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Chapter 6

Practical analysis of single channel records 

DAVID COLQUHOUN 

1. Introduction 

The aim of this chapter is to discuss the sorts of things that can be measured in an
experimental record of single channel currents, and how to make the measurements.
What is measured will depend on the aims of the experiment. In some cases, interest
may centre mainly on the amplitudes of the currents. For example, this might be the
case (a) when channel conductance and subconductance levels are used as a criterion
for a particular channel subtype, or (b) when measurements are made in solutions of
different ionic composition and different membrane potentials, in order to investigate
the mechanism of ion permeation through open channels. In other cases the durations
of the open and shut times may be of primary interest, as when we want to know the
nature of individual channel activations by a transmitter (the unitary event usually
consists of more than one opening), or when the kinetic mechanism of channel
operation is of primary interest.

The aims of a complete analysis are to measure (a) the amplitude(s) of the single
channel currents, (b) the durations of shut periods, and the durations of sojourns at the
various open channel current levels, and (c) the order in which the foregoing events
occur. The amplitudes are, in the simplest cases at least, very nearly constant from
one opening to the next. But, because we are looking at a single molecule, the
durations of events and the order in which they occur are random variables; the
information contained in them comes from measurements of their distributions (more
strictly, their probability density functions - see Chapter 7 for more details). 

Many measurements of individual durations have to be made in order to define
these distributions properly. Single channel analysis must be one of the slowest
known methods of generating an exponential curve from an experiment, because the
averaging that normally results from having a large number of channels has not
‘already been done for us’. Furthermore the analysis is particularly important; not
much can be inferred by simply looking at the raw data, because of its randomness.
These measurements can be rather time consuming; this leads to the temptation to use
automatic or semiautomatic methods of analysis in which distributions are produced
by a computer program with little intervention by the experimenter. It is not usual in
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other fields for results to be produced without the data having been seen by the
experimenter (though it is not entirely unknown). Personally I would be reluctant to
accept for publication any paper in which the fit of each duration to the raw data had
not been inspected by the experimenter, even if the experimenter had written the
analysis program him or herself (and still more reluctant if the analyst was not even
sure exactly what the program was doing to their data). Certainly it is important that
reasonably complete details of analysis methods should be given in published papers
so that the reader can make some sort of assessment of its reliability. There is a price
for speed of analysis which is too high to be tolerable, and failing to look at your data
exceeds that price, in my view. It would help if the writers of programs would not
include options that allow this to be done. 

2. Aims of analysis 

It is usually supposed (with some reason) that the data can be well-represented as a
series of rectangular transitions between discrete conductance states. The first aim of
the analysis is to obtain an idealised version of the experimental record which
resembles, as closely as possible, what would have been seen if the experiment had
been free of noise and artefacts. This process is sometimes referred to as restoration
of the observed record. The result will be a series of time intervals, each associated
with the amplitude of the current during that interval, in the order in which the events
actually occurred. Open and shut periods will not necessarily alternate; successive
open intervals may occur if there are conductance sublevels, or if more than one
channel opens simultaneously. Records in which two or more channels are open
simultaneously are useful for checking the independence of channel openings
(though tests of independence are insensitive - see Horn, 1991), but are not suitable
for measuring lifetime distributions. A double opening may be omitted from the
analysis of lifetimes by ignoring it (and simultaneously noting that the shut time
between the preceding and following openings is to be ignored when forming the
distribution of shut times); this procedure will bias both open and shut time
distributions so it can be used only when double openings are rare.

The results of the analysis will not of course be entirely accurate. For example, if an
opening is too short to be detected not only will its omission distort the open time
distribution, but the shut periods on each side of it will appear to be one long shut
period so the shut time distribution will be distorted too (and vice versa for missed
shut times). This problem is discussed further below (section 10) and in Chapter 7.

Techniques are being developed that may allow direct fit of a mechanism to the
original data without prior restoration (e.g. Chung et al. 1990; Fredkin & Rice, 1992),
but these have not yet been developed to a point where they are useful in practice.

Computer programs for analysis

There are several commercial programs for single channel analysis. These are
discussed briefly in Chapter 9. All of them can perform some of the types of analysis
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discussed below, but none of them can do all of these methods (or other types of
analysis that are not discussed in this chapter). If you want to use the more advanced
methods of analysis, or to develop new methods, then you have only two options: (1)
write your own program (or modify an existing one if you can get hold of the source
code), or (2) get a program from somebody who has already written it.

3. Filtering and digitization of the data 

Whether data are recorded on magnetic tape during the experiment, or recorded on-
line (see below), it will almost always be necessary to filter the data before any
analysis is done.

Filtering the data

The purpose of filtering is essentially to reduce the amount of high frequency noise in
the record, so a ‘low-pass’ filter should be used. This passes frequencies from 0 Hz
(DC) up to an upper limit specified by cut-off frequency, fc, set on the filter.
Butterworth filters pass relatively little noise with frequencies above fc - they have a
‘steep roll-off’, which is why they are used to prevent aliasing in noise analysis.
However, they are quite unsuitable for filtering single channel data because the price
paid for the steep roll-off is that they ‘ring’, i.e. produce a damped oscillation, in
response to a rectangular input. Single channel currents are essentially rectangular,
and will therefore be distorted by such a filter. The type of filter that is normally used
is a Bessel filter (usually an 8-pole Bessel filter). The types labelled ‘damped mode’,
or ‘low Q’, on some commercial filters are similar. This sort of filter produces little or
no ringing in response to a step input, though it is less effective in removing
frequencies above fc. It should be noted that some commercial filters of the Bessel
type are calibrated on the front panel with a number (the corner-frequency) that is
twice the −3 dB frequency; it is preferable that the values of fc stated in papers should
always be the −3 dB frequency; see Chapter 16). The question of the optimum setting
for fc is discussed below.

Filter risetime. Another convenient way to characterize the filter is by its rise time,
tr . This is given by 

tr = 0.3321/fc , (3.1)

so the higher the −3 dB frequency, the faster is the risetime. This expression, which is
close to the 10-90% risetime, is actually derived for a type of filter known as a
Gaussian filter, which behaves very like the 8-pole Bessel filter that is normally used
in practice (see Colquhoun & Sigworth, 1983). Thus a 1 kHz filter has a risetime of
332 µs, and pro rata for other values of fc.

Combining filters. The relevant value of fc in the discussions below is not that for
the filter alone, but the effective value for the whole recording system. If, for
example, the results were effectively filtered at f1 = 10 kHz by the recording system,
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and were then filtered again at f2 = 5 kHz, then the effective overall filtering would be
given, approximately, by

i.e. at fc ≈ 4.47 kHz in the present example. This expression is exact for a Gaussian
filter and a good approximation for an 8-pole Bessel filter, but it may not give good
results for steep roll-of filters such as Butterworth or Tchebychef type (usually used,
for example, in tape recorders).

Digitization of the data

All practical forms of analysis have to be done on a computer, so the first stage is to
convert the observed current into a series of numbers by means of an analogue-to-
digital converter (ADC). This is usually done after filtering through an analogue
filter; another possibility is to use a digital filter after sampling (though some pre-
filtering may be needed to prevent saturation of the ADC by high frequency noise).

Agonist-activated channels will generally give rise to long records which can, most
conveniently, be recorded on magnetic tape during the experiment, and then replayed
later for digitization. The algorithm used for digitization of records should be capable
of writing the numbers directly to magnetic disk as it goes, in order to avoid frequent
breaks in the record. The sampling rate should be 10-20 times the −3 dB frequency of
the filter in use (though a factor of 5 is sufficient if the resulting points are then
supplemented by interpolation).

For example, for a record filtered with a Bessel-type filter with fc = 5 kHz (−3 dB),
a suitable sampling rate would be 50 kHz. Samples are normally stored as 16 bit (2
byte) integers, so this corresponds to 6 megabytes of data per minute. A computer
with plenty of hard disk space is needed. Some routines (e.g. that supplied by
Cambridge Electronic Design) can sample continuously to disk at up to 80 kHz, but
others are limited to about 30 kHz. Further details can be found in Colquhoun &
Sigworth (1983). 

Sampling on-line

When the opening of channels is caused by a step change in membrane potential or
agonist concentration it will usually be convenient to do the experiment on-line. The
computer will supply the command signal, through a digital-to-analogue converter
(DAC) output, to change the membrane potential or concentration, and then
immediately sample the resulting current through an ADC input. This procedure
avoids problems in defining the exact moment at which the command step was
applied. The sample length will usually be much shorter than is needed for steady-
state (e.g. agonist-activated) channel records. For example, a 300 ms depolarization
might be applied every 10 s, or a 1 ms concentration jump might be applied and the
resulting channel activity record for 1 s subsequently. In such cases the sampled
values can easily be accommodated in the computer memory, and there will be no
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need to have a sampling routine that can write the numbers to a magnetic disc while
sampling is in progress. In order to run DAC outputs and ADC inputs simultaneously,
the computer routines should be interrupt-driven (see Chapter 9); the ability of
different software/hardware combinations to do this varies greatly, but the latest
version of the CED1401 interface (Cambridge Electronic Design) can do ADC
sampling at 330 kHz simultaneously with DAC output at 105 kHz.

The length of the sample should be many times longer than the longest time
constant that is to be investigated, so long samples will be needed for slow processes.
If the sample is too short then the channel will appear sometimes to ‘switch modes’
between one sample and the next. Furthermore it is often forgotten in such
experiments that it is not only the transient that follows the jump that is of interest, but
also the equilibrium channel behaviour that is eventually attained. This is another
reason for not making the sample too short. Preliminary analyses may be needed to
determine how long the sample should be, and what recovery period is necessary
between one pulse and the next. 

If capacitative transients caused by the voltage step cannot be adequately
compensated during the experiment, it may be desirable to do the compensation
during the analysis. For example responses to pulses that happen to produce no
channel openings can be averaged, and this average subtracted from each channel-
containing record. 

4. The measurement of amplitudes 

As mentioned in the introduction, knowledge of channel amplitudes may be wanted
as part of a complete analysis, or for particular purposes such as when measurements
are made in solutions of different ionic composition and different membrane
potentials, in order to investigate the mechanism of ion permeation through single
open channels. The latter sort of study has been greatly facilitated by the ability to
measure single channel currents. Before this was possible, such information had to be
inferred indirectly from instantaneous current-voltage relationships in macroscopic
experiments In the latter, currents are measured as soon as possible
(‘instantaneously’) after a step change in membrane potential, so that changes in the
macroscopic current that resulted from changes in channel permeation could be
distinguished from the (generally slower) changes in macroscopic current that result
from (potential-dependent) changes in the number of channels.

The amplitude of channel openings may appear (incorrectly) to be reduced by
molecules that block the open channel, if the blockages are frequent and too short to
be resolved (e.g., Ogden & Colquhoun, 1985).

The problems that arise in the measurement of single channel current amplitudes
are as follows.

Attenuation of brief events

A brief event (opening or shutting) will, because of the filtering of the record, produce
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a response that does not reach full amplitude. This is illustrated in Figs 3 and 5-8. The
fraction of the maximum amplitude that is attained (Amax/A0) can be calculated as 

Amax/A0 = erf(2.668 fcw) = erf(0.8860 w/tr) (4.1)

where erf( ) is the error function, fc is the −3 dB frequency of the filter recording
system, tr is the risetime of the filter (see (3.1) above), and w is the duration of the
event. The error function, which is a function that is closely related to the cumulative
Gaussian distribution, can be obtained from Tables (e.g. Abramowitz & Stegun,
1965), or calculated by a computer subroutine (one is given by Colquhoun &
Sigworth, 1983), and all mathematical subroutine libraries contain the error function
(e.g. NAG library; Press et al. 1986). The function in (4.1) is plotted in Fig. 3; it is
correct for a Gaussian filter, and is a good approximation for the eight pole Bessel-
type filter that is most commonly used in practice (Colquhoun & Sigworth, 1983). It
must be emphasised again that some commercial filters show a value of 2fc on the
front panel; the manual must be checked to find the correct −3 dB frequency (or the
rise time determined empirically). Table 1 shows the duration of events (openings or
shuttings) that are required to reach 25%, 50% and 90% of maximum amplitude
(which correspond, respectively, to 0.25 tr, 0.54 tr and 1.3 tr). 

Amplitudes of channel openings can be measured only for openings or shuttings
that are long enough clearly to reach full amplitude (i.e. those with a length that is at
least twice the rise time of the filter - see Fig. 3). There are two main approaches to

106 D. COLQUHOUN 

Fig. 1. Single channel records of potassium channels - delayed rectifier channels of skeletal
muscle fibres - activated by a 55 msec depolarization from −100 mV to 0 mV. Two levels of
opening are seen in the lowest record. On the right is shown a histogram of data points,
showing peaks for the baseline and one and two levels of opening. Reproduced with
permission from Standen et al. (1985). 



measurement of amplitudes, point amplitude histograms and amplitudes measured
from each opening. 

The point-amplitude histogram (distribution of data points) 

The distribution of all the digitized current values can be plotted as a histogram.
There will be a peak at the shut level and at each of the open levels. An example is
shown in Fig. 1. The area under each peak is proportional to the time spent at that
level. 

This method has the advantage that the raw data are used without intervening
processing, so the effects of the prejudices of the operator are minimized. It can also
be calculated very rapidly. On the other hand, it has the disadvantages that (a) any
drift in the baseline will distort the results (unless an appropriate correction is made),
and (b) if there is more than one current amplitude there is no way to tell which
duration (measured as below) is associated with which current amplitude.

Most real records contain some baseline irregularities, and often ‘glitches’ too, so
in practice this method may be as slow to compute as the alternatives because of the
necessity to correct properly for these imperfections. This method is also unsuitable if
there are many openings or shuttings that are too short to reach full amplitude; in this
case the histogram will be very smeared. It is useful, therefore, to confine the
histogram to those points that correspond to periods when the channel is open, the
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Fig. 2. An example of the distribution of the amplitude of single-channel currents.
(Unpublished data of B. Sakmann & D. Colquhoun; R. temporaria end plate, Em = −91 mV,
suberyldicholine, 100 nM.) The mean of the 395 amplitudes was 2.61 pA. The continuous
curve is a Gaussian distribution, which was fitted to the data by the method of maximum
likelihood; it has a mean of 2.61 pA and a standard deviation of 0.08 pA. Note, however, that
the observed distribution is rather more sharply peaked than the Gaussian curve. Reproduced
with permission from Colquhoun & Sigworth (1983). 
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Fig. 3. Graph showing on the ordinate the maximum amplitude of the signal produced by a
rectangular pulse of duration w. The amplitude is expressed as a fraction of the full amplitude
(that produced by a long pulse). The abscissae are expressed in dimensionless units. The
lower abscissa uses 1000 fcw where fc is the −3 dB frequency of the Gaussian filter (see text);
These numbers represent the duration, w, in microseconds for fc = 1 kHz, and pro rata for
other fc values. On the upper abscissa is plotted the duration of the pulse relative to the filter
risetime, tr. The fractional amplitude, up to a value of 0.5, is approximately equal to w/tr
(within 8%), e.g. for a fractional amplitude of 0.50, w = 0.54tr = 0.179/fc. See also Fig. 5 and
Table 1.

Table 1. Duration (w, in µs) of rectangular pulses required to produce a response
that reaches the specified fraction of the full amplitude, for Gaussian filter with

various cutoff frequencies (fc, −3 dB)
Fraction of full amplitude

0.25 0.5 0.9

fc tr w
(kHz) (µs) (µs)

1 332 83 179 432
2 166 42 90 216
3 111 28 60 144
4 83 21 45 108
5 66 17 36 86

For fractional amplitudes of 0.25, 0.5 and 0.9, the values of w correspond to w/tr = 0.25, 0.54 and
1.30 respectively. See also Fig. 3.



open point-amplitude histogram, so the smearing effects of the open-shut transitions
are avoided; in order to be sure that the channel is fully open, it will be necessary to
allow at least two risetimes to elapse before collecting points for the histogram.
Similarly a shut-point amplitude histogram can be made by including only points
from periods when the channel is shut.

Separate amplitude estimates for each opening

In this method a separate estimate of amplitude is made for each period for which the
channel is open.

The amplitude may be estimated by averaging points at the shut level, and points at
the open level (after allowing long enough after opening for the filter transient to be
completed). However the mean of points at the open level is liable to be biased if the
opening actually contains brief undetected closures. It may therefore be better (and
will in any case be acceptable) to fit the open and shut level by eye, using cursors on
the computer screen. Alternatively, for events that are sufficiently long, the amplitude
can be estimated by a least squares fit, simultaneously with the duration, by the time-
course method described in the next section.

The amplitude estimates thus found can be plotted as a histogram (as in Fig. 2). In
this case the area under each peak represents the number of sojourns at that level
(rather than the time spent at that level). The form of the expected distribution is not
exactly Gaussian (see Colquhoun & Sigworth, 1983) but the deviation is usually
sufficiently small that little harm is likely to come from fitting the results (by
maximum likelihood - see below) with Gaussian curves, as illustrated in Fig. 2.

One great advantage of this method is that the duration of each individual opening
is known, as well as the amplitude. This allows, for example, the examination of open
time distributions that are restricted to openings that are in a specified amplitude
range. This cannot be done if the only information about amplitudes comes from a
point-amplitude histogram.

5. The measurement of durations 

The information about channel mechanisms that is contained in a single channel
record resides largely in the durations of the channel openings and shuttings.
Measurement of open and shut times will, therefore, usually be required. There are
two main problems to be solved; firstly transitions from one current level to another
must be detected, then the duration of time between one transition and the next must
be measured. For optimum results different criteria should be used for these two jobs.

Detection of transitions

The optimum methods for detection of transitions are described by Colquhoun &
Sigworth (1983); they are complex, and involve, for example, knowledge of the
spectral characteristics of the background noise. Such methods are virtually never
used in practice at present; instead transitions are located as the points where the

109Practical analysis of single channel records



current crosses a preset threshold level. Fortunately, this simple method is not much
worse than optimal methods.

In looking for transitions we aim to locate as many as possible of the genuine
transitions, while rejecting, as far as is possible, any changes in current which, though
they may look at first sight like transitions, are actually caused by random noise, or by
door-slamming, tap-turning, seal breakdown or other such hazards of real life.
Random noise can be coped with by setting the filter appropriately, and by imposition
of a realistic resolution on the data, as described below. Disturbances resulting from
things like door-slamming or refrigerators switching on and off, as well as baseline
drift, can be dealt with only by visual inspection of the data. No foolproof method has
yet been devised for automatically tracking a drifting baseline.

False event rate

The random noise in the record will, from time to time, result in fluctuations of the
current sufficiently large to give the appearance of a transition (e.g. to cross a
threshold level), even though no transition has actually occurred. Such false events
can be kept to a minimum by filtering the data heavily, but if it is filtered too much
important details may be obscured. The number of false events per second, λf, i.e. the
number of times per second that the current departs from the baseline level by more
than some specified amount, φ, is given, approximately (see Colquhoun & Sigworth,
1983), by

λf ≈ fce−φw/2σwn, (5.1)

where fc is the −3 dB frequency of the recording system, and σn is the background rms
noise.

Note that the notation ‘exp( )’ is often used to denote ‘e to the power’, so that
complicated expressions need not be written as superscripts; for example (5.1) would
often be written as λf ≈ fc exp(−φ2/2σ2

n).
In the context of threshold-crossing analysis φwould be the threshold current level

(taking the shut level as zero). The false event rate thus depends on the filter setting,
and on the ratio, φ/σn, of the threshold level to the rms baseline noise. Thus, when fc =
1 kHz, a ratio, φ/σn, of 3 will result in about 11 false events per second, on average.
Similarly φ/σn = 4 corresponds to about 0.33 false events per second (one every 3
seconds), and φ/σn = 5 corresponds to about one false event every 270 seconds. These
rates change, pro rata, for other filter settings.

Measurement of transitions

Once transitions have been located, we then wish to estimate the time interval
between adjacent transitions, i.e. to estimate the durations of openings and shuttings
(and, possibly, to estimate the amplitudes of the events at the same time). Two
methods are in common use (1) threshold-crossing and (2) time course analysis. The
latter provides better resolution, but the former will usually be faster, though this
depends on the amount of manual checking and error correction that is done.
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Whichever method is used, it will be necessary, before starting the analysis, to
measure the following two quantities.

(a) The amount of baseline noise should be measured by finding a stretch of
baseline free from obvious events, and calculating the standard deviation of these
points, i.e. the root mean square (rms) baseline noise, which will be denoted σn.

(b) A preliminary estimate of the channel amplitude (denoted A0) should be made,
by choosing some long openings that are easy to measure (this will be needed to
position the threshold line and to fit the durations of events that are too short for their
amplitude to be measured).

The threshold crossing method

Usually a threshold is set halfway between the fully open and the shut current levels;
every time the observed current crosses this ‘50 percent threshold’ a transition is
deemed to have occurred, and the duration of an event is measured as the length of
time for which the current stays above (or below) this threshold. It is important,
therefore, to filter the data so that spurious transitions (false events - see (5.1) above)
are rare.

Setting the filter for threshold-crossing analysis. A 50% threshold corresponds to
φ/A0 = 0.5, where φ is the threshold level and A0 is the channel amplitude (see above).
The setting of the filter can be illustrated by an example, shown in Fig. 4, in which the
channel amplitude was found to be A0 = 3.8 pA. In this case, the 50% threshold will
be set at φ = 1.9 pA. The filter setting, fc, is now chosen so as to produce an
acceptable false event rate. In Fig. 4, the same channel opening (downward
deflection, followed by two brief shuttings) is shown filtered at 1, 1.5, 2, 3 and 4 kHz
(−3 dB). The standard deviation of the baseline noise (the r.m.s. noise) was,
respectively, 0.10 pA, 0.14 pA, 0.19 pA, 0.27 pA and 0.33 pA. Thus, for the least
filtered record (4 kHz), we have φ/σn = 1.9/0.33 = 5.8. From (5.1), with fc = 4000 Hz,
we find λf ≈ 0.00025 s−1, i.e. roughly one false event in 66 minutes. This is a low rate,
so filtering at 4 kHz would be suitable for threshold crossing analysis. It might be
thought that this is an excessively low rate, and even less filtering would be safe.
However, there are several reasons why it is better to be on the safe side. Firstly, the
false event rate depends very steeply on φ/σn; in this case it was 5.8, but if φ/σn were
to fall only to 5.0 (e.g. if the rms noise rose by only 15%, from 0.33 pA to 0.38 pA)
the false event rate would go up from about one per hour to about one per minute.
Secondly, this is worked out from the baseline (shut channel) noise, but the current is
usually noisier when the channel is open so it is likely that there will be more false
shuttings than predicted. And thirdly, most programs are not capable of holding the
threshold accurately half-way between baseline and open level, which gives more
scope for false events than calculated here. For time-course fitting the choice of filter
is less critical; in a case such as that shown in Fig. 4, 2 or 3 kHz would be used.

Measuring the intervals between transitions. The time at which a transition occurred
can be estimated by taking the data point on either side of the crossing of the threshold
line, and interpolating between them to estimate the time at which the threshold is
crossed. Some people simply count the number of data points between one threshold
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Fig. 4. Examples of a single channel record with various settings of the low pass filter. This
channel comes from the record that was used for Fig. 10. The tape was replayed through an 8-
pole Bessel filter set (top to bottom) at 4, 3, 2, 1.5 and 1 kHz (−3 dB). The channel amplitude
is 3.8 pA, and the standard deviation of the baseline noise (the r.m.s. noise) is (top to bottom)
0.33 pA, 0.27 pA, 0.19 pA, 0.14 pA and 0.10 pA. The corresponding values of φ/σn are 5.8,
7.0, 10, 14 and 19 respectively. The data were originally recorded (after prefiltering at 20
kHz) on FM tape at 15 inches/second, giving a bandwidth up to 5 kHz. The output filter of the
tape recorder was Tchebychef type, which is quite flat up to 5 kHz and then rolls off steeply.
Nevertheless, the effective overall filtering, taking into account the patch clamp and tape
recorder, will be somewhat more than is indicated (especially for the 4 kHz filter setting).

4 kHz

3 kHz
5 ms

3 
pA

2 kHz

1 kHz

1.5 kHz



crossing and the next in order to estimate the duration, but, unless the data sampling
rate is very fast, this method will be unnecessarily inaccurate for short events. 

The resolution of the method, i.e. the shortest time interval that can be measured, is
dictated by the signal-to-noise ratio of the data, and the filtering that must
consequently be employed. Events that fail to reach 50 percent of full amplitude will,
of course, be missed entirely by a 50 percent threshold detection method (see eq. 4.1,
Fig. 3 and Table 1). Those that are just above 50 percent will be detected, but clearly
the duration of intervals will be underestimated. 

For example suppose that the filter is set at a −3 dB frequency of fc = 1 kHz, so tr =
332 µs (see (3.1) and Table 1). Events (openings or shuttings) of 179 µs or longer
reach the 50 percent threshold (on average - the presence of random noise means that
this will not happen every time). An event, of say, 190 µs duration would remain
above the threshold for a short time only, and its duration would be seriously
underestimated. It is shown by Colquhoun & Sigworth (1983) that the duration of
events needs to be above roughly 1.3tr (i.e. 430 µs in this example) before errors from
this source become negligible. Although it is possible to correct for this effect, the
correction is inexact in the presence of noise and is not usually used, so the resolution
of the analysis is limited to 400-500 µs effectively, despite the fact that events much
shorter than this can be detected.

Effect of duration on amplitude measurements. An opening must have a duration of
at least 2tr (of the order of 1 ms in the example above) before its amplitude can be
measured reliably (see Fig. 3 - durations down to about tr permit tolerable simultaneous
fit of duration and amplitude, but an opening needs to last at least 2tr before it is clear
that the full amplitude has been reached; see Colquhoun & Sigworth, 1983).

For brief openings the response fails to reach full amplitude, as described above,
and for any event much shorter than tr, the shape of the response depends on the area
of the pulse (i.e. the total charge passed during the opening), rather than on its
amplitude. Any sort of brief current pulse will produce an observed response of the
same shape; doubling the amplitude but halving the duration will result in
indistinguishable responses (see Fig. 11-10 in Colquhoun & Sigworth, 1983). Brief
events that do not reach full amplitude can therefore be fitted only if a value for the
full amplitude is assumed (this applies equally to time course fitting). If there is only
one sort of channel in the patch this is not a problem, but if the record contains large
and small amplitude channel types then the duration of a brief event that falls short of
the smaller amplitude cannot be estimated because there is no way to tell which sort
of channel it originated from. In this case durations can be measured only for events
that reach full amplitude so the resolution is drastically reduced (to about 2tr) for the
whole analysis for the purposes of fitting of distributions to event durations, though
the resolution for detection of events, and therefore the resolution to be imposed on
the data (see below), may be much better than this.

The time course fitting method 

The step-response function of the recording system. The time taken for the transition
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from a shut channel to a fully open channel is very short (less than 10 µs, Hamill et al.
1981), so the shape of the observed currents is almost entirely determined by the
frequency response characteristics of the system. These characteristics may depend,
for example, on the preparation itself, the patch clamp electrode, the patch clamp
electronics, the tape recorder, and the filter that is used to limit high-frequency noise
(see (3.2) above). The filter usually has the biggest effect. The response of a recording
system to a step input can be measured as follows. A rectangular step input (intended
to simulate the opening of a channel) can be induced by holding near to the headstage
a wire connected to a high-quality triangular wave generator; the output is tape-
recorded and filtered as in a real experiment. This output will be rounded, as
illustrated in Figs 5 and 6. The result may depend on the tape speed (which controls
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Fig. 5. Illustration of the method of calculation of the expected response to a step input. The
left-hand column illustrates a short (45 µs) pulse, and the right-hand column a longer (450 µs)
pulse. The dashed lines in A and D show (on different time scales) the experimentally
measured response to a step input, shown schematically as a continuous line, for a system
(patch clamp, tape recorder and filter) for which the final filter (eight pole Bessel) was set at 3
kHz (−3 dB). The rise time, tr, of the filter is about 111 µs (see Table 1), so the pulse widths
are 45 µs = 0.406tr and 450 µs = 4.06tr. (A) The response to a unit step at time zero is shown.
B shows the same signal but shifted 45 µs to the right and inverted. The sum of the continuous
lines in A and B gives the 45 µs unit pulse shown as a continuous line in C. The sum of the
dashed lines in A and B is shown as a dashed line in C and is the predicted response of the
apparatus to the 45 µs pulse. It reaches about 41% of the maximum amplitude, which is very
close to the value of 39% expected for a Gaussian filter (see Table 1 and Fig. 3). D, E and F
show, except for the time scale, the same as A, B and C but for a 450 µs pulse, which achieves
full amplitude. Reproduced with permission from Colquhoun & Sigworth (1983). 



the bandwidth of the recorder), and it may depend on whether the output filters on the
tape recorder are set to Bessel or Tchebychef type (on recorders where they are
switchable, such as the Racal recorders).

Fitting channel transitions. The measured step response can be used to calculate
the response to any pattern of channel opening and shutting, by the method shown in
Fig. 5. In the case of long openings (or long shuttings) the effect of the filtering is
merely to round off the square corners of the transition, as illustrated by the first
opening shown in Fig. 6A. But a variety of other patterns can be produced when short
openings and shuttings occur; some of these are illustrated in Fig. 6B,C,D. Such
calculated responses (‘convolutions of step responses’ in the usual jargon) can be
superimposed on the observed current, and the time intervals and amplitudes adjusted
until a good fit is obtained.

The fit may be judged by eye or by a least squares criterion. A least squares fit

115Practical analysis of single channel records

Fig. 6. Examples of the calculated output of the apparatus (lower trace) in response to two
openings of an ion channel (upper traces). The curves are generated by a computer subroutine
and were photographed on a monitor oscilloscope driven by the digital-to-analogue output of
the computer. Openings are shown as downward deflection. (A) A fully resolved opening (435
µs) and gap (972 µs) followed by a partially resolved opening (67 µs). (B) Two long openings
(485 and 937 µs) separated by a partially resolved gap (45.5 µs). (C) A brief opening (60.7 µs)
and gap (53.1 µs) followed by a long opening (1113 µs); this gives the appearance of a single
opening with an erratic opening transition. (D) Two short openings (both 58.2 µs) separated
by a short gap (48.1 µs); this generates the appearance of a single opening that is only 55% of
the real amplitude but which appears to have a more-or-less flat top, so it could easily be
mistaken for a fully resolved subconductance level. Reproduced with permission from
Colquhoun & Sigworth (1983). 



(even when amplitudes are estimated simultaneously) can be quite rapid on a modern
fast PC-compatible computer. Examples of such fits are shown in Figs 7 and 8. 

Advantages and disadvantages of these two methods

Speed of analysis. As commonly practiced, the threshold crossing method is
considerably faster than time course fitting, and when many channel openings have to
be measured this is not a trivial consideration. However the speed difference depends
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Fig. 7. Examples of single-channel current sublevels. (A) Elementary current activated by 100
nM ACh. −125 mV, 11°C. The two continuous horizontal lines, marked closed and open
respectively, represent the patch current when a channel is either completely closed or
completely open. The average amplitude of the current through the fully open channel is −3.71
pA. The dashed horizontal line represents the amplitude of a current sublevel. During the
sublevel the channel is partially closed. The sublevel amplitude is −0.52 pA, i.e. 14% of the
full amplitude. (B,C) Partial channel closures in another patch with 500 nM ACh at −178 mV
and 10°C. The time course of the digitized current record is fitted (continuous line) by the
same step response function as was used for full openings and closings. However, it was
assumed that the amplitude of the current sublevels (marked partially closed) are 17% and
72%, respectively, of the full current amplitude. Sublevel amplitudes are indicated by the
horizontal dashed line. The current through the fully open channel is −5.6 pA in (B) and −5.7
pA in C. The duration of the partial closures is 310 µs and 360 µs in B and C respectively.
Filtered at 4 kHz (−3 dB). Reproduced with permission from Colquhoun & Sakmann (1985).



very much on the amount of checking that is done. It obviously takes time to check
visually the fit to every opening, and the position of the baseline before and after the
opening. Time-course fitting forces you to make these checks, but threshold crossing
allows you to neglect them if you wish to do so. Furthermore, second generation
time-course fitting programs will estimate both durations and amplitudes

117Practical analysis of single channel records

Fig. 8. Illustration of the problem of distinguishing subconductance states from multiple
transitions. (A) Burst induced by SubCh, 100 nM, at −128 mV. Two putative brief gaps are
visible. Low pass filter at 3 kHz (−3 dB). (B) The gap that is marked with an arrow in A shown
on an expanded time scale. (C) Fit of data in B assuming a single complete closure of duration
161 µs. (D) Fit of data in B assuming a single closure to a subconductance state, of duration
216 µs. (E) Fit of data in B assuming that a full closure of 58 µs is followed by a full opening
of 46 µs, and then another full closure of 64 µs. Reproduced with permission from Colquhoun
& Sakmann (1985).



simultaneously, whereas threshold-crossing programs usually require separate
estimation of amplitudes. Estimation of amplitudes requires an additional, separate,
job, e.g. making a point amplitude histogram; this itself can take some time unless the
record is of such high quality that the baseline never drifts by more than a small
fraction of the channel amplitude, and contains a negligible number of glitches. Even
if this is done, information about the time spent at each amplitude level is lost.

Multiple conductance levels. Threshold-crossing methods are completely
incapable of measuring channels that contain more than one conductance level. This
is illustrated in Fig. 9, where a subconductance at about 50% of the full conductance
level causes complete havoc. Lower subconductance levels would be missed entirely.
The data in Fig. 9 are from a nicotinic channel; the problem is far more serious for
GABA and glutamate channels which have frequent sublevel transitions. 

Temporal resolution. The method of time course fitting clearly allows one to fit
events that would be quite impossible with a threshold-crossing method, either (1)
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Fig. 9. Single channel currents recorded from Xenopus oocytes injected with mRNAs for α, β,
γ and δ subunits of the BC3H1 nicotinic receptor. Cell-attached patch, acetylcholine 1 µM,
filtered at 4 kHz (−3 dB) and sampled at 40 kHz. The solid horizontal line represents the
baseline (shut level), the long-dashed line is the open level, and the short-dashed line is the
threshold level. Vertical lines mark the positions of threshold crossings. In A and B,
transitions are successfully located by the threshold-crossing method, but the channel shown
in C and D happens to have a sublevel close to the threshold level, so, as shown in D, a large
number of entirely spurious transitions are generated. If the program was operating
automatically, these would all go into your results! (C. G. Marshall, A. J. Gibb & D.
Colquhoun, unpublished data.)

A B

C D



because they are too brief to reach the threshold at all (or too brief to have their
duration measured accurately in this way, as discussed above) as in Fig. 6A,B, or (2)
because brief events close to longer ones produce an apparent distortion as in Fig.
6C,D. An automated threshold crossing method would, of course, produce some
result when faced with such events, but the result would be meaningless; this is one
reason for not using excessively automated methods. Time course fitting allows a
resolution that is of the order of three-fold better than the threshold crossing method;
briefer events can be fitted.

The most obvious danger of time course fitting is that of over-ambitiousness. The
risk of false events arising from an attempt to fit events that are too short is just the
same as described above for the threshold crossing method, but the temptation to fit
them may be greater. Not only genuine channel transitions, but any disturbance
(artefactual or random noise), if sufficiently brief, will produce a signal that can
plausibly be fitted by the time- course method. For example Fig. 8 shows a case in
which it is impossible to be sure whether a subconductance level should be fitted, or
whether there are actually two full shuttings in quick succession. One way to deal
with this part of the problem is to go through the data twice; the first time full closings
are fitted whenever possible, the second time sublevels are fitted whenever possible.
It may then be possible to decide which is the more plausible e.g. by seeing whether
the sublevel fits produce a consistent amplitude estimate. Such ambiguities are, of
course, not avoided by a threshold crossing analysis; they are merely brushed under
the carpet. 

Deciding the resolution 

It is desirable, for several reasons, that the data should have a well-defined time
resolution, i.e. that it be known that all events above the specified resolution, but none
below it, have been fitted. For example, it is this time resolution that fixes the false
event rate, it is the time resolution that fixes the minimum duration of an open or shut
time that can be fitted (but see below). Furthermore, a well-defined time resolution is
essential if any form of correction for missed events is to be applied (see below and
Chapter 7).

It might be thought that the resolution is automatically fixed in the threshold-
crossing analysis (as the pulse duration required to reach 50% of full amplitude), but
(a) this is not constant (see Colquhoun & Sigworth, 1983), and (b) the safe resolution
will be greater than this, as described above. In the case of time course fitting the
shortest durations that are fitted are decided subjectively, and are unlikely to be
constant throughout an experiment. It is therefore highly desirable that a fixed
resolution should be imposed on the data after analysis, as described below. First,
though, a decision must be made as to the appropriate value(s) for the resolution.

The false event rate (per second) that is acceptable obviously depends on the value
of the true event rate. If we are looking for openings that occur at only one per 5
seconds on average, then the record contains a lot of shut baseline in which false
events can occur. If a false event rate of about 2% of the true rate were thought
tolerable then we might aim for a false event rate of about one per 270 seconds. The
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threshold would therefore be set to 5 times the baseline rms noise (see (5.1) above). In
the example discussed above, with rms noise of 0.3 pA and a channel amplitude of A0

= 3 pA, openings that have an amplitude less than 5×0.3 = 1.5 pA would therefore be
ignored. Openings of this amplitude, which is 1.5/3.0 = 0.5 (50%) of the full
amplitude, would (on average) have a duration of about 0.54tr, from (4.1) and Fig. 3.
For example if the overall filtering of the data corresponded to fc = 1 kHz (−3 dB), so
tr = 332 µs, then openings of 0.54×332 ≈ 180 µs could be safely resolved (and pro
rata for other values of fc). Note, though, that although this resolution would be safe
for detection of openings, it could be used for fitting them only if it was safe to
assume an amplitude for such partially resolved openings; it requires a duration
nearer to 2tr for the amplitude to be resolved (see above).

For shut times, different values may apply. Suppose, in the example above, that
openings occur in bursts, separated by short gaps, so there is relatively little open
level in the record in which false gaps might be detected. For example Colquhoun &
Sakmann (1985) observed brief gaps at a rate of about 500 per second of open time
with acetylcholine. A false event rate of 2% of true rate, as before, now corresponds
to about 11 false events per second, so the threshold could be set to only 3 times the
baseline rms noise (see (5.1) above). In the example just discussed, shuttings that
have an amplitude less than 3×0.3 = 0.9 pA would therefore be ignored. Shuttings of
this amplitude, which is 0.9/3.0 = 0.3 (30%) of the full amplitude, would (on average)
have a duration of about 0.31tr, from (4.1) and Fig. 3. For example if the overall
filtering of the data corresponded to fc = 1 kHz (−3 dB), so tr = 332 µs, shuttings of
0.31×332 ≈ 100 µs could be safely resolved (and pro rata for other values of fc),
though the safe resolution for open times is at least 180 µs, as just described.

These values change pro rata for other filter settings; e.g. a resolution of 25 µs for
shut times might be obtainable at fc = 4 kHz, as long as the signal to noise ratio of the
data was good enough to give 0.3 pA rms noise at this filter setting. Such resolution
can be obtained only by time course fitting. Some improvements might be obtained in
threshold crossing analyses by using separate thresholds for openings and for
shuttings, though this is not usually done, and would obviously cause problems if two
or more successive events were brief. 

Clearly the resolution that can be attained safely is not known until after the record
has been analysed (so the optimum setting of thresholds for analysis is difficult). Our
strategy with time course fitting evades this problem by fitting everything that could
possibly be a real event while going through the data. At the end of the analysis the
resolution must be specified, and this can be decided on the basis of several criteria:
(a) the subjective feeling of the operator, during the analysis, concerning the shortest
event that he or she can be sure is genuine, (b) calculations of false event rates of the
sort illustrated above, based on the tentative analysis of the results, and (c) the
appearance of the raw distributions of open and shut times, in particular the duration
of interval below which there is ‘obviously’ a deficit of events. All of these criteria
are, to some extent, subjective, but together they should allow realistic and safe
values to be chosen for the best resolutions for open times and for shut times. 

Imposition of the resolution. Once the resolution for open times has been decided
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then every open time shorter than the chosen value is treated, along with the shut time
on each side of it, as one long shut period. An analogous procedure is followed for all
shut times that are shorter than the chosen shut time resolution. The result is a record
with a consistent resolution throughout; it contains no openings shorter than the
chosen open time resolution and similarly for shut times. The open and shut times in
this record are now ready to have distributions fitted, as described below. 

This simple procedure is always used in our laboratory, though it does not seem to
be widespread. Its neglect clearly leads, in principle, to inconsistency. Suppose, for
example, that the open time resolution is decided (as is common) simply by looking
at the distribution of raw open times and choosing the resolution as the duration
below which there is an ‘obvious’ deficit of observations. This may well give a
realistic estimate of the resolution for open times, but if we then go ahead and fit all
open times in the raw data that are longer than the resolution so chosen we shall be
fitting as distinct openings some pairs of openings that are separated only by a shut
period that is shorter than the shut-time resolution, and which we therefore have no
right to regard as well- defined separate openings. An analogous inconsistency
obviously arises for the fitting of shut times. The problem is easily avoided if
consistent open time and shut time resolutions are imposed on the data, as described
above, before any fitting is attempted. 

Measurement of Popen

The probability, Popen, that a channel is open (also known, for brevity, as the open
probability) can be estimated as the fraction of time for which a channel is open, i.e.
the total open time divided by the total length of the record.

A useful estimate of Popen can be obtained only when there is only one individual
channel contributing to the record, and this is usually not the case. Sometimes,
though, there are sections of the record that originate from one channel only. For
example, at high agonist concentrations many channels show long silent periods
during which all the channels in the patch are desensitized. Periodically one channel
emerges from the desensitized state, and opens and shuts at a high rate (because the
agonist concentration is high). The lack of double openings during such periods of
high activity shows that they originate from one channel only. Therefore the silent
desensitized periods can be cut out from the record (provided that they are so long as
to be obviously desensitized), and Popen calculated from the periods of high activity
only (e.g. Sakmann, Patlak & Neher, 1980; Colquhoun & Ogden, 1988). This has
been used as a method for obtaining equilibrium concentration-response curves that
are corrected for desensitization (the desensitized periods are cut out). This method
also has the advantage that the response, Popen, is on an absolute scale (the maximum
possible response is known, a priori, to be 1).

Once a list of all the open and shut times has been measured, it is simple to
calculate Popen for any specified part of the record (see, for example, section on
stability plots, below). However it is usually preferable not to measure Popen in this
way, but rather to measure it by integrating the record (either numerically on the
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computer, or by playing the magnetic tape through an analogue integrator). Then
Popen can be found as the area under the trace per unit time, divided by the single
channel current amplitude. The great advantage of measuring Popen in this way is that
it is insensitive to missed events (see section 10, below). The filtering of the signal
attenuates and rounds the single channel signal (as shown in Figs 5-8), but does not
change the area under the signal. Therefore the integration method is unaffected by
the existence of undetected transitions.

6. The display of distributions 

This section deals mainly with the display of measurements that have been made at
equilibrium, so the average properties of the record are not changing with time (this
can be checked by use of the stability plots described at the end of this section).

Following the analysis described above, we should have a list of our estimates of
the durations of each (apparent) open period (together with the amplitude of the
current) and of each (apparent) shut period in the order in which they occurred, each
duration being greater than the chosen resolution. These durations are random
variables so, in order to describe them quantitatively, a probability distribution must
be fitted to them. We shall deal here mainly with the fitting of distributions that are
described by the sum of one or more exponential (or geometric) components. This
form of distribution is expected under the simplest (Markov) assumptions concerning
the mechanism of channel opening; these assumptions are described in more detail in
Chapter 7 and, for example, by Colquhoun & Hawkes (1983). Although this sort of
distribution is what everybody uses it should be borne in mind that it will not be the
correct form (a) when the resolution is such that many brief events are missed (though
often this will not cause great deviations from exponential form) or (b) when the
mechanism of channel opening does not obey the simple Markov assumptions (e.g.
because membrane potential or ligand concentration are not held constant). Whatever
the form of the distribution, it is described (for a continuous variable such as time) by
a probability density function. 

Probability density functions and histograms 

The data consist of a list of times (e.g. open times or shut times or burst lengths); in
order to display their distribution they must be displayed as a histogram. The
histogram is usually described as showing the number of observations with durations
that fall between the limits specified on the abscissa, i.e. its ordinate is dimensionless.
The probability density function (p.d.f.), on the other hand, is a function such that the
area under the curve (rather than the amplitude on the ordinate) represents
probability, or number of observations. The p.d.f. therefore has dimensions of s−1,
and a total area of unity (see equation (1) below, and Chapter 7). Usually we will wish
to superimpose a fitted p.d.f. on the histogram of the data, but the p.d.f. has
dimensions that appear to be different from those of the histogram ordinate. The
solution of this dilemma is that the histogram ordinate should be expressed not as
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frequency of events, but as a frequency density, for example, as ‘frequency per 2 ms’
(where 2 ms may be the bin width); thus it is expressed in reciprocal time units like
the p.d.f. This is not only correct, but also makes it clear that area must represent
frequency in the histogram if all bins are not of the same width. To achieve
superimposition on the histogram, the area under the p.d.f. must be made to
correspond to the area of the histogram boxes, N∆t, by multiplying the p.d.f. by N∆t
where ∆t is the bin width and N is the total number of observations (including the
estimated number that are below the chosen resolution and therefore not detected; see
below). Further details are given by Colquhoun & Sigworth (1983). 

A simple exponential p.d.f. for an interval of duration t is defined by 

f(t) = τ−1e−t/τ (6.1)

where τ is the mean of the distribution (which is the same thing as what would be
called the ‘time constant’ of the curve if it were a decaying current rather than a
p.d.f.). The initial constant, τ−1, ensures that the p.d.f. has unit area. If there is more
than one exponential component the distribution is referred to as a mixture of
exponential distributions (or a ‘sum of exponentials’, but the former term is preferred
since the total area must be 1). If ai represents the area of the ith component, and τi is
its ‘mean’ then

f(t) = a1τ1−1e−t/τœ + a2τ2−1e−t/τ∑ + . . .

= ∑aiτi−1e−t/τi (6.2)

The areas add up to unity, i.e. ∑ai = 1, and they are proportional, roughly speaking, to
‘number of events’ in each component. The overall mean duration is 

mean duration = ∑aiτi . (6.3)

The cumulative distributions. The cumulative form of this distribution, the
probability that an interval is longer than t, is, for a single exponential,

or, for more than one component, the sum of such integrals, viz.

P(interval > t) = ∑aie−t/τi . (6.5)

Occasionally the data histogram is plotted in this cumulative form with the fitted
function (6.5) superimposed on it. This presentation will always look smoother than
the usual sort of histogram (the number of values in the early bins is large), but it
should never be used, because the impression of precision that this display gives is
entirely spurious. It results from the fact that each bin contains all the observations in
all later bins, so adjacent bins contain nearly the same data. In other words successive
points on the graph are not independent, but are strongly correlated, and this makes
the results highly unsuitable for curve fitting.

To make matters worse, it may well not be obvious at first sight that cumulative

P(interval > t) = e t

∞
f(t)dt = e−t/τ , (6.4)
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distributions have been used, because the curve, (6.5), has exactly the same shape as
the p.d.f. (6.2). There are no good reasons to use cumulative distributions to display
data; they are highly misleading. In any case, it is much easier to compare results if
everyone uses the same form of presentation.

Display of multi-component histograms

Figure 10A shows a histogram of shut times, with a time scale running from 0 to 1500
ms. This range includes virtually all the shut times that were observed. 

The first bin actually starts at t = 60 µs rather than at t = 0, because a resolution of
60 µs was imposed on the data (see above) so there are no observations shorter than
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Fig. 10. Example of a distribution of shut times. In A, B and C the histogram of shut times is
shown (on three different time scales), and in D the distribution of log(shut times), for the
same data, is shown. The data are from nicotinic channels of frog endplate (suberyldicholine
100 nM, −130 mV). Resolutions of 80 µs for open times, and 60 µs for shut times, were
imposed as described in the text; this resulted in 1348 shut times which were used to construct
each of the histograms. The dashed bins (which are off scale in B, C) represent the number of
observations above the upper limit. The data were fitted by the method of maximum
likelihood with either two exponentials (dashed curve) or three exponentials (continuous
curve). The same fit was superimposed on all of the histograms. The estimated parameters are
shown in D. (D. Colquhoun and B. Sakmann, unpublished data.)



this. All that is visible on this plot is a single slowly-decaying component with a
‘mean’ of about 250 ms, though the first bin, the top of which is cut off on the display,
shows that there are many short shut times too. The same data are shown in Fig. 10C,
but only shut times up to 250 µs are shown here (so the 60 µs resolution is now
obvious). There are many shut times longer than 250 µs of course, and these are
pooled in the dashed bin at the right hand end of the histogram (the top of which is cut
off). Again the histogram looks close to a single exponential, but this time with a
‘mean’ of about 50 µs. Although it is not obvious from either of these displays, there
is in fact a (small) third component in this shut time distribution. It is visible only in
the display of the same data in Fig. 10B, in which all shut times up to 8 ms are shown,
where an exponential with a mean of about 1 ms is visible. The data were not fitted
separately for Fig. 10A,B,C, but one fit was done, to all the data (by maximum
likelihood - see below) with either two exponential components (dashed line) or 3
exponential components (solid line). This same fit is shown in all four sections of Fig.
10. The deficiency of the 2 component fit is obvious only in the display up to 8 ms.

Clearly the conventional histogram display is inconvenient for intervals that cover
such a wide range of values. The logarithmic display described next is preferable.

Logarithmic displays: the distribution of log(duration)

It was suggested by McManus, Blatz & Magleby (1987), and by Sine & Sigworth
(1987), that it might be more convenient, when intervals cover a wide range (as in the
preceding example), to look at the distribution of the logarithm of the time interval,
rather than the distribution of the intervals themselves. Note that this is not simply a
log transformation of the conventional display, because this would have bins of
variable width on the log scale, whereas the distribution of log(t) is shown by bins of
constant width on the log scale. In addition, Sine & Sigworth suggested using a
square root transformation of the frequency density (to keep the errors approximately
constant throughout the plot).

The distribution has the following form. If the length of an interval is denoted t, and
we define 

x = log(t) ,

then we can find the p.d.f. of x, fx(x), as follows. First we note that if a t is less than
some specified value t1, then it will also be true that log(t) is less than log(t1). Thus 

Prob[t < t1] = Prob[log(t) < log(t1)] = P, say. (6.6)

In other words the cumulative distributions for t and log(t) are the same. Now it is
pointed out in chapter 7 (equations 3.7-3.9), that the p.d.f. can be found by
differentiating the cumulative distribution. Thus, denoting the probability defined in
(6.6) as P,
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The second line here follows because dP/dt is simply the original distribution of time
intervals, f(t); it shows, oddly, that the distribution of x = log(t) can be expressed most
simply not in terms of x, but in terms of t. When f(t) is multi-exponential, as defined in
(6.2), and we express fx(x) in terms of x by substituting t = ex, we obtain the result in
(6.7). This function is not exponential in shape, but is (for a single exponential
component) a negatively skewed bell-shaped curve, the peak of which, very
conveniently, occurs at t = τ.

The same data, and the same fit, that was displayed in Fig. 10A,B,C, are shown in
Fig. 10D as the distribution of log(shut times). The same fitted curves are also shown,
and the three component fit shows three peaks which occur at the values of the three
time constants. It is now clearly visible, from a single graph, that the two-exponential
fit is inadequate. (The slow component of the 2-exponential fit also illustrates the
shape of the distribution for a single exponential, because it is so much slower than
the fast component that the two components hardly overlap.) This sort of display is
now universally used for multi-component distributions. Its only disadvantage is that
it is hard in the absence of a fitted line, to judge the extent to which the distribution is
exponential in shape.

Bursts of channel openings

It is often observed that several channel openings (a burst of openings) occur in rapid
succession, the individual openings being separated only by brief shut periods, and
that then a much longer shut period is seen before the next burst. This may occur
spontaneously, or as a result of brief channel blockages. This phenomenon is evident
in the shut time distribution shown in Fig. 10, from which it is clear that about 75% of
shut times are very short (around 50 µs on average), and almost all the rest are much
longer. The former are the ‘shut times within a burst’, and the latter are the long shut
times that separate one burst from the next (‘shut times between bursts’).

Definition of bursts in practice. If some critical time, tc, is defined, such that shut
times shorter than tc are deemed to be ‘within bursts’, then the experimental record
can be divided into bursts (the end of each burst being signalled by occurrence of a
shut time longer than tc. Such a division can never be totally unambiguous when
dealing with a random process, but various criteria exist for choosing an optimum
value for tc (see, for example, Colquhoun & Sakmann, 1985). However, as long as the
‘means’ of the long and short components differ by a factor of at least 50, and
preferably over 100, the dangers of misclassification are acceptable. In the example
illustrated in Fig. 10, this criterion is met, even when the small component of shut

fx(x) = ––– = –––––– = –––––– · –––
dP

dx dtd log(t) d log(t)

dP dt dP

= t f(t)

= Σaiτi−1exp(x − τi−1ex) (6.7)
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times with a mean of around 1 ms is deemed to be ‘within bursts’. In this case tc = 5
ms result in less than 2% of shut times being misclassified. 

Distributions based on bursts. Once bursts have been defined, it is possible to
define many new sorts of distribution, which can be helpful in the interpretation of
single channel records (see Chapter 7). One reason for their usefulness is that one can
usually be sure that all the openings in a burst come from the same individual
channel, so shut times within bursts can be interpreted in terms of channel
mechanisms, even under conditions where there is a large and unknown number of
channels in the patch (so consecutive bursts may not originate from the same channel,
and the shut time separating them is therefore not interpretable). 

For example, the distribution of the burst length, or of the total open time per burst,
can be defined. For many sorts of channel it is the mean burst length, rather than the
mean length of the individual opening, that constitutes the ‘unitary event’ for
physiological purposes (it would be irrelevant for the function of a synapse that the
burst actually contained some very short closures within it). Another advantage of
measuring quantities such as these becomes clear when we consider the effect of
failing to detect brief shuttings; the burst lengths will be far less sensitive to such
failures than the individual open times (see below, and Chapter 7). 

It is expected that multi-exponential distributions will also fit distributions such as
those of burst length, open time per burst and so on. Some other forms of distributions
are also encountered. For example the distributions of the sum of any fixed number of
exponentially distributed intervals is described by a gamma distribution (used, for
example, by Colquhoun & Sakmann, 1985), though the distribution of the sum of a
random number of exponentially distributed intervals is itself exponentially
distributed (which is why the burst length, in some cases, has an approximately
exponential distribution).

But we can also define a different sort of distribution on the basis of division of the
record into bursts. For example, the number of openings per burst is a discrete
variable (it can take only integer values, 1, 2, 3, . . . etc), rather than a continuous
variable like time. Under the simplest (Markov) assumptions it is expected to be
described by a mixture of geometric distributions (see also Chapter 7). The geometric
distribution is the discrete analogue of the exponential distribution, and is described
next. 

Geometric distributions

This sort of discrete distribution can be exemplified by the distribution of the number
of openings per burst. The probability, P(r), that a burst will contain r openings is
given by

P(r) = Σai(1 − ρi)ρi
r−1, r = 1, 2, 3, . . . , ∞ (6.8)

where ai represents the area of each component, as before, and the ρi are constant
coefficients (less than 1) that give the constant factor by which P(r) is reduced each
time r is increased by 1. The distribution therefore, apart from being discontinuous,
has the same shape as an exponential distribution, as shown in Fig. 11.
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The mean number of openings per burst for each component, µi say, is related to
the ρi values thus

Fig. 11 shows the distribution of the number of openings per burst for similar data
to that used for the shut time distribution in Fig. 10. A critical shut time of 3 ms was

µi = –––––
1

1 − ρi
(6.9)
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Fig. 11. Example of the distribution of the number of (apparent) openings per burst (frog
muscle endplate, suberyldicholine 20 nM, −139 mV). Resolution was set as in Fig. 10; this
resulted in 1355 resolved openings, and a critical shut time of 3 ms was used to divide the
record into 659 bursts. The same data are shown in A and B. The data were fitted, by the
method of maximum likelihood, with either a single geometric distribution (dashed line in
A), or by a mixture of two geometric distributions (dashed line in B). The fitted parameter
values are shown on the graphs. (D. Colquhoun and B. Sakmann, unpublished data.)



used to divide the record into bursts. As discussed above, many of the shut times are
too short to be resolved, so this distribution should preferably be referred to as ‘the
number of apparent openings per burst’. If all shut times were detected there would
be more shuttings, and more openings, than are detected here.

In Fig. 11A the distribution has been fitted with a single geometric component, and
the fit is not good (there are too many values with one opening per burst, and too few
with 2 or 3 openings per burst, for a good fit). In Fig. 11B the same data has been
fitted with two geometric components, and the fit is good.

The areas and means can be predicted from a specified kinetic mechanism, as
described in Chapter 7, so, conversely the fitted values of these parameters can be
used to estimate the rate constants in the underlying mechanism.

Stability plots

This section has dealt mainly with the display of measurements that have been made
at equilibrium, so the average properties of the record are not changing with time. In
practice it is quite common for changes to occur with time. This can be checked by
constructing a stability plot as suggested by Weiss & Magleby (1989). In the case, for
example, of the measured open times, the approach is to construct a moving average
of open times, and to plot this average against time, or, more commonly, against the
interval number (e.g. the number of the interval at the centre of the averaged values).
A common procedure is to average 50 consecutive open times, and then increment
the starting point by 25 (i.e. average open times 1 to 50, 26 to 75, 51 to 100 etc). The
overlap between samples smooths the graph (and so also blurs detail). An exactly
similar procedure can be followed for shut times, and for open probabilities. In the
case of open probabilities, a value for Popen is calculated for every each set of 50 (or
whatever number is chosen) open and shut times, as total open time over total length.

Fig. 12A shows examples of stability plots for open times, shut times and Popen

which was calculated from the same experimental record (from frog muscle nicotinic
channels) as that used for the shut time distribution shown in Fig. 10. It can be seen at
once that all three quantities are reasonably stable throughout the recording. In
contrast Fig. 12B shows similar plots for a recording from the NMDA type of
glutamate receptor channel (Gibb & Colquhoun, 1991). In this case, though the open
times are stable throughout the recording, there are two periods when the shut times
suddenly become short, and Popen correspondingly increases to nearly 1.

Plots of this sort can be used to mark (e.g. by superimposing cursors on the plot) to
mark sections of the data that are to be omitted from the analysis. For example, this
approach has been used to inspect, separately, the channel properties when the
channel is in a ‘high Popen period’, and when it is behaving ‘normally’.

It should be noted that when the average Popen value (the value for the whole
record) is plotted on the stability plot, it can sometimes appear to be in the wrong
position. This may happen when the record contains a very long shut period which
reduces the overall Popen, but which affects only one point on the stability plot (which
is normally constructed with ‘interval number’ on the abscissa, rather than time).

Amplitude stability plots. Exactly similar plots can be constructed for the channel
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Fig. 12. Examples of stability plots. (A) The stability plots for shut times, open times and
Popen are shown for the same data that were used for the shut time distribution in Fig. 10. All
three plots are shown on the same graph by using a logarithmic ordinate. A running average
of 50 values was calculated, the starting point being incremented by 25 values for each
average. The overall average values of shut time, open time and Popen are plotted as
horizontal lines. (B) Similar plots are shown (this time, as three separate graphs) for a
recording from the NMDA-type glutamate receptor (outside-out patch from hippocampal
CA1 cell, glutamate 20 nM + glycine 1 µM, −60 mV; Gibb & Colquhoun, 1991). In this case
a running average of 20 values, with an increment of 10 values, was used.
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Amplitude stability plots. Exactly similar plots can be constructed for the channel
amplitudes, in order to check whether they stay constant throughout the experiment.

7. The fitting of distributions

Fitting the results: empirical fits

At this stage we have a histogram that displays the experimentally-measured
distribution of, for example, channel amplitudes, or open times, or number of
openings per burst. The conventional approach is next to fit to these data a theoretical
distribution (usually a mixture of Gaussian or exponential or geometric distributions,
respectively). In the case of fitting exponentials, for example, the problem is how to
find the values of the parameters (i.e. the ‘means’, τ1, τ2 . . ., and the relative areas, a1,
a2. . .) that provide the best fit the experimental data. The question of what mechanism
might account for the observations is then considered (if at all) retrospectively.

Fitting a mechanism

In cases where a specific kinetic mechanism is being postulated for the ion channel it
is possible to do better that this; all the data can be fitted simultaneously, the
parameters being the underlying rate constants (as defined by the law of mass action)
in the mechanism, rather than a set of empirical values of τ and a. This more
sophisticated approach can be used only if allowance is made, during the fitting
process, for events that are too short to be detected, and methods for doing this are
discussed in Chapter 7.

Fitting exponentials

For the moment we shall consider only the first case, and the problem will be
exemplified initially by the case where exponentials are to be fitted.

If a simple exponential will suffice then the traditional way of estimating the time
constant, from the slope of a semilogarithmic plot of frequency against time will, if
not optimum, be quite satisfactory in practice. In practice, hardly any observations
can be fitted by a single exponential, so the problem gets a bit more difficult; the
traditional method of ‘curve stripping’ will rarely be satisfactory and is, in any case,
little or no faster than doing the job properly. 

All satisfactory methods involve the minimization (or maximization) of some
function, so the first thing that has to be done is to get hold of a general purpose
computer program that can minimize a specified function. The easiest methods to use
are based on simple search procedures; for example Patternsearch (see Colquhoun,
1971) or the Simplex method (Nelder & Mead, 1965; O’Neill, 1971; Hill, 1978).
Search methods will usually converge even when give rather poor initial guesses
(they are ‘robust’), and constraints can easily be incorporated into the fitting.
However they are usually not as fast as more complex (but less robust) gradient
methods. Most commercial subroutine libraries have a selection of minimization
routines (e.g. the NAG PC library).
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The next thing to do is to decide what is meant by ‘best’ fit. Two methods are
commonly used. The first of these, the minimum chi-squared method, used the
histogram frequencies as the data. This method is described, for example, by
Colquhoun & Sigworth (1983); although it is quite satisfactory in practice it will not
be discussed further here because it is generally believed that the method of maximum
likelihood is preferable to other criteria for best fit. This method produces the values
for the parameters (τ1, τ2 . . ., and a1, a2 . . .) which make the observation of our
particular set of data more probable than it would be with any other parameter values
(see Edwards, 1972; Colquhoun & Sigworth, 1983). The principle is easy. Suppose
that we have a set of measurements (e.g. open times) denoted t1, t2 . . tn. If these
observations are independent of each other then the probability (density) of making
all n observations is proportional to the product of the separate probability (densities)
for each observation, a quantity known as the likelihood (of a particular set of
parameters), viz.

Lik = f (t1) f (t2) . . . f(tn) (7.1)

where f is the p.d.f., defined in (6.1) or (6.2) as appropriate. For example, if a single
exponential as in (6.1) is sufficient then f(t1) = τ−1e−t1/τ, and so on. Most commonly
we work with the log(likelihood), L, which from (7.1) can be written as

The optimization program finds the values of the parameters that make L as large as
possible (these same values will, of course, also make Lik as large as possible); if the
program is designed for minimization (as most are) we simply minimize −L in order to
maximize L. Notice that for the purpose of this calculation the observations are
regarded as constants (the particular values of t1, t2 . . . that we happen to have observed)
while the parameter estimates are regarded as variables (the τi and ai values are adjusted
until L is maximized). The method is easily adapted to cope with the case that there are
no observations below some specified minimum durations (e.g. the resolution), or
above a specified maximum duration (see Colquhoun & Sigworth, 1983). Notice also
that this method uses the original observed time intervals, not the histogram frequencies
found from them. This has the advantages that (a) values of, say, 1.1 and 1.9 ms are not
treated as though they were identical just because they happen to fall in the same
histogram bin, and (b) the values found for the parameters will not depend on how we
choose to divide up the observations to form a histogram. The histogram is still needed
to display the fit once we have got it, but the fit is independent of how the bins are
chosen. This adds considerably to the objectivity of the analysis.

How to superimpose a fitted curve on the histogram

The result of fitting two exponential components is shown in Fig. 13. In this case the
data consisted of values of the total open time per burst for bursts of openings
produced at the frog endplate by a very low concentration (4 nM) of suberyldicholine.

L = log(Lik) = ^ log f (ti)
n

i=1

(7.2)
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Under these conditions there are many brief openings. In this experiment the
resolution was set to 60 µs for openings (and hence for the data in Fig. 13), and 40 µs
for shut times. 

Maximum likelihood fitting gave the faster time constant as τf = 0.157 ms, and the
slower as τs = 22.8 ms; the corresponding areas were af = 0.686 (i.e. 68.6 percent of
area), and as = 0.314 (31.4 percent of area). The fitted p.d.f. was thus

f (t) = wfe−t/0.157 + wse−t/22.8 , (7.3)

where wf = afτf−1 = 4369.4 s−1 and ws = asτs−1 = 13.8 s−1 are the amplitudes (at t = 0)
of the components, and t is in milliseconds. All the data are shown in Fig. 13A, in a
histogram with a bin width of ∆t = 4 ms. The estimated total number of observations
(i.e. the number of bursts in this case) was N=279.7. The area under the histogram is
therefore N∆t = 1.119 s, and the continuous curve plotted in Fig. 13A is g(t) =
1.119f(t), as explained above, i.e.

g(t) = 4888.5 e−t/0.157 + 15.4 e−t/22.8 (7.4)

The  continuous curve fits the slow component of the histogram quite adequately in
Fig. 13A. However the fit to the fast component in Fig. 13A appears poor at first sight;
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Fig. 13. Distribution of the total open time per burst (histogram) fitted, by the method of
maximum likelihood, with a two-exponential probability density function (continuous line).
The results are for frog endplate channels activated by suberyldicholine (4 nM, membrane
potential, −188 mV). See text for details of the fitted parameters. The same data, and the same
fitted curve, are shown in A and B on two different time scales. In A almost all of the data are
shown (there were a few values longer than 50 ms). In B only values up to 1 ms are shown (the
dashed bar represents all values greater than 1 ms). There are no observations below 60 µs, the
open time resolution, because this resolution was imposed on the data before the histogram
was formed (see text). In B the ordinate of the fitted curve at t = 0 is 91.9; in this graph the bin
width is ∆t = 75 µs so N∆t = 0.0210 s and N∆t(afτf−1+asτs−1) = 91.9; The area below 60 µs
under the fitted curve suggests that there were 61.2 values that were too short to be seen.
Modified from Colquhoun & Sakmann (1985) with permission.



the continuous curve does not pass centrally through the first bin, but is squashed up to
the left hand side of it. In fact the fit is seen to be perfectly good when the same p.d.f.,
equation (7.3), is plotted on the expanded histogram in Fig. 13B; this shows data only
up to 1 ms with 75 µs bins, i.e. it shows mainly the fast components of the distribution.
This example shows that although only one fit is done (resulting in equation (7.3)), the
results either have to be displayed as two separate histograms (on different time
scales), or displayed in the logarithmic manner described in Fig. 10D, in order to be
able to judge visually the goodness of fit. In fact the fit to the leftmost bin in Fig. 13A is
perfectly good (though this is certainly not obvious); it is the areas rather than the
ordinates that must match, and the amplitude of the continuous curve at t = 0 is, from
(7.4), 4888.5 + 15.4 = 4903.9, i.e. it lies about 3 metres off the top of the page. The
ordinate of the first histogram bin is 151 so its area is 151×4 ms = 604 ms. Now the
open time resolution was 60 µs so the first bin extends from 0.06 ms to 4.06 ms (N.B.
not from 0 to 4 ms); the area under the continuous curve over this range is 

which is close to the observed bin area of 604 ms. Put another way, the continuous
curve predicts a bin height of 580/4 = 145, close to the observed value of 151. 

Errors in the parameters 

The best way of assessing the error in, for example, a value of τ is to repeat the
experiment several times and observe how consistent the values turn out to be. If this
cannot be done, or an internal estimate of error from a single experiment is thought to
be desirable for some other reason, then there are various methods of calculating
errors. The two that have been used in practice are (a) calculation of approximate
standard deviations and correlations and (b) calculation of ‘support’ or ‘likelihood’
intervals. The details of the calculations are given by Colquhoun & Sigworth (1983);
the discussion here will be limited to some comments on the use of these methods. 

Approximate standard deviations of parameter estimates. These will give realistic
estimates of error only when there are rather a lot of observations, and the parameters
are well-determined (i.e. when precise estimates of error are not usually needed). The
same calculations also give an estimate of the correlations between parameter
estimates, and these can be rather useful. A strong positive correlation between two
parameters suggests, for example, that the quality of the fit will be little changed if the
value of one parameter is increased as long as the value of the other is also increased.
This may mean that the ratio of the two parameters is better determined than the
values of either of them separately. 

Likelihood intervals. When the maximum likelihood method is used the parameter
estimates found are the most likely values (i.e. those that make our data most
probable). A pair of values for a parameter can be found (one above the most likely
value and one below it), that are less likely by some fixed amount, and this pair of

e0.06

4.06 
g(t)dt = 524 + 56 = 580 ms , (7.5)
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values constitutes an interval within which we can reasonably expect the true value of
the parameter to lie. For non-linear problems (such as fitting exponentials) we cannot
attach an exact probability value to what we mean by ‘reasonably’. However as a
rough guide we can note that for a linear problem ‘0.5 unit interval’ (values of the
parameter for which L is 0.5 units below its maximum) would correspond to plus or
minus one standard deviation, and a 2-unit interval would correspond to plus or
minus two standard deviations. 

The lower and upper likelihood limits will not generally be symmetrical about the
best (maximum likelihood) value, and they are well-suited to expressing the range of
possible values for rather ill-determined parameters. They have been found useful for
this purpose in other curve-fitting problems also.

How many components are needed?

It is very often asked how one can decide whether a particular set of data requires, for
example, three exponential components to fit it, or whether two components will
suffice. A number of statistical methods (all approximate) have been proposed, to
calculate ‘whether the fit is significantly better’ when an extra exponential is added
(see, for example, Horn, 1987). In my view these methods are of very little value. The
way to answer this question is to repeat the experiment several times, and each time
fit the data with both two and three components, as illustrated in Fig. 10. In this
example the third component, which had a mean of 1.3 ms, accounted for only 3.7%
of the area under the distribution, so its reality might be doubted. However, many
repetitions of this experiment revealed that a third component, with approximately
the same mean and area, could be fitted in almost every case. It is this consistency,
from one experiment to the next that provides convincing evidence that there are
really three components. If in fact there were only two components, it would of
course always be possible to fit the same data with three components, but the mean
and area of the third component would be quite inconsistent from one experiment to
the next, because we would not be fitting anything real, but just random noise in the
data. 

This approach shows, in another way, the undesirability of trying to decide the
number of components by statistical tests on individual experiments. A small
component such as that just illustrated, might well not reach ‘statistical significance’
in any one experiment, and so be missed altogether if one relied on such tests.

The example just discussed is interesting also because it shows that even a small
extra component can have a surprisingly large effect on the fit of the major
components. In Fig. 10 the mean for the fastest component was 56.7 µs when only
two components were fitted, but addition of the small third component changed this
estimate to 45.5 µs. Similarly, the mean for the component of long shut times was
altered from 249 ms to 274 ms.
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8. Correlations 

The record of open and shut times that is used to fit distributions can also be used to
calculate various correlation coefficients. For example one might be interested in the
correlation coefficient between successive open times, successive burst lengths, or
the lengths of successive openings within a burst. Such measurements can give
information about the routes between various states of the system (see Chapter 7).
When such correlations exist the distributions may not be the same for the first,
second, etc. opening following a perturbation such as a voltage jump; care may
therefore be needed in analysing such results. The display, and interpretation of
correlations is considered in Chapter 7.

9. Transients: single channels after a voltage- or
concentration-jump

So far the discussion has centred mostly around recordings made at equilibrium.
Some new, and more complex, considerations arise when the record is not at
equilibrium. For example, following a sudden change in concentration (a
concentration-jump) or membrane potential (a voltage-jump), it will take some time
for a new equilibrium to be established.

The reasons for wanting to measure the amplitude and duration of single channel
currents after a jump include all the reasons already discussed, but such experiments
also allow new sorts of question to be addressed.

A common motive for doing such jump experiments is simply to average a large
number of responses to produce a more-or-less smooth curve. This average will be
proportional to the probability that the channel is open as a function of time following
the concentration or voltage step (though the absolute probability can be found only if
it is known how many channels are active in the patch). It should, therefore, have the
same shape as the macroscopic current relaxation found, for example, by the whole-
cell clamp method. The big advantage of doing the experiment this way is that the
individual single channel currents that underlie the macroscopic responses can be
seen, and may be identifiable as a particular sort of channel. Thus the channels that
carry the macroscopic current can be identified, with much greater certainty than
could be done from the macroscopic current alone.

Another motive for measuring channel openings after a jump is to cast light on the
channel mechanism. The sort of information about mechanisms that can be obtained
from such experiments is different from, and complementary to, that which can be
obtained from equilibrium measurements. Some of the principles involved are
discussed in Chapter 7. For example, measurements of the first latency (the time from
the moment of the jump to the first channel opening) can give valuable information
about kinetic mechanisms that is not obtainable from equilibrium measurements.
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First latency measurements can also help to explain the time course of synaptic
currents (e.g. Chapter 7, and Edmonds & Colquhoun, 1992).

In the case, particularly, of voltage-activated channels it has been common practice
to investigate only voltage jumps. But, because the jumps are relatively brief, this
precludes the measurement of any slow kinetic processes (which may consequently,
and usually unnecessarily, be referred to as ‘modes’).

If correlations are present (section 8, above) the distributions of the 1st, 2nd, 3rd,
. . . open times (shut times, or burst lengths etc) after the jump may not be the same
(e.g. Colquhoun & Hawkes, 1987). Information from this source has yet to be
exploited experimentally.

10. Effects of limited time resolution 

It is very often true that some openings and shuttings are too short to be detected, and
their omission will obviously cause errors. It is clear, for example, from Fig. 10 that
many brief shuttings have not been detected. The three component fit in this case gave
a mean of 45.5 µs for the fast component, but no shuttings shorter than 60 µs could be
detected with confidence in this experiment. It follows from (6.4) that about 73% of
the short openings were missed, and only 27% were detected and measured.

Corrections for missed events

When only either openings or shuttings (but not both) are short enough to be missed
in substantial numbers, approximate corrections can be made, without having to
know about the details of the channel mechanism. Take, for example, the case where
most openings are long enough to be detected but substantial numbers of brief shut
periods (gaps) are missed. In this case it is the open time distributions which will be
in serious error because two openings separated by an unresolvable gap will be
counted as a single opening. The shut time distributions will be accurate in the
region where they can be measured, i.e. for those gaps that are long enough to be
detected. The shut time distribution can therefore be extrapolated to zero time to get
an estimate of the number of shut times that have escaped detection; this will of
course work only if a sufficient number of the short shuttings (the ones that are
longer than the resolution) are detected to allow accurate extrapolation. A corrected
mean open time can then be found by taking the total observed ‘open’ time (minus
the short time spent in undetected gaps) and dividing it by the total number of
openings, i.e. by the corrected total number of gaps (those seen plus those
undetected). Of course only the mean open time can be so corrected; the true
distribution of open times cannot be found. If the open time distribution itself has
two components, then we cannot say to what extent the inferred missed shut times
were missed from ‘short openings’ or from ‘long openings’. In order to say anything
about this sort of question we must make some postulate concerning the underlying
channel mechanism (see Chapter 7). 

If the data contain openings and shut periods that are so short that substantial
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numbers of both are missed then there is no way of correcting the results without
making some postulate about the detailed channel mechanism. When this can be
done, methods for allowing for missed events have been developed, and these will be
discussed in Chapter 7.

Details of the simpler corrections mentioned above, and the modifications that are
needed when openings occur in bursts, are given, for example, by Ogden &
Colquhoun (1985) and by Colquhoun & Sakmann (1985). When possible it is a good
idea to work with values that are not sensitive to loss of brief events, such as the burst
length (or, as in Fig. 13, the total open time per burst). 

Minimizing the problem of missed events

In view of the problems surrounding corrections for missed events, it is desirable to
circumvent the problem, whenever it is possible, by making measurements that are
insensitive to the event omission. Some examples of such measurements follow.

(1) Measurements of burst length are clearly less sensitive than measurements of
open or shut times (e.g. failure to detect all the brief shuttings within a burst will have
little effect on the measurement of its overall length).

(2) One motive for looking at the distribution of open times is that the number of
components in this distribution is, in principle, equal to the number of different open
states. However the same is true of the distribution of the total open time per burst. If
there are many brief shuttings, the latter distribution can be measured more precisely,
and so should be used in preference to the distribution of (apparent) open times.

(3) As was pointed out at the end of section 5, if Popen values are measured by
integration of the experimental record, rather than by measurement of individual
open and shut times, the errors resulting from missed events are largely eliminated.
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