
remote sensing  

Article

Estimation of Size-Fractionated Primary Production
from Satellite Ocean Colour in UK Shelf Seas

Kieran Curran 1,2, Robert J. W. Brewin 1,3, Gavin H. Tilstone 1,*, Heather A. Bouman 2

and Anna Hickman 4 ID

1 Earth Observation Science and Applications, Plymouth Marine Laboratory, Plymouth PL1 3DH, UK;
kieranfcurran@gmail.com (K.C.); robr@pml.ac.uk (R.J.W.B.)

2 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK;
heather.bouman@earth.ox.ac.uk

3 National Centre for Earth Observation, Plymouth Marine Laboratory, West Hoe, Plymouth PL1 3DH, UK
4 Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton,

European Way, Southampton SO14 3ZH, UK; a.hickman@noc.soton.ac.uk
* Correspondence: ghti@pml.ac.uk; Tel.: +44-1752-633-406

Received: 31 July 2018; Accepted: 28 August 2018; Published: 31 August 2018
����������
�������

Abstract: Satellite ocean-colour based models of size-fractionated primary production (PP) have been
developed for the oceans on a global level. Uncertainties exist as to whether these models are accurate
for temperate Shelf seas. In this paper, an existing ocean-colour based PP model is tuned using a large
in situ database of size-fractionated measurements from the Celtic Sea and Western English Channel
of chlorophyll-a (Chl a) and the photosynthetic parameters, the maximum photosynthetic rate (PB

m)
and light limited slope (αB). Estimates of size fractionated PP over an annual cycle in the UK shelf
seas are compared with the original model that was parameterised using in situ data from the open
ocean and a climatology of in situ PP from 2009 to 2015. The Shelf Sea model captured the seasonal
patterns in size-fractionated PP for micro- and picophytoplankton, and generally performed better
than the original open ocean model, except for nanophytoplankton PP which was over-estimated.
The overestimation in PP is in part due to errors in the parameterisation of the biomass profile during
summer, stratified conditions. Compared to the climatology of in situ data, the shelf sea model
performed better when phytoplankton biomass was high, but overestimated PP at low Chl a.

Keywords: Pico; nano; microphytoplankton; size fractionated; photosynthesis; primary production;
ocean colour; remote sensing; Shelf seas; Celtic Sea; Western English Channel

1. Introduction

Photosynthesis by phytoplankton is the primary source of organic carbon to pelagic ecosystems,
which is determined and modified by the intensity and spectral quality of light within the water column
and the efficiency with which it is absorbed by phytoplankton. Phytoplankton production is the basis
of the biological carbon pump that modulates many biogeochemical cycles and in turn mediates many
ocean-atmosphere fluxes [1–4]. Though only occupying ~7% of Earth’s surface, the shelf seas constitute
one of its most productive environments, with 2 to 5 times the annual production (g C m−2 y−1)
of the open ocean, allowing these seas to support 90% of global fisheries [5]. Photosynthesis by
phytoplankton is the principal source of organic carbon for pelagic ecosystems in shelf seas [6],
supporting secondary production by heterotrophic protozoan and metazoan grazers and regenerative
production by a range of heterotrophic bacteria [7]. Due to the high rates of PP common to many
shelf seas, and their economic importance and sensitivity to transient and long-term anthropogenic
perturbations [8–11], in situ measurements and subsequent models of primary production for these
regions are of considerable value to marine managers and policy makers.
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Different phytoplankton taxa contribute to different components of the marine biogeochemical
cycle [12] and different biogeographical regions favour distinctive phytoplankton assemblages.
Oligotrophic regions are generally low in Chl a and dominated by picophytoplankton [13,14],
particularly prokaryotes such as Prochlorococcous which have a competitive advantage under low
nutrient conditions [15,16]. Temperate shelf seas are often dominated by larger eukaryotes such as
diatoms during spring and dinoflagellates during summer and undergo periodic shifts in population
size and structure due to grazing pressure and various abiotic conditions [17–19]. The spatio-temporal
variability of shelf sea hydrography means that distinct assemblages of phytoplankton canbe observed
between neighbouring regions when strong physical forcing separates water masses or impacts the
surface mixed layer depth or nutrient input [20,21]. Ecosystem and biogeochemical models often
include phytoplankton size classes and functional types and primary production to estimate group- or
size-specific carbon and nutrients cycling rates [22–26] to evaluate the impact of phytoplankton size
classes on elemental stoichiometry and grazing rates in the ecosystem [27–30].

Generally, microphytoplankton (phytoplankton >20 µm) can have high maximum photosynthetic
rates when not consistently light or nutrient limited [31–35], though there are exceptions [36].
Nanophytoplankton (phytoplankton between 2–20 µm) are considered to be globally ubiquitous
with photophysiology intermediate between micro and picophytoplankton (phytoplankton between
0.2–2 µm), and responsible for the majority of non-spring bloom primary production in many shelf
seas, with picophytoplankton generally being considered a minor component of annual primary
production (PP) [37] given the supply of macronutrients is often high enough that the competitive
advantage of small cell size is not beneficial. There are, however, a number of studies that indicate
smaller size fractions as having higher photosynthetic rates than larger cells in shelf systems [13,38–40]
and supplying a significant proportion of annual PP [41,42].

Efforts to produce regional and global estimates of primary production from satellite data have
combined maps of Chl a with estimates of photosynthetic parameters for each size class. As the relative
biomass and photosynthetic rates of phytoplankton size fractions vary considerably throughout the
oceans with respect to hydrography, irradiance and biogeochemistry [43–48], robust relationships
between them must be defined so that certain components of PP models can be accurately
parameterised. Satellite models of size fractionated PP have been developed either based on deriving
size fractionated Chl a biomass [35] or size fractionated phytoplankton absorption coefficients [49].
Uitz et al. [35] developed a model of size-fractionated PP based on a large in situ data base of
phytoplankton pigments, absorption coefficient of phytoplankton (aph) and photosynthesis-irradiance
(PE) curves taken along latitudinal transects in the sub-tropical Atlantic and Pacific Oceans. This model
describes the dependence of algal photo-physiology on phytoplankton size and the relative irradiance
of the water column. It has been applied to global ocean colour satellite data to derive PP in micro,
nano and picophytoplankton [50]. By comparison, Hirata et al. [49] used an inherent optical property
(IOP) inversion model to estimate aph and portioned this between phytoplankton >20 µm (micro),
phytoplankton between 2–20 µm (nano) and phytoplankton between 0.2–2 µm (picophytoplankton)
using known slopes in these spectra between blue and green wave bands. They then regressed aph
against PP from simulated in situ deck incubations and applied these relationships to satellite data
from different upwelling zones.

The first step in deriving size-fractionated PP is to accurately determine the biomass of different
phytoplankton size-fractions or functional types. As the spectral resolution of ocean colour sensors
has increased [51], algorithms to identify specific phytoplankton functional types from their optical
properties have been proposed [52–54]. To date remote sensing algorithms and models having
been developed for identification of diazotrophs [55,56], diatoms [57], and coccolithophores [58,59],
though for the latter, estimates using calcite reflection in highly scattering media as in case-2 waters or
coccolith blooms [59] limits the accuracy and comparability with other groups [52]. Specific algorithms
have been developed to differentiate single species of phytoplankton, such as harmful algal blooms of
Karenia brevis and Karenia mikimotoi [60–62]. Uncertainties in Chl a from satellite can be a major
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limitation modelling PP and much more so than uncertainties in other parameters used in PP
models such as mixed layer depth or sea surface temperature [63]. Despite these advances in
identifying phytoplankton types or cell sizes that dominate specific blooms, the complex optics
of some marine regions means that although some phytoplankton groups—such as cyanobacteria
and coccolithophores—are more easily detected [64], other groups are more difficult to identify [65].
Accurate remotely-sensed estimates of phytoplankton community composition from discrete classes
requires consideration of the physical and biological determinants of community composition,
not merely the optical properties and pigment concentrations. Factors such as temperature can greatly
affect absorption coefficients within photo-physiologically heterogeneous size classes by indirectly
selecting for different taxa, with strong correlation between temperatures and mean cell spherical
diameter and thus pigment packaging [66]. Combining temperature with Chl a concentration therefore
greatly increases the skill of phytoplankton absorption models, though such correlations are often
regionally-specific, owing to bio-optical differences and the influence of other physical variables such
as nutrient regime and water column stability [67].

In this paper an existing ocean-colour based primary production model [68,69] is tuned using in
situ data of size-fractionated Chl a and photosynthetic parameters to estimate size fractionated primary
production over an annual cycle in the UK shelf seas. In situ measurements from the Celtic Sea and
Western English Channel are used to test the accuracy of the model and are compared to the model
tuned with data from the open ocean. Potential sources of error in PP between shelf and open ocean
hybrids of the model are discussed. The novelty of this approach is that: (i) It illustrates that a global,
basin scale and Atlantic parameterisation of a satellite size fractionated PP model is not appropriate for
the UK shelf seas, but that by using sufficient input data to re-tune an existing model, its performance is
significantly improved; (ii) It also provides and compares size fractionated photosynthetic parameters
data for parameterising Atlantic basin and shelf sea variants of the model; which are scarce in the
literature; and (iii) it also provides estimates of size fractionated PP from satellite Ocean Colour for the
UK shelf seas.

2. Materials and Methods

2.1. In Situ Measurements of Size Fractionated Primary Production

Water samples were collected on board Research Vessel (RV) Plymouth Quest from the Western
Channel Observatory (WCO, Plymouth, England) at stations L4 and E1 between March–July 2014
and March–November 2015 (Figure 1). No data from the winter months were included. At L4,
sampling depths were 0, 10, 25 and 50 m, and at E1 they were 0, 10, 30 and 60 m. Samples were also
taken during two cruises to the Celtic Sea (Figure 1) during August 2014 (DY026) and April 2015
(DY029) on board Royal Research Ship (RRS) Discovery, where up to four sampling depths were chosen
with respect to profiles of photosynthetically available radiation (PAR), density and fluorescence data
obtained from CTD casts. PE curves were measured following the method of Tilstone et al. [70].
For each depth, 15 clear polycarbonate bottles containing 70 mL seawater were spiked with 5–10 µCi
of 14C-labelled NaHCO3 (Perkin Elmer, Buckingham, UK, administered as a 0.5–1.0 mL solution
of autoclaved, 0.2 µm filtered sea water. Bottles were incubated in a linear photosynthetron and
maintained at the in situ temperature. Maximum irradiance on sampling days was measured using
an above-water PAR sensor (Skye Instruments, Llandrindod Wells, UK) and the maximum incubator
light level in the incubator was set accordingly. High-output white LEDs were used for sampling days
when maximum irradiance was <1900 µE m−2 s−1 due to their superior spectral quality and low heat
output compared to incandescent bulbs. For summer sampling days with higher incident light levels,
50 W halogen bulbs were used due to their higher emission. The attenuation of PAR along the length
of the incubator was accounted for by measuring PAR at each bottle position at a number of maximum
irradiances. After 1.5 h incubations, each bottle was filtered through sequential 47 mm polycarbonate
filters (20 µm, 2.0 µm and 0.2 µm pore sizes) as per chlorophyll samples. Each sample filter was then
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fumed for 15 h in 37% HCl to remove residual inorganic carbon before being placed in 6 mL vials with
4 mL scintillation cocktail (Meridian Biotech, Tadworth, UK). After 24 h in the cocktail, samples were
run on a liquid scintillation counter (Tricarb—Perkin Elmer, Buckingham, UK) to determine beta
particle emission. External 14C standards (Perkin Elmer, Buckingham, UK) were used to correct for
quenching following the dual channel ratio method in order to generate 14C disintegrations per minute
(DPM). Chlorophyll-specific photosynthesis-irradiance data were subsequently fitted to the function
of Platt et al. [71] in Sigmaplot (Systat) using non-linear least squares regression as follows:

PB(z, t ) = PB
m(z)×

(
1 − exp

(
−αB(z) × EPAR(z, t)

PB
m(z)

))
× exp

(
−βB(z) × EPAR(z, t)

PB
m(z)

)
(1)

where PB
m, is the light-saturated rate of photosynthesis), αB is the light-limited slope) and βB is the rate

of photoinhibition and EPUR is the phytoplankton available radiation. Curves with R2 ≥ 0.95 were
used to determine the photo-physiological parameters PB

m, αB and βB.
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Figure 1. Sampling sites of Western English Channel and Celtic Sea. Green points are autumn campaign;
Red points are summer campaign. Dotted box shows transect between Central Celtic Sea (CCS) stations
(49–51.5◦ N) and off-shelf (48–49◦ N). L4 and E1 are the Western English Channel time series stations.

2.2. Satellite Model of Size Fractionated Primary Production

The model of Brewin et al. [68] was used to calculate daily integrated primary production
(g C m−2 d−1). The model is parameterised using photosynthetic parameters and the available
light [71], using depth-resolved estimates of community size structure, chlorophyll biomass and
irradiance over the euphotic zone, as follows:

PP =
∫ D

t=0

∫ 1.5Zeu

z=0

3

∑
i=1

Bi(z)PB
m,i(z)

[
1 − exp (−

αB
i (z)E(z, t)

PB
m,i(z)

)

]
dz dt (2)

where D is day length, Zeu is euphotic depth (depth of 1% of surface PAR), z is depth, and t is time.
Subscript i denotes size fraction e.g., pico (<2 µm), nano (2–20 µm), micro (>20 µm) used with respect
to light-saturated (PB

m,i) and light-limited
(
αB

i
)

photosynthetic rate values and chlorophyll biomass
(Bi). These size ranges are consistent with the model of Uitz et al. [35] and differ from the model of
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Brewin et al. [68] which defines microphytoplankton as >10 µm due to the limited concentrations of
cells above 20 µm in oligotrophic Atlantic waters.

2.2.1. Estimation of Euphotic Depth

In situ data from sampling stations in the Western English Channel and cruises in the Celtic
Sea were used to calculate the euphotic depth (Zeu) at each station. Data from CTD rosette-mounted
downwelling PAR sensors (Biospherical Cosine 2-pi sensor) were used to determine the depth at which
downwelling PAR was 1% of surface irradiance and values of Z

Zeu
were then generated for each sample

depth. Measured Zeu and surface Chlorophyll a (Chl a) concentrations were then used to test whether
Zeu can be estimated accurately from satellite observations of Chl a in the UK shelf using the equation
of Morel, et al. [72], modified by Brewin et al [68], who used a dataset of Atlantic Ocean measurements
to produce new coefficient values for the following relationship:

Zeu = 10[qa+qb log10 (Bs)+qc log10 (Bs)
2+qd log10 (Bs)

3] (3)

where qi are model parameters and BS is surface (or satellite-derived) chlorophyll concentration.
These estimates were then compared with data collected from cruises in the Celtic and Irish Seas (JR98,
CD173 [73,74]).

2.2.2. Estimation of Vertical Variability in Chlorophyll-a

Vertical biomass profiles were calculated as shifted Gaussian distributions normalised to surface
Chl a following Brewin et al. [68]; see parameter BBs in Equation (3). These were then applied to ocean
colour surface Chl a data to reconstruct the vertical distribution of Chl a over 1.5 × Zeu. The accuracy
of the method was validated using in situ Chl a data (for stations with observations >4 depths to
produce interpolated profiles). The vertical distribution of Chl a with respect to surface Chl a

(
BBs
)

was calculated as follows:

BBs (ζ ) = 1 − SBsζ+ BBs
m exp

{
−[(ζ− ζm)/σ]2

}
(4)

where BBs is the Chl a profile normalised to surface concentration at dimensionless depth, ζ defined
as ζ = z/Zeu, where z is geometric depth, SBs is the background linear decrease of BBs with
increasing ζ, BBs

m is the maximum chlorophyll concentration in the Gaussian part of the profile, ζm is
the dimensionless depth at which BBs

m occurs and σ is the width (in terms of ζ) of the BBs
m peak biomass.

2.2.3. Estimation of Photosynthetic Parameters

Size-fractionated photosynthetic parameters, the light-limited slope (αB) and maximum
photosynthetic rate

(
PB

m
)

measured using photosynthesis-irradiance curves made on the Celtic Sea and
Western English Channel cruises were estimated as a function of dimensionless depth (ζ) by retuning
the model of Brewin et al. [68]. Table 1 shows the mean surface values and their respective slopes with
ζ for the original Atlantic Ocean parameterisation of the model, and when retuned using UK shelf
sea values.

Table 1. Average surface values of αB and PB
m and their slope values SPs and Sαs with respect to

dimensionless depth ζ for UK shelf seas data and Atlantic Ocean data following Brewin et al. [68].
Bracket values are standard deviations.

Parameter Size Class UK Shelf Model Atlantic Model Shelf Values % of Atlantic Values

PBs
m

Micro 4.27 (±0.25) 6.05 (±0.98) 70.6
Nano 4.43 (±0.28) 5.13 (±0.94) 86.4
Pico 5.51 (±0.30) 3.46 (±0.80) 159.2
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Table 1. Cont.

Parameter Size Class UK Shelf Model Atlantic Model Shelf Values % of Atlantic Values

αBs

Micro 0.050 (±0.004) 0.016 (±0.004) 312.5
Nano 0.050 (±0.004) 0.014 (±0.003) 357.1
Pico 0.062 (±0.004) 0.011 (±0.001) 563.6

SPs

Micro 0.49 (±0.09) 0.35 (±0.27) 140.0
Nano 0.38 (±0.09) 0.59 (±0.29) 64.4
Pico 0.45 (±0.09) 0.68 (±0.31) 66.2

Sαs

Micro 0.51 (±0.12) −0.07 (±0.30) −728.6
Nano 0.25 (±0.12) −0.12 (±0.23) −208.3
Pico 0.30 (±0.10) −0.32 (±0.17) −93.75

2.2.4. Estimation of Irradiance

PAR over the euphotic zone and at hourly intervals (t) over day length (D) (hours) were estimated
from the attenuation of surface irradiance according to the sub-surface Chl a, as follows:

E
(
0−, t

)
=

Em(0−) sin
(

πt
D
)

3600
(5)

where E(0−, t) is the irradiance at time t just below the surface, Em(0−) is the maximum irradiance
at midday just below the surface. Dividing by 3600 converts flux per hour to flux per second,
for consistency with time units used in αB (µmol m−2 s−1). For each hourly time step (t), changes with
irradiance (E) with depth (z) are modelled using diffuse attenuation of PAR, thus:

E(z, t ) = E
(
0−, t

)
exp[−K(z)z] (6)

where K(z) is the diffuse attenuation coefficient of PAR (K) at depth (z), which can vary with depth
due to changes in water column optical properties. Here K(z) is estimated at specific depths as a
function of chlorophyll concentration B(z) and background PAR attenuation coefficient Kc. To estimate
K(z), the average attenuation coefficient for the euphotic zone (KZeu) is first calculated as:

KZeu = 4.6/Zeu (7)

where Zeu is the euphotic depth derived from surface Chl a and Equation (2). Next, the depth-dependent
K(z) was computed from the following equation from Brewin et al. [68]:

K(z) =

[
(KZeu − Kc)

(
B(z)

1/N ∑N
j=1 Bj

)]
+ Kc (8)

where Kc denotes the background attenuation of PAR independent of phytoplankton biomass
and depth—assumed to be due to pure water [75] derived from computation of K when Chl
a = 0.01 mg m−3—and 1/N ∑N

j=1 Bj represents the average Chl a over the euphotic zone and beyond
to 1.5Zeu, and N is the number of depth intervals within the euphotic zone used in the computation.

2.2.5. Satellite Data

Shelf seas and open ocean variants of the model were compared against in situ data. Equation (1)
requires two satellite data values per pixel in order to estimate integrated size-fractionated primary
production, surface Chl a (Bs) and PAR. Monthly, Bs for the year 2016 were taken from the Ocean-Colour
Climate Change Initiative (Version 3.1, http://www.oceancolour.org/, see Sathyendranath et al. [76]),
which is an error-characterised (Jackson et al. [77]) time series of merged ocean colour data from a
number of satellite missions (MODIS Aqua and VIIRS for the year 2016), at approximately 4 × 4 km

http://www.oceancolour.org/
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resolution. Note the vertical chlorophyll profile is computed from the surface concentration in the
model (see Section 3.4). For PAR, monthly averages for 2016 were derived from MODIS-Aqua level-3
PAR data, extracted at 4 × 4 km resolution (https://modis.gsfc.nasa.gov/data/dataprod/ipar.php).
For the open ocean variant of the model, following Brewin et al. [68], a climatology of mixed-layer
depth was also used in the computation of the biomass profile (not required from the Shelf Sea model,
see Section 3.4 below), from de Boyer Montégut et al. [78]. Match-ups were extracted for each month,
using a 3 × 3-pixel average centered at station L4.

3. Results

3.1. Modelling Size-Fractionated Chlorophyll-a from Total Chlorophyll-a

The model of Brewin et al. [69] was used to estimate size-fractionated Chl a from total Chl a.
This model was tuned to the North Atlantic, including some samples from the shelf sea (Figure 1)
also used in this study. The model assumes that as total Chl a increases, the community size
structure changes from picophytoplankton dominated in low-chlorophyll regions such as the gyres to
microphytoplankton dominated in high-chlorophyll regions such as temperate shelf seas or upwelling
zones. Nano and picophytoplankton reach asymptotic Chl a values

(
Cm

n , Cm
p

)
, such that Cp does not

increase above 0.13 mg m−3, and Cn does not increase above 0.82 mg m−3, beyond which additional
Chl a is apportioned to microphytoplankton. The model was retuned using observations from this
study only. When compared with the Brewin et al. [69] model, the retrieved parameters were not
significantly different and therefore the parameterisation of Brewin et al. [69] was used to estimate
size-fractionated Chl a.

3.2. Comparison of Measured and Modelled Photosynthetic Parameters

Values of size-fractionated photosynthetic parameters with respect to the dimensionless depth ζ

using the Atlantic Ocean parameterisation were compared with measured values from the UK shelf
seas. Values of PB

m and αB were modelled at specific values of ζ using:

PB
m,i= PBs

m,i exp
(
−SP

i ζ
)

(9)

αB
i = αBs

i exp(−Sα
i ζ) (10)

Equations (8) and (9) were used to calculate PB
m and αB at specific dimensionless depth ζ from

mean surface values PBs
m,i and αBs

i and their respective slopes SP
i and Sα

i [68]. PBs
m,i and αBs

i are surface
values when ζ∼0, SP

i and Sα
i are slope values quantifying the change in PB

m,i and αB
i from surface values

with respect to ζ. Figure 2 shows the differences between the values of PB
m and αB estimated by both

the Atlantic Ocean and Shelf seas models. Only the nano and picophytoplankton fractions can be
compared, as the microphytoplankton are defined as >10 µm in the Brewin et al. [68] model whereas
they are >20 µm for the Shelf seas model.

Measured values of PB
m follow a similar trend with respect to ζ compared to other models

(Figure 2). However, mean measured surface values of PB
m and αB were highest for pico and smallest

for microphytoplankton, which is the opposite trend for open ocean parameterisation of the models
of Uitz et al. [35] and Brewin et al. [68]. Mean measured values of PBs

m,i and αBs
i for micro and

nanophytoplankton were similar, with a higher slope for microphytoplankton causing values to
decrease with increasing ζ. Picophytoplankton had significantly higher mean surface values than the
larger fractions and followed a similar reduction with increasing ζ.

https://modis.gsfc.nasa.gov/data/dataprod/ipar.php
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m and αB with respect to ζ for each size class using the retuned shelf model

(black lines) with the models of Uitz et al. [35] (dotted lines) and Brewin et al. [68] (dashed lines).
Values for light saturation parameter Ek of retuned model in bottom right panel.

When compared to the profiles of Uitz et al. [35], differences in microphytoplankton photo
physiology are less pronounced than for the smaller fractions, with similar mean surface values of PBs

m,i

and αBs
i and slopes SP

i and Sα
i . Nano and picophytoplankton values have greater PBs

m,i and particularly

αBs
i values when compared with the values of Uitz et al. [35] and Brewin et al. [68] (pico only).

Picophytoplankton values of SP
i are closer to those reported by Brewin et al. [68] while the negative

values of picophytoplankton Sα
i values with ζ common to Uitz et al. [35] and Brewin et al. [68] models

is not observed in the model re-tuned with UK shelf seas data. The light saturation parameter Ek

calculated as ( PB
m

αB ) follows a negative trend with ζ for pico and nanophytoplankton fractions—which
were of similar magnitude—while a slight positive trend is observed for microphytoplankton,
which have substantially greater values of Ek than smaller fractions at ζ > 0.5.

3.3. Estimation of Euphotic Depth from Surface Chlorophyll-a

Figure 3 shows measured surface chlorophyll concentrations and euphotic depth from the Western
Channel and the Celtic Sea. Observations were in good agreement with the re-tuned algorithm
of Brewin et al [68], though there was a considerable degree of variability at lower Chl a values
(<0.7 mg m−3). With these results it is possible to use surface Chl a to estimate euphotic depth with
some confidence, although the scatter may indicate significant concentrations of coloured dissolved
organic matter (CDOM) and suspended matter (TSM) which do not co-vary with surface Chl a.

3.4. Estimation of the Vertical Distribution of Phytoplankton Biomass

Modelled sub-surface Chl a was calculated using Equation (3). Unlike the original model [68],
waters were not separated into mixed and stratified conditions using the ratio of euphotic depth to
mixed layer depth, then treating the mixed cases as uniform and applying Equation (3) to the stratified
cases. Instead, we found a better performance when not making this partitioning and assuming
Equation (3) holds for most conditions.

Figure 4 shows the improvement in model skill when making this assumption, with a Gaussian
distribution in model differences. The distribution of observed versus measured values plotted via
regression is more normal, with reduced bias and RMSE compared to the methods of Brewin et al. [68],
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indicating that this parameterisation is more representative for the Celtic Sea and Western English
Channel sites from spring to summer. The derived parameters for the revised shelf model were:
SBs = 0.432; BBs

m = 10(log10(BS)×(−0.8)−0.04), ζm = 0.492; and σ = 0.166.
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Figure 3. In situ measurements of surface Chl a and Zeu measured in the Western English Channel and
Celtic Sea during four separate cruises (DY026, DY029, JR98, CD173) [72,73]. Equation (3) from the
model of Brewin et al. [68] is overlaid (black line) to indicate differences with the measured shelf sea
data. r is the correlation coefficient between Zeu estimates from the Brewin et al. [68] model and the
data, and RMSE is the root mean square difference in meters, between the model and data.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 21 

 

3.4. Estimation of the Vertical Distribution of Phytoplankton Biomass 

Modelled sub-surface Chl a was calculated using Equation (3). Unlike the original model [68], 

waters were not separated into mixed and stratified conditions using the ratio of euphotic depth to 

mixed layer depth, then treating the mixed cases as uniform and applying Equation (3) to the 

stratified cases. Instead, we found a better performance when not making this partitioning and 

assuming Equation (3) holds for most conditions. 

Figure 4 shows the improvement in model skill when making this assumption, with a Gaussian 

distribution in model differences. The distribution of observed versus measured values plotted via 

regression is more normal, with reduced bias and RMSE compared to the methods of Brewin et al. 

[68], indicating that this parameterisation is more representative for the Celtic Sea and Western 

English Channel sites from spring to summer. The derived parameters for the revised shelf model 

were: 𝑆𝐵𝑠 = 0.432; 𝐵𝑚
𝐵𝑠 = 10(log10(𝐵𝑆)×(−0.8)−0.04), ζ𝑚 = 0.492; and 𝜎 = 0.166. 

 

Figure 4. Modelled Chl a calculated using Equation (3) assuming a stratified water column vs. profiles 

of in situ measurements of chlorophyll from UK shelf seas. Statistical tests were performed in log10 space. 

Compared to the values reported by Brewin et al. [68], where the peak of phytoplankton biomass 

resides at between ζ = 0.8–1.2, Figure 5 indicates that the shelf sea data used here produce a peak 

biomass at shallower depths within the photic zone, though this may be due to the Case 1 light field 

used. 

 

Figure 5. In (a) it shows the relative biomass (𝐵𝐵𝑠) with respect to dimensionless depth (ζ) and 

surface chlorophyll concentration (𝐵𝑠), and (b) shows the absolute concentration of chlorophyll-a at 

Figure 4. Modelled Chl a calculated using Equation (3) assuming a stratified water column vs.
profiles of in situ measurements of chlorophyll from UK shelf seas. Statistical tests were performed in
log10 space.

Compared to the values reported by Brewin et al. [68], where the peak of phytoplankton biomass
resides at between ζ = 0.8–1.2, Figure 5 indicates that the shelf sea data used here produce a peak
biomass at shallower depths within the photic zone, though this may be due to the Case 1 light
field used.
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3.5. Estimates of Annual Size-Fractionated Primary Production

Using the original Atlantic Ocean (Open Sat) of Brewin et al. [68] and refined Shelf Sea (Shelf Sat)
algorithms, size-fractionated primary production was estimated using remote sensing chlorophyll
and PAR products for 2016, so that the results are not biased toward the shelf dataset sampled during
2014–2015. Differences between the Open and Shelf Sat models are due to the vertical profile in PE
parameters for each the size-class used. Differences in model output was subsequently calculated as a
positive or negative anomaly (Figures 6–8), and subsequently compared with climatological means of
monthly PP at the Western English Channel station L4, where a time series of total PP calculated using
measured PE parameters is available.

Total daily integrated primary production form the re-tuned Shelf satellite model peaked in April
(Figure 6), with open shelf regions having values of 0.6–1.7 g m−2 d−1, with the highest values of
4–6 g m−2 d−1 in estuarine regions such as the Thames estuary, The Wash, The Rhine Delta and
dominated by cells >20 µm; microphytoplankton. Nanophytoplankton (2–20 µm) PP was lower
and more uniformly distributed than microphytoplankton with values of 0.3–0.5 g m−2 d−1 from
April–August (Figure 6), even though they have similar photosynthetic rates to microphytoplankton
(Table 1). Picophytoplankton account for the lowest proportion of total PP, which never exceeds
0.4 g m−2 d−1. As they are the least abundant fraction at high Chl a, they follow an inverse pattern
to microphytoplankton in the distribution of their maximal PP, with lower PP in coastal regions and
often relatively higher PP in off-shelf areas.

Estimates of PP using the Shelf Sat model resulted in an increase in total PP (0.06–0.5 g m2 y−1)
compared to the Open Sat model, with the greatest differences observed between May and July.
Combined estimates of micro and nanophytoplankton PP account for the overestimation in total PP by
the Shelf Sat model (Figure 8). Values in coastal regions were lower, however for the Shelf Sat model,
particularly around estuarine plumes, where total PP was highest.
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Figure 6. Estimates of total and size-fractionated primary production (PP) using the retuned shelf
model run with the monthly composites of European Space Agency (ESA) Ocean Colour Climate
Change Intiative (OC-CCI) Chl a product data and NASA MODIS-Aqua photosynthetically available
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Figure 8. Estimates of monthly micro + nanophytoplankton PP using the Shelf Sat model (left panel)
and the difference in micro + nanophytoplankton PP estimated by the Shelf Sat and Open Sat models
(right panel).

The difference in picophytoplankton PP between models was more complex; values of the Shelf
Sat model were lower in regions of high total PP and higher in regions of low total PP (Atlantic Ocean
and Northern North Sea waters) for most months. As there is considerable variability in PE parameters
measured at station L4 over weekly timescales with some months being sampled less frequently
through the year (Table 2), a climatology, using average values for each month over 2009–2015,
was used to compare with seasonal patterns in satellite PP to assess whether the models are able to
capture the seasonal dynamics in PP. Annual trends were plotted for the original Open Sat and Shelf
Sat models, and the mean climatology of measured PP. Two values of total PP were removed from the
climatology for August as these were taken during a large, atypical Karenia mikimotoi bloom, but were
included in Figure 9 for reference. Size-fractionated values were restricted to March–September to
ensure sufficient data to calculate averages and standard error. Shelf Sat overestimated total PP
compared to the climatology across all months. The Open Sat model underestimates PP from April
to August and was similar to the climatological values from September to December. The Open Sat
model appears more accurate during periods of lower PP, while the Shelf Sat model performs better
at high values in the spring-summer period, when most of the data of this study was measured.
Microphytoplankton PP estimates by the Shelf Sat model were underestimated from April–June and
slightly overestimated in September, whereas values in March, July and August were similar to
the measured climatological mean. Nanophytoplankton PP had considerably higher inter-annual
variability than the other fractions, but satellite modelled values only fell within the climatological
variability in May to June, and greatly overestimated PP outside of these months. Picophytoplankton
satellite PP was closer to the climatology, except during May, August and September (Figure 9).
The average seasonal dynamics of PP was generally captured for total, micro and picophytoplankton
(except from August to September), but was less accurate for nanophytoplankton.

Table 2. Regression statistics for Shelf sat and Open sat models against in situ data from station L4,
CCS and Off the shelf edge.

Modelled PP
r2 Slope Intercept

Shelf Open Shelf Open Shelf Open

Total shelf, n = 15 0.78 0.75 0.59 0.43 321 158
Micro, Nano shelf, n = 10 0.56 0.39 0.54 0.33 309 101

Pico shelf, n = 10 0.32 0.00 0.24 -0.01 104 188
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Generally, the Shelf Sat model captured the seasonal dynamics of picophytoplankton PP better
between March–July, but PP values were overestimated, whereas the Open Sat model returned values
closer to the climatological means. Combined micro and nanophytoplankton PP is generally better
estimated by the Shelf Sat model, though is often overestimated outside of May and June. The Open
Sat model consistently underestimated micro and nanophytoplankton PP.

Statistical parameters of linear regression between mean daily integrated PP values at station
L4 (50.25◦N, 4.21◦E), Central Celtic Sea (CCS 49.24◦N, 8.36◦E) and off shelf (48.62◦N, 9.79◦E) with
modelled values from the Open Sat and Shelf Sat model tunes are given in Table 2. Both models
performed well for total PP, with the shelf model having a slightly higher coefficient of determination
and slope closer to 1:1, but a considerable offset, consistently overestimating at low to moderate values
(0–0.5 g m−2 d−1). The Open Ocean model exhibited a lower slope and offset and was more accurate
at lower PP but underestimated PP at values >0.5 g m−2 d−1. The statistics indicate that the shelf
model generally performs better at estimating micro + nano PP, but overestimates PP at lower values
(<0.25 g m−2 d−1) which were not frequently encountered within this study. Picophytoplankton
PP showed a weak correlation for the shelf model, with reduced range in PP with a tendency to
underestimate PP at >0.15 g m−2 d−1. There is considerable variability in Celtic Sea PP at the same
sampling sites on sub-month time scales that is not captured in monthly averages and composites.
In order to calibrate and validate the Shelf Sat model to the same degree as the Open Sat model,
more data from the shelf are needed, preferably sampled with match up satellite data of Chl a and
PAR products.
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4. Discussion

4.1. Accuracy of Size-Fractionated Primary Production Satellite Estimates for the UK Shelf Seas

By retuning the model of Brewin et al. [68] using measurements made in the Celtic Sea and
Western English Channel, the overall accuracy of estimates of total and size-fractionated PP was
generally improved (Figures 9 and 10). The original Open Sat model provided more accurate estimates
at lower PP (Figure 7), during periods of the year where no data were available to re-tune the model
from the shelf seas, as in winter. Compared to in situ climatology from station L4, the Shelf Sat
model overestimated PP from September to March. While the re-tuned Shelf Sea model appears
to replicate the trends of PP calculated from in situ data (Figures 9 and 10). There are instances
however, when there are differences in the magnitude of values, with nanophytoplankton PP
being greatly overestimated outside of May and June (Figures 9 and 10). A sensitivity analysis
of the modelled PP output was conducted by Brewin et al. [68] using Monte Carlo simulations
(200 iterations) on input variables (total surface Chl a, surface irradiance and mixed layer depth) and
model parameters. The sensitivity analysis of the input and parameters of the model indicated that
total and size-fractionated PP were particularly sensitive to SBs the background decrease of BBs with ζ,
and qa , qb the empirical parameters used in the calculation of Zeu from surface Chl a (Equation (3)).
Output PP values for nano and picophytoplankton were most sensitive to changes in asymptotic
maximum Chl a (Bm

1 , Bm
1,2) and scaling parameters with respect to total Chl a (S1, S1,2) in mesotrophic

environments (Chl a = 0.2 mg m−3). There are a number of sampling stations within this study where
nano- and occasionally picophytoplankton dominate size-fractionated Chl a across a range of total
concentrations, meaning PP may be incorrectly apportioned to microphytoplankton when total Chl a
is > 1.0 mg m−3. Although there were periods in this study when nanophytoplankton dominated PP,
typically microphytoplankton dominated PP during spring and late summer/autumn blooms [79,80].Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 21 
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Figure 10. Climatological means of picophytoplankton and micro + nanophytoplankton PP for station
L4 2009–2015 with standard error plotted with estimates by the Shelf Sat and Open Sat models using
OC-CCI v3.1 chlorophyll imagery for 2016.

In the original Open Sat model, in a well-mixed eutrophic environment (Chl a = 2.0 mg m−3),
the model is generally less sensitive to individual parameters than lower Chl a (particularly for SBs

as the water column is considered uniform), but the relative sensitivity to αBs
i is increased for all size

fractions. Considered individually, the means by which these model parameters might be impacted in
a highly seasonal, meso or eutrophic shelf sea which may explain some sources of error and elucidate
ways to improve the modelling of size-fractionated PP with refined models.
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4.2. Accuracy of Size-Fractionated Photosynthetic Parameters and Biomass Distribution

Total and size-fractionated PP estimates calculated by the model of Brewin et al. [68] for both the
open ocean and shelf seas, are more sensitive to differences in αBs than PBs

m . The lower significance of
PB

m as a source of error in applying this modified open ocean PP model is compounded by the smaller
differences in values of PB

m and SBs between the Open and Shelf Sat models than for αBs (Table 1).
The parameterisation of αB therefore has a greater impact on estimates of PP when comparing models,
as there are substantial differences in αBs and Sαs between each dataset (Table 1). In previous studies,
αB in shelf regions can vary over an order of magnitude, which can be due to a combination of
changes in nutrients, irradiance, temperature and phytoplankton community composition [39,81–85].
These cannot be easily accounted for in these generalised satellite models. Differences between the
Shelf Sat and in situ data may also be due to using a Case 1 light field during instances when other
IOPs are significant and cCase 2 light field is required. Using cCase 1 light field will mean that Zeu will
be estimated to be deeper than it actually is if, for instance, CDOM is in higher concentrations than the
Case 1 model predicts.

4.3. Effect of Hydrographic and Optical Differences on Model Performance

The sites where measurements were taken during this study ranged from shallow, coastal sites
(55 m) of the English Channel, the off-shore shelf of the Celtic Sea (100–140 m) and its shelf break
(200 m) to the continental slope at the Celtic Margin (1500 m). Whilst many of these areas may
show similarities to North Atlantic waters [85–87], the hydrography and nutrient dynamics are
notably different. Outside of deep winter mixing, vertical water transport in the North Atlantic is
often through Ekman pumping and mesoscale eddies, with little diapycnal flux of nutrients [88–90].
This contrasts the NW European Shelf, where nutrients can be supplied by advective, tidal, frontal and
diapycnal means, with internal tides and wind stress modifying the supply of nutrients to the euphotic
layer [21,91–97]. There is therefore a potentially greater variability in the vertical distribution, biomass,
community structure and size-fractionated photosynthesis with respect to the surface values of
variables observable from satellite and their respective model parameters. For example, subsurface Chl
a maxima in the seasonally stratified Celtic Sea have been observed to have greater Chl a concentrations
in regions with stronger tides [96] and at higher irradiance levels and have greater nitrate supply
compared to the open ocean [74,98]. Due to the difficulty in modelling variable sub-surface physical
features from satellite, using simpler, generalised models of sub-surface biomass distribution tuned to
the hydrography of specific regions may be a reasonable approach. The advent of combined passive
ocean colour and BioArgo float arrays, offer the potential to improve the modelling of the vertical
distribution of phytoplankton to increase the accuracy of satellite estimates of PP [98–107].

The Chl a algorithm used in the OC-CCI v3.1 dataset is tuned to an optical classification based on
14 optical types [77]. While it should therefore provide reliable estimates of Chl a when other optical
constituents are present, the effect of the variability in light attenuation by CDOM and TSM with respect
to surface Chl a is not considered in the modelling of Zeu, as has been previously carried out in the UK
shelf seas [108]. Although observed values of surface Chl a vs. Zeu show good overall agreement to
the model being used (Figure 4), there is considerable scatter suggesting that the relationship between
these two variables may be different across a shelf sea environment than in an oceanic regions due
to the differences in hydrography and biogeochemistry [102,103]. As the UK shelf seas are highly
heterogenous in their optical characteristics and may exhibit classical Case 1 optics in deeper, off-shore
areas, to more extreme Case 2 waters around estuaries [103–108], the inclusion of IOPs in the estimation
of Zeu may benefit the accuracy of the modelled light field from ocean colour data.The available light PP
model used here is broadband, with irradiance expressed as the integrated flux of photons 400–700 nm
(umol photons m−2 s−1). It does not consider the spectral distribution of the light field and the variable
specific absorption properties of phytoplankton. Future development of satellite PP models for Shelf
seas should focus on a spectral irradiance approach that considers the absorption of light by CDOM
and scattering of light by TSM, in order to improve estimates of PP in these environments.
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Further improvements to this re-tuned model are possible, such as improving the modelling of
the light field to accommodate the more coastal regions where the current model may break down.
The model would also benefit from a rigorous step by step validation of each component by comparing
modelled vertical structure of irradiance, size fractionated Chl-a and photosynthesis-irradiance
parameters with in situ data, especially for winter where observations are lacking.

5. Conclusions

Measurements of the photosynthetic parameters, αB and PB
m, in the Celtic Sea and Western English

Channel were used to re-tune a satellite model of size-fractionated PP. The model was forced with
satellite surface Chl a and PAR using estimates of the vertical Chl a and photosynthetic parameters
based on the in situ observations. This Shelf Sea version of the model was compared with the original
parameterisation based on parameters measured in open ocean waters of the Atlantic. The Shelf Sea
tuned model captured the seasonal patterns in size-fractionated PP for micro- and picophytoplankton,
and generally performed better than the original open ocean model. The Shelf Seas version of the
model however, substantially overestimated nanophytoplankton PP outside of May-June. The shelf-sea
pigment dataset also showed a significant degree of variability in the relative concentrations of Chl
a of three size fractions for a given total surface Chl a, suggesting that the relationships used to
partition total chlorophyll into the three size classes from Brewin et al. [69] model may require further
development for application to the UK shelf seas.

Compared to a climatology of in situ data at station L4 from 2009–2015, the Self Seas model
performed better when phytoplankton biomass was high (April–August), but overestimated PP
under conditions of low phytoplankton biomass. The overestimation in PP is in part due to the
sensitivity of PP models to the parameterisation of the biomass profile. The difficulty in producing a
generalised model of the vertical distribution of phytoplankton within the euphotic water column in
seasonally-stratified shelf seas was shown to be a potential source of error in integrated estimates of
daily PP, especially outside of the spring bloom period. Establishing new relationships between surface
Chl a and the vertical biomass profile for UK shelf seas requires further development to improve
satellite estimates of size-fractionated PP for this and similar ecosystems.
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