Convergent Foraging Tactics of Marine Predators with Different Feeding Strategies across Heterogeneous Ocean Environments

Queiroz, N; Vila-Pouca, C; Couto, A; Southall, EJ; Mucientes, G; Humphries, NE; Sims, DW. 2017 Convergent Foraging Tactics of Marine Predators with Different Feeding Strategies across Heterogeneous Ocean Environments. Frontiers in Marine Science, 4. https://doi.org/10.3389/fmars.2017.00239

[img]
Preview
Text
fmars-04-00239.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
Official URL: https://doi.org/10.3389/fmars.2017.00239

Abstract/Summary

Advances in satellite tracking and archival technologies now allow marine animal movements and behavior to be recorded at much finer temporal scales, providing a more detailed ecological understanding that can potentially be applicable to conservation and management strategies. Pelagic sharks are commercially exploited worldwide with current concerns that populations are declining, however, how pelagic sharks use exploited environments remains enigmatic for most species. Here we analyzed high-resolution dive depth profiles of two pelagic shark species with contrasting feeding strategies to investigate movement patterns in relation to environmental heterogeneity. Seven macropredatory blue (Prionace glauca) and six plankton-feeding basking (Cetorhinus maximus) sharks were tagged with pop-off satellite-linked archival tags in the North Atlantic Ocean to examine habitat use and investigate the function of dives. We grouped dives of both species into five major categories based on the two-dimensional dive profile shape. Each dive-shape class presented similar frequency and characteristics among the two species with U- and V-shaped dives predominating. We tested the spatial occurrence of different U- and V-shape dive parameters in response to environmental field gradients and found that mean depth and mean depth range decreased with increasing levels of primary productivity (chlorophyll “a”), whereas ascent velocities displayed a positive correlation. The results suggest that a planktivore and a macropredator responded behaviourally in similar ways to environmental heterogeneity. This indicates fine-scale dive profiles of shark species with different feeding strategies can be used to identify key marine habitats, such as foraging areas where sharks aggregate and which may represent target areas for conservation.

Item Type: Publication - Article
Divisions: Marine Biological Association of the UK > Ecosystems and Environmental Change > Movement ecology, behaviour and population structure
Depositing User: Barbara Bultmann
Date made live: 20 Aug 2018 14:21
Last Modified: 25 Apr 2020 09:59
URI: http://plymsea.ac.uk/id/eprint/7985

Actions (login required)

View Item View Item