changing strength of

physical properties such as sea level anomaly (SLA),
sea surface temperature (SST), surface winds, Ekman
mass transport and Kerala rainfall.

Contrary to the understanding that top-down (con-
sumer-driven) removal of fish biomass can have a
strong regulatory effect (Worm & Myers 2003), mid-
latitude coastal fisheries appear to be strongly con-
strained by the magnitude of phytoplankton produc-
tion (Frank et al. 2006). Hence in the present study,
priority is given to chlorophyll concentration and its
fluctuations in relation to physical forcing mecha-
nisms. We used statistical analysis of satellite remote
sensing data to examine whether fluctuations in the
landings of S. longiceps from the coastal waters of
Kerala could be explained by variability in phyto-
plankton biomass (chl a), brought about by the
changing strength of physical oceanographic drivers
such as SLA, SST, surface winds, Ekman mass trans-
port and Kerala rainfall.

MATERIALS AND METHODS

Data

We used monthly, merged surface chl a data for the
period 1998−2014, at 4 km resolution, from the
Ocean Colour Climate Change Initiative (OC-CCI),
European Space Agency (Sathyendranath et al. 2017,
2018), available at www.esa-oceancolour-cci.org.
OC-CCI chlorophyll data are created by band-shifting
and bias-correcting ocean colour data from MERIS,
MODIS and VIIRS imagery and matching them to
SeaWiFS data, merging the datasets and computing
per-pixel uncertainty estimates. Data from Version
3.1 were used, in which extra consideration is given
to Case-2 retrievals, by flagging and algorithm
choice (based on water type) to improve the validity
of the products (Jackson et al. 2017).

Monthly SST data (monthly means of daily
means), from 1998−2014 at 25 km resolution from
the European Centre for Medium Range Weather
Forecast (ECMWF) Re-Analysis (ERA)-Interim data
(Berrisford et al. 2011, Dee et al. 2011) (available at
http:// apps.ecmwf.int/datasets/data/interim-full-
moda/ levtype=sfc/) were used for the analysis.
Merged monthly SLA data at 25 km resolution
(1998−2014) were obtained from Ssalto multimission
ground  segment/Data Unification and Altimeter
Combination System (Ssalto/Duacs) processing dis-
tributed by Aviso+ (www.aviso.altimetry.fr/en/data/
products/  sea-surface-height-products.html). Daily
surface wind data at 25 km resolution for the period
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1998−2014 were also taken from ERA-Interim data
(Berrisford et al. 2011, Dee at al. 2011), and monthly
means were calculated. We used monthly rainfall
data for Kerala State (1998−2014) based on rain
gauge measurements (Parthasarathy et al. 1994,
1995), available at the website of the Indian Institute
of Tropical Mete orology (IITM), Pune (ftp:// www. trop
met. res.in/pub/ data/ rain/iitm-subdivrf.txt). Monthly
landing data of Indian oil sardine from Kerala
coastal waters for the period 1998−2014 were pur-
chased from the Central Marine Fisheries Research
Institute (CMFRI), Kochi.

Methodology

The present study was based on data collected over
a period of 17 yr, beginning in January 1998 and end-
ing in December 2014, in the Arabian Sea (Fig. 1), in
an area that extends 2.5° westwards from the coast-
line of Kerala, designated as the South Eastern Ara-
bian Sea (SEAS). Considering the slant in the coast-
line, the area had an irregular shape so that  distance
of the offshore boundary to the nearest point on
the coastline was always 250 km. The geographic
coordinates of the area are approximately 8−13° N,
73−77° E and include the coastal waters of the state of
Kerala, India. Each year was divided into 4 seasons
based on how the monsoons affect the area (Kumar
et al. 1994, Kothawale & Rupa Kumar 2005): (1) win-
ter (December, January, February), (2) pre-monsoon
(March, April, May), (3) southwest monsoon (June,
July, August, September) and (4) post-monsoon (Oc -
tober, November).

A multiple linear regression model was set up to
assess the influence of physical forcing mechanisms
on the phytoplankton biomass on monthly and
 seasonal scales. Multiple linear regression analysis
(MLRA) attempts to model the relationship between
2 or more predictors and a predictand by fitting a
 linear equation to the observed data. Four physical
forcing mechanisms (predictors), viz. alongshore wind
stress over the SEAS, rainfall of Kerala State, SST
and SLA of SEAS, were used, with chl a concentra-
tion as the predictand.

Monthly values of alongshore wind stress, SST and
SLA spatially averaged over the SEAS were used for
MLRA. Geometric means of the log-transformed chl
a (log10 chl) data were used to compute the spatial
and temporal averages. To remove the negative val-
ues present in the log-transformed data, log10 (chl+1)
values were used, as suggested by Parsad (2005),
while computing the geometric means.

Alongshore wind stress over the Kerala coast for
the period 1998−2014 was computed from ECMWF
winds, considering the latitude and coastal angle of
each location.

Ekman mass transport was computed from the
alongshore wind stress given by:

Me = τalong /f (1)

where Me is the Ekman mass transport (kg m−1 s−1),
τalong is the alongshore component of wind stress, and
f = 2Ω sin ϕ is the Coriolis parameter, where Ω is the
Earth’s angular frequency and ϕ is the latitude.

Ekman mass transport was computed over the
SEAS to describe and understand the coastal up -
welling in this region. Negative Ekman mass transport
indicates offshore transport of surface waters from
near the coast leading to an upwelling situation. Ek-
man mass transport was not used for MLRA as both
alongshore wind stress and Ekman mass transport
were primarily derived from the surface winds, which
would lead to multicollinearity in the predictors.

MLRA was carried out using monthly as well as
seasonal data (n = 68) for the 17 yr period from
1998−2014. The general equation of a multiple linear
regression model with 4 predictors and n observa-
tions is given by:

Yi = b0 + b1X1 + b2X2 + b3X3 + b4X4 + … + εi

i = 1,2,3,4,…n (2)

where Y is the response variable, b0 is the intercept, X1,
X2, X3, X4 are the predictors, b1, b2, b3, b4 are the partial
regression coefficients, and εi is the residual, whose
magnitude is equal to the difference between the mag-
nitudes of the observed and modelled predictand.

The predictors were then ranked on the basis of the
magnitude of their standardized regression coeffi-
cients. For this purpose, MLRA was carried out using
the standardized anomalies of the predictors. The
standardized regression coefficients gave the change
in the model output for a given change in the predic-
tive variable, which was measured as a fraction of its
standard deviation (Saltelli et al. 2000). The use of
standardized coefficients permitted comparisons of
predictor−predictand relationships in which the pre-
dictors have different units of measurements (Landis
2005). The relation between the standardized regres-
sion coefficient and the partial regression coefficient
is given by:

(3)

where σXi
and σY are standard deviations of the pre-

dictor Xi and of the predictand Y, respectively.

b
i

i x

Y

iβ =
σ

σ
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Pearson’s correlation coefficient was calculated
between monthly time series data of spatially aver-
aged log chl a and sardine landings with chl a lead-
ing by 1 mo to ascertain the in fluence of phyto -
plankton biomass on sardine fishery. All statistical
analyses were carried out using the R software pack-
age. We checked all regression diagnostics while
conducting the analyses.

RESULTS

Linear correlation analysis be tween monthly values
of pairs of input predictors was performed to check for
multicollinearity (Table 1) be fore proceeding with the
MLRA. The pre dictors were ranked on the basis of the
magnitude of their standardized regression
co efficients (Table 2). SLA was the most im-
portant predictor, followed by alongshore
wind stress and SST (all significant at α =
0.05). Kerala rainfall was found to be the
least important (ranked 4) among the pre-
dictors and was non-significant. The coeffi-
cient of determination (COD, r2) and ad-
justed r2 (which is a modified version of the
COD adjusted for the number of predictors
in the  fitted line) were 0.80 and 0.79, re -
spectively. This implied that fluctuations in
the predictor variables were able to explain
~80% of the variability of chl a concentra-
tion around its mean (Table 2).

The modelled monthly chl a (Fig. 2) using
MLRA, excluding the non-significant para -
meter rain, was given by:

pi = 1.45041 – 0.04303Ti – 5.33 × 10–5ri
– 2.98494τalongi

– 0.85989ζi + εi (4)

where p = chl a (mg m−3), T = SST (°C),
 τalong = stress (N m2), ζ = SLA (m), and εi

is the residual or error term.
There was no definite pattern among the

residuals, which indicates that autocorrela-
tion in the predictors was not a significant
factor (see Fig. S1 in the Supplement at

4

Time period SST vs. Rain SST vs. Stress SST vs. SLA Rain vs. Stress Rain vs. SLA Stress vs. SLA

Monthly −0.3025 0.3895 0.5118 −0.7236 −0.6777 0.7381
Seasonal −0.5196 0.4664 0.5410 −0.7672 −0.8748 0.7466

Table 1. Linear correlation coefficients between monthly and seasonal values of pairs of input predictors used for the study.
SST: sea surface temperature; SLA: sea level anomaly; Stress: alongshore wind stress; Rain: rainfall in the state of Kerala

Fig. 1. Study area (irregularly shaped box) designated as the South East-
ern Arabian Sea (SEAS) (approximately 8−13° N, 73−77° E), superimposed
on Ocean Colour Climate Change Initiative chl a data (log10 chl, in mg
m−3) for a representative monsoon month (September 2003). Bathymetry 

lines represent 50, 100 and 200 m depths
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www.int-res.com/articles/suppl/ m12806_ supp. pdf).
The correlation values of only 4 auto-correlations (out
of 23) were non-0. The monthly auto-correlation plot
also did not exhibit any definite  pattern (Fig. S2). As
the influence of rain was non-significant in determin-
ing the variability of chl a concentration, rain could be
ignored in the rest of the analysis.

There was no direct relationship between chl a
concentration and sardine landings as revealed by
the scatterplot and r2 value (0.00) of monthly log 
chl a vs. sardine landings (Fig. 3). However, lead−lag
 correlation analysis between monthly standardized
anomalies of log chl a and sardine landings (with
chl a leading) for the period January 1998 to Decem-
ber 2014 showed that maximum positive correlations
were at 2 and 3 mo lags (Fig. 4) (+0.26, α = 0.01). This
2 to 3 mo lag obtained between standardized anom-
alies of chl a and sardine landings prompted us to
reanalyse the data on the basis of a slightly longer
time scale, i.e. seasonal.

On a seasonal scale, the lowest concentration of
chl a near the coast was observed during the winter

season (0.2 to 0.5 mg m−3), fol-
lowed by the post monsoon sea-
son. Chl a concentration was
highest (8.5 mg m−3) along the
coast during the southwest mon-
soon season. The alongshore wind
stress was strong and negative
(northerly component) during the
southwest monsoon season for all
years of the study period (Fig. S3).
The strength of up welling, as esti -
mated from the Ekman mass trans -
port, was also negative  during

the southwest monsoon, indicating offshore water
move ment, with high negative values of mass trans-
port that reached −1800 kg m−1 s−1, causing coastal up -
welling in the region during the southwest monsoon.

The predictors were ranked on the basis of the
magnitude of their standardized regression coeffi-
cients (Table 3), which was slightly higher than for
the monthly analysis. As in the case of monthly
analysis, SLA was the most important variable, fol-
lowed by alongshore wind stress, SST and Kerala
rainfall. In this case, all of the predictors, except
rain, were significant (α = 0.05). The COD (r2) and
adjusted r2 were 0.86 and 0.85, respectively. This
implied that the variability in the predictors was able
to explain ~85% of the variability of chl a concentra-
tion around its mean (Table 3).

The equation of the modelled seasonal chl a (Fig. 5)
using MLRA, excluding the non-significant para -
meter, rain, is given by:

pi = 1.16384 – 0.03415Ti + 2.26 × 10–5ri
– 3.10996τalongi

– 0.6704ζi + εi (5)

As in the case of monthly analy-
sis, there was no definite pattern
among the residuals, indicating
the fact that auto correlation in
the predictors is not significant
(Fig. S4). The correlation values
were 0 at all time lags, suggesting
randomness. The seasonal auto-
correlation plot did not exhibit
any definite pattern (Fig. S5).

The linear correlation coeffi-
cient between the standardized
anomalies of spatially averaged
seasonal time series of log chl a
and sardine landings—with a lag
of 1 season—was positive (r =
0.35) and significant at α = 0.01
(Fig. 6). This showed clearly that

5

Predictor variable Rank Value/standardized SE t p > |t |
regression coefficient

SLA 1 −0.56026 0.05353 −10.46654 <0.0001*
Alongshore wind 2 −0.27802 0.05311 −5.23534 <0.0001*
stress

SST 3 −0.26839 0.03734 −7.18716 <0.0001*
Kerala rainfall 4 −0.08812 0.04885 −1.80377 0.07278

Table 2. Multiple linear regression analysis (standardized anomalies) with monthly
log-transformed chl a as the predictand and physical parameters as predictors for
the period 1998−2014. SLA: sea level anomaly; SST: sea surface temperature; 

*statistically significant at p < 0.05
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Fig. 2. Modelled monthly chl a concentration in log10 mg m−3 (red solid line) for the
period 1998−2014 based on multiple linear regression analysis (MLRA) plotted
against the observed monthly chl a concentration in log10 mg m−3 (dotted black line) 

in the South Eastern Arabian Sea (see Fig. 1) 
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the regulation of sardine fishery, noted for its sea-
sonal and inter-annual fluctuations (Fig. 7), is mainly
through the seasonal variation in chl a content, which
in turn is closely regulated by the seasonal variations
in physical parameters.

We tested whether the environmental predictor
variables including chl a on a seasonal scale had any

direct effect on sardine landings
by regressing oceanographic para -
meters, viz. SLA, SST, alongshore
wind stress and chl a, on sardine
landings. We found no significant
effect, with COD and adjusted r2

being 0.17 and 0.12, respectively
(results not shown) (Table S1).

DISCUSSION

The North Indian Ocean (NIO)
experiences strong seasonally re -
versing winds associated with the
southwest and northeast monsoon
seasons. Seasonal variation of such
large amplitude is unique and is
responsible for the associated sea-
sonal changes in oceanographic
and biological properties in the 3
major areas of the NIO, viz. the
Somalia basin, Bay of Bengal and
Arabian Sea (Shetye et al. 1994). It
is based on these variations that
the year has been divided into 4
seasons of unequal durations
(Kumar et al. 1994), as done in the
present study. In concurrence with
the peculiar oceanographic fea-
tures prevalent at the seasonal
scale in the SEAS, a higher COD
(r2 = 0.86) was obtained when we
used seasonal data instead of
monthly data in the MLRA. This
emphasizes the relevance of sea-
sonal fluctuations in chl a and their
impact on the annual fluctuations
in the fishery of Indian oil sardines.
Shankar & Shetye (1997) showed
that upwelling in the band from
9−13° N is under the combined
influence of local winds and the
upwel ling mode of the remotely
forced Kelvin and Rossby waves.
Strong negative SLAs, which are

signatures of upwelling, were found throughout the
study period from February to July. During the south-
west monsoon, surface winds blow parallel to the
Kerala coast, inducing an offshore component of sur-
face Ekman transport. However, the local wind
movement is not adequate to explain the well
defined seasonality in up welling. Along the west
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Fig. 3. Log10 chl a (mg m−3) in the South Eastern Arabian Sea vs. sardine landings
(million metric tonnes, MMT) for Kerala on a monthly scale for the time period 

1998−2014
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coast of India, upwelling is initiated by basin-scale
winds rather than by local wind forcing (Smitha
2010). 

As the MLRA ranking of the
present study indicates, the sur-
face chl a concentration in the
SEAS is affected by physical
mechanisms, such as offshore
Ekman transport, alongshore wind
stress and SLA, that, in turn, are
influenced by local winds as well
as remote forcing mechanisms.
Even though the sardine fishery is
restricted to the inshore waters of
Kerala, the influence of environ-
mental properties over the entire
eastern Arabian Sea is responsi-
ble for fluctuations in the fishery.
Hence, data from a region cover-
ing waters up to 250 km from
the shore along the Kerala coast
were selected for the study. Pre-
vious studies attempted to ex -
plain fluctuations of the fishery in
terms of localized environmental
properties and did not consider
remote forcing mechanisms. Here
we looked into regional-scale
processes that influence the sar-
dine fishery in Kerala waters. The
higher COD (0.86) and adjusted
r2 (0.85) obtained in the seasonal
MLRA show that seasonal fluctu-
ations in environmental variables
were able to explain seasonal
changes in chl a concentration
better than the monthly values.
The critical roles played by Ek -
man transport and alongshore
wind stress in initiating the up -
welling off the south west coast
of India are well documented
(Smitha et al. 2008, Jayaram et al.
2010).

Longhurst & Wooster (1990)
were of the opinion that marked
inter-annual variations in sardine
catches at Kochi, Kerala, are prob-
ably tied to variations in phys -
ical forcing mechanisms such as
strength and onset of monsoon
and sea level variability. However,
the MLRA results of the present

study showed that, among the variables tested, the
strength of monsoon rainfall did not have a significant
influence (p > 0.05) on chl a concentration (Tables 2
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Predictor Rank Value/standardized SE t p > |t |
variable regression coefficient

SLA 1 −0.48044 0.1032 −4.65551 <0.0001*
Alongshore wind 2 −0.31676 0.0768 −4.12463 <0.0001*
stress

SST 3 −0.23207 0.05719 −4.05816 <0.0001*
Kerala rainfall 4 0.03472 0.10549 0.32914 0.74314

Table 3. Multiple linear regression analysis (standardized anomalies) with seasonal
log-transformed chl a as the predictand and physical parameters as predictors
for the period 1998−2014. SLA: sea level anomaly, SST: sea surface temperature; 

*statistically significant at p < 0.05
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Fig. 5. Modelled seasonal chl a concentration in log10 mg m−3 (red solid line) for the
period 1998−2014 based on multiple linear regression analysis (MLRA) plotted
against the observed seasonal log chl a concentration (dotted black line) in the 

South Eastern Arabian Sea (see Fig. 1)
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& 3). According to Jayaram (2011), the influence of
rainfall is seen only on SST in the SEAS and not on
chl a directly. Sensitivity of Indian oil sardines to tem-
perature is well documented, and the fish prefer a
temperature range of 27−29°C (Chidambaram 1950,
Vivekanandan et al. 2009). In the present study, 53%
of the seasons (36 out of 68) had average SSTs favour-
able for the existence of oil sardines, whereas 32
(47%) of the seasons had temperatures above the pre-
ferred range. There were no seasons with tempera-
tures below 27°C. This raised a suspicion whether
SST had a direct influence on the sardine fishery of
the study area (rather than an indirect influence
through its effect on chlorophyll), which was tested
using Pearson’s linear correlation analysis between
the favourable and unfavourable temperature ranges
against chl a, on a seasonal scale, on sardine landings.
In the case of the favourable temperature range
(27−29°C), the linear correlation coefficient was 0.14
(36 seasons), whereas for the unfavourable tempera-
ture range (>29°C), the correlation coefficient was
−0.62 (32 seasons). This shows that temperature pref-
erence for sardine is a physiological matter, inde-
pendent of food supply; the fish have to eat, and they
will find the food where they can. In the study area se-
lected for reanalysis of data, the seasonal temperature
range was between 27 and 30.7°C. The fish may have
had difficulties at the highest temperature (30.7°C),
which is marginally outside the preference range, but
the lowest temperature (27°C) was still within the
preference range for sardine. Although an inverse re -
lation between SST and chl a was observed through -
out the study, the fish would not have been stressed
by low temperature at any time. The lowest SST was
found during the southwest monsoon, which also had
the highest concentration of chl a during the entire
duration of the study. Incidentally, the southwest
monsoon was the time of spawning of sardines, and
provided ample food supply to the growing larvae.

Most earlier studies attempted to establish a rela-
tion between interannual variations in environmen-
tal parameters and the sardine fishery (Longhurst
& Wooster 1990, Krishnakumar & Bhat 2008, Vive -
kanandan et al. 2009). However, only the study by
George et al. (2012) hypothesized that the variation
in sardine population dynamics is closely related to
the life cycle of the animal and is linked to the food
availability during the growing stages of the popula-
tion. Indian oil sardines have their peak spawning
activity during the southwest monsoon (Nair 1960).
They have a fractional spawning system that de -
pends on the release of multiple egg batches at inter-
vals (Cunha et al. 1992). Differential growth rates
for the different broods arise from early spawning
and late spawning in the same season (Antony Raja
1970). The earlier brood spawned in June−July has
a high rate of growth, reaching 105 mm in 8 wk,
whereas those spawned in July−August attain the
same length in 10 wk. George et al. (2012) stated that
sardine catch is dominated by zero year class individ-
uals measuring ≤140 mm in total length that spawned
during the earlier spawning period starting from
May. As sardines are predominantly herbivorous,
variation in food availability can be assessed from
variation in chl a concentration. 

Onset and progress of the southwest monsoon are
marked by the occurrence of diatom blooms along the
Kerala coast (George et al. 2012, Nashad et al. 2017).
George et al. (2012) asserted that an early spawning
and a time lag in development of food (through a
break in the monsoon or upwelling) would be detri-
mental to sardine recruitment. The landing data of
 Indian oil sardine clearly indicate an inter-annual
fluctuation, but the fish production over the last few
decades has shown an increasing trend. Taking into
consideration that stock abundance of oil  sardines is
directly related to landings, or that there is little
change between years in the harvest of these re-
sources, with at least a dozen diverse gear and craft
combinations in inshore waters (Sathiadhas 2006,
Kripa et al. 2015), a maximum positive correlation at 2
and 3 mo lags (+0.26, statistically significant at α =
0.01) was obtained for the lead−lag correlation analy-
sis between chl a and sardine landings (with chl a
leading) on a monthly scale. According to Mohanty et
al. (2005), the success of the oil sardine fishery de-
pends mainly on the recruitment strength of early ju-
veniles (50−100 mm) during post monsoon months.
They found that from October onwards, recruitment
of juveniles intensifies and fish of a wide range in
length are observed in the catches. Remya et al.
(2013) also established that the post monsoon catches
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are dominated by ‘immature’ stage I and stage II fish,
which range from 112−193 mm in length. These ob-
servations, coupled with the fractional spawning and
differential growth rates for different broods, explain
the 2−3 mo lag that was obtained by means of Pear-
son’s correlation (lead−lag) analysis between chl a
and sardine landings. On a seasonal scale also, this
2−3 mo lag relation is relevant, as our sea sons are of
different durations, from 2−4 mo. Our results are
 consistent with the Hjort-Cushing match− mismatch
 hypothesis (Hjort 1914, Cushing 1974, 1990) that the
survival rate of fish larvae is a function of the syn-
chrony between timing of hatching of eggs and initia-
tion of the spring phytoplankton bloom (Platt et al.
2003). Thus, the chl a bloom in the southwest mon-
soon season supports a successful fishery in the post
monsoon season which follows after a lag of 2−3 mo.

At the time of writing, no management plans exist
for the sardine fishery in India. The Indian oil sardine
is reported to have inter-annual fluctuations in land-
ings that depend on environmental variability rather
than fishing efforts. A well-equipped fleet with suf -
ficient infrastructure and manpower to exploit the
existing fish biomass is available (Jayaprakash &
 Pillai 2000). The environmental processes responsi-
ble for the occurrence of phytoplankton blooms, as
evidenced by the enhancement of chl a concentra-
tion, start 2−3 mo (March−April) before the sardine
spawning (June−July). Thus, assuming that any future
management plan would be ecosystem-based, mag-
nitudes of environmental drivers on chl a, that are
readily and freely available, could be used to esti-
mate the potential quantity of sardines available for
harvest in a given year. Such forecasts could be given
with at least 3 mo notice. In the case of zero year class
fisheries such as sardines, with short life-spans and
rapid turnover of generations, it is advisable to study
on smaller time scales, rather than using inter-annual
variability, to elucidate the principal causative factors
responsible for fluctuations in the fishery. Sardines
are fish of high nutritive and economic value. Thus,
prior knowledge of possible low landings would help
the fishermen decide whether to target other species,
thereby managing the fishery in a better way. Even
temporary collapses of small pelagic fish such as
 sardines can have large impacts on the ecosystem,
demanding a rational management of these fish. In
the present study, we have examined the dynamics
of the recruitment of sardines to the fishery in Kerala
waters on a time scale which, even though referred
to as seasonal, does not imply standard astronomical
seasons, but rather refers to sequential periods from
2 to 4 mo each that are important in the life cycle and

ecology of the fish (in other words, to ecological sea-
sons). Such an approach is a first step towards man-
agement of this commercially important species

Finally, we recognize that our approach has its own
limitations. We did not take into account the variabil-
ity of the sub-surface chlorophyll, which cannot be
measured using satellite remote sensing. The chloro-
phyll concentrations in the coastal regions are also
influenced by the variability of various physical and
biological variables such as zooplankton, nutrient
availability and dissolved oxygen content, which were
not included in our analysis. Owing to the presence
of persistent clouds, the data gap in the OC-CCI chl a
is highest during the southwest monsoon among the
4 seasons considered. It is also during the same sea-
son that surface chl a is observed to have maximum
magnitude. This is an inherent limitation of the ocean
colour data from remote sensing. The correlation co -
efficient of 0.35 between sardine landing and chl a
on a seasonal basis serves to explain only 12% vari-
ability in the fishery data, but the result could be
viewed as a small but important step forward in the
management of a dynamic fishery, in this case by
forewarning of potentially low landings when chlo -
rophyll concentrations during the growing season
are anomalously low. Ecosystem-based management
implies that we examine all possible time series
of variability, including annual and multi-decadal
 fluctuations.

In conclusion, our results suggest that the season
preceding phytoplankton biomass has a direct positive
relation with the landings of Sardinella longiceps in
the coastal waters of SEAS by influencing the physiol-
ogy during critical periods of its life cycle. This sup-
ports our hypothesis that any variation in chl a con-
centration caused by environmental fluctuations will
impact the sardine catch in the following season and
thereby the annual landings. Further, the relative im-
portance or ranking of the physical variables that af-
fect chl a concentration could be used as a guide to
modelling and predicting the sardine fishery of SEAS.
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