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ARTICLE INFO ABSTRACT

Keywords: In Australia, many birds and arboreal animals use hollows for shelters, but studies predict shortage of hollows in
Full-waveform (FW) LiDAR near future. Aged dead trees are more likely to contain hollows and therefore automated detection of them plays
Biodiversity a substantial role in preserving biodiversity and consequently maintaining a resilient ecosystem. For this purpose

Eucalyptus camaldulensis

Native £ full-waveform LiDAR data were acquired from a native Eucalypt forest in Southern Australia. The structure of
ative forest

the forest significantly varies in terms of tree density, age and height. Additionally, Eucalyptus camaldulensis
have multiple trunk splits making tree delineation very challenging. For that reason, this paper investigates
automated detection of dead standing Eucalyptus camaldulensis without tree delineation. It also presents the
new feature of the open source software DASOS, which extracts features for 3D object detection in voxelised FW
LiDAR. A random forest classifier, a weighted-distance KNN algorithm and a seed growth algorithm are used to
create a 2D probabilistic field and to then predict potential positions of dead trees. It is shown that tree health
assessment is possible without tree delineation but since it is a new research directions there are many im-

provements to be made.

1. Introduction
1.1. The importance of dead wood

The value of dead trees from a biodiversity management perspective
is large. Once a tree dies, its woody structure remains for centuries and
it contributes to forest regeneration while providing resources for nu-
merous surrounding organisms (Franklin et al., 1987). More than 4000
species inhabit dead wood in Finland (Siitonen, 2001), where an esti-
mate of 1000 species are threatened (Hanski, 2000). These species in-
clude animals, birds and other organisms, like fungi. Fungi contributes
to wood decaying, formation of hollows and biodiversity, which sup-
ports the resilience of our ecosystem (Peterson et al., 1998).

In Australia, tree hollows play a significant role in managing bio-
diversity (Lindenmayer et al., 1997; Bennett et al., 1994). Nearly all
arboreal mammals rely on hollows with the exception of the Koala
(Phascolarctos cinereus) and perhaps Ringtail Possums (Pseudocheirus
peregrinus) that preferentially make a stick nest. Additionally, numerous
Australian bird species use hollows for shelters (Gibbons and

Lindenmayer, 2002). Nevertheless, Australia has no real hollow crea-
tors unlike the northern hemisphere (e.g. Woodpeckers), and therefore
it relies predominantly on natural processes of limb breakage, insect
and fungal attack when access points are provided through damage
caused by wind, storms and fire. This kind of hollows takes hundreds of
years to form (Wormington and Lamb, 1999).

According to Gibbons et al. (2000), hollows are more likely to exist
on dead trees or trees in poor physiological condition. In Australia,
studies predict shortage of hollows for colonisation in the near future
(Lindenmayer and Wood, 2010; Goldingay, 2009). A sample list of
species that rely on hollows, provided by Forestry Corporation of NSW,
is depicted at Fig. 1. Three of them are threatened (New South Wales
Government, 2016). Consequently, automated detection of dead trees
plays a substantial role in managing biodiversity.

As explained above, monitoring dead trees is essential for preserving
a resilient ecosystem. Nevertheless, their distribution significantly
varies making detection of them difficult (Kim et al., 2009). Remote
sensing automates the process of monitoring forest and increases the
spatial resolution of the monitored area.
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Fig. 1. Some species that uses tree hollows for shelters. The red ones/bold ones are threatened: Kookaburra, Sulphur Crested Cockatoo, Corella, Crimson Rosella, Eastern Rosella, Galah,
Rainbow Lorikeet, Musk Lorikeet, Little Lorikeet, Red-winged Parrot, Superb Parrot, Cockatiel, Australian Ringneck (Parrot), Red-rumped Parrot, Powerful Owl, Sooty Ow, Barking Owl,
Masked Owl, Barn Owl, White-throated Treecreeper, Hollow Owl, Brush-tailed Possum. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of the article.)

1.2. Related work

Remote sensing was introduced for automating detection of dead
trees since fieldwork is a time consuming task, considering the variance
spread of trees and the spatial resolution of the area of interest. From a
classification perceptive, the task of identifying dead standing and dead
fallen trees is different. Fallen trees are identified by detecting segments
or line-like features on the terrain surface using LiDAR (Polewski et al.,
2015; Mcke et al., 2013). Regarding standing dead trees, their shape
(reduced number of leaves or broken branches) (Yao et al., 2012) and
light reflectance (less green light illuminated) (Pasher and King, 2009)
are important factors for identifying them.

Previous work on dead standing trees detection performs single tree
crown delineation before health assessment (Yao et al., 2012; Shendryk
et al., 2016b). Tree crown delineation is usually done by detecting local
maxima from the canopy height model (CHM) and then segmenting
trees using the watershed algorithm (Popescu et al., 2003). Improve-
ments has been achieved by introducing markers controlled watershed
(Jing et al., 2012) and structural elements of tree crowns with different
sizes (Hu et al., 2014). Additionally, Popescu and Zhao (2008) analyse
the vertical distribution of the LiDAR points in conjunction with the
local maximum filtering of CHM.

136

Fig. 2. Discrete LiDAR point cloud indicating the missing information
about the trunks.

In the case of Eucalyptus camaldulensis, tree delineation is a chal-
lenge due to their irregular structure and multiple trunk splits. Local
maxima filtering, used for tree detection, leads to over-segmentation
because each tree trunk split forms a local maxima. Shendryk et al.
(2016a) published a Eucalyptus delineation algorithm that performs
segmentation from bottom to top; the trunks point cloud is separated
from the leaves and individual trunks are identified before the seg-
mentation. Nevertheless, the density resolution starts from 12 points/
m? and goes up to 36 points/m? around forested areas. For small re-
search projects capturing this high resolution is acceptable, but for
larger areas, the density of the emitted pulses is above the optimal re-
solution for a cost effective versus quality acquisition (Lovell et al.,
2005). The investigated area of this paper is 95,196 ha and the entire
area was scanned. The resolution of our acquired data has a minimum
specification of four pulses per square meter. This is considered an
optimal resolution in respect to the cost. Nevertheless, due to tree
heights (up to 43 m) and acquired pulse density, there are not enough
peak returns from trunks to enable bottom to up delineation. An ex-
ample of the missing information about the trunks is depicted in Fig. 2.
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Table 1
Number of trees according to their DBH.

100010 150015

200020

DBH (mm) Dead trees Alive trees
> 2000 0 1
1000-2000 7 21
600-1000 8 146
400-600 26 290
300-400 32 286
200-300 50 462
100-200 125 904

< 100 11 16

Total 260 2126
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300030

Fig. 4. Example of dead trees indicating their variance in shape.

2. Materials
2.1. Study area

The study area (Fig. 3) is a native River Red Gum (Eucalypt ca-
maldulensis) forest of size 95,196 ha® in south-eastern Australia. The
regeneration of the Eucalyptus camaldulensis is extremely dependant
on floods and therefore, their distribution in respect to density, health
and age is highly variance (Kerle, 2005). Additionally, the height of
Eucalyptus camaldulensis reaches up to 40m and their structural
complexity is high with multiple trunk splits (Wilson and of N.S.W,
1995). Fig. 4 shows the structure of the forest and the shape variations
of dead trees.
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Table 2

The classification challenges of automated detection of dead Eucalyptus camaldulensis.
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Study area

Acquired data

Field data

®The study area is a native Eucalypt forest. Native

forests contain trees of different ages and heights.
The height of a dead tree could be within the range
of [1.5,40] meters.

® There is a high variance in the density of the forest.
The testing/training samples of small trees may
contain information from nearby alive trees or
ground.

® A tree may have dead branches but still be alive.

® Eucalyptus camaldulensis have irregular shapes and

® The pulse density of the acquired data does not allow
bottom to top tree delineation. Additionally, crown
detection from DEM leads to over-segmentation due to
the multiple trunk splits.

® Dead trees are identifiable by their light reflectance,
but the acquired data do not contain this kind of
information. Therefore, the classifier depends
predominantly on tree shape, which is not an
independent factor of identifying dead trees; a tree
may not have leaves but still be alive.

® If a tree has a trunk split below the 1.3 m height, then
it is recorded as multiple trees; inconsistent meaning
of the “one tree” term.

® Field data contain small trees, that are non detectable
within the FW LiDAR.

® Unknown accuracy of the geo-locations of the trees;
Some trees appear to be on the ground, once visualised
on top of DEM:

multiple trunk splits making tree delineation to
require very dense acquired data.
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(a) The DEM before subtracting the DTM

2.2. Acquired full-waveform (FW) LiDAR

FW LiDAR are acquired by RPS Australia East Pty Ltd from 900 m
above ground level, using a Trimble AX60 Airborne LiDAR sensor. The
wavelength of the emitted laser was 1062 nm, the maximum scan angle
was 60°, and the pulse rate was 400 kHz. The acquisition was held from
March 6th till March 31st, 2015. The collected LiDAR were delivered
into 206 flightlines, of which 13 are cross runs for geometric correction.
There is also a 30% of swath overlap. The footprint spacing of the pulses
is 4.3 footprints per square meter.

Traditional ways of interpreting FW LiDAR, suggests extraction of a
denser points cloud using Gaussian decomposition (Neuenschwander
et al., 2009; Reitberger et al., 2008). This project implements on the
open source software DASOS (Miltiadou et al., 2015), developed by the
authors of this paper. Influenced by Persson et al. (2005), who used
voxelisation to visualise the waveforms, DASOS uses voxelisation for
both visualisations and classification. It further normalises the in-
tensities so that equal pulse length exists inside each voxel, making
intensities more meaningful. The literature is also moving towards
voxelisation with promising results obtained by recent publications

138

(b) The DEM after subtracting the DTM

Fig. 5. The difference of the DEM before and after subtracting the DTM.

(Cao et al., 2016; Hancock et al., 2017). Generally, DASOS aims to ease
manipulation of FW LiDAR in a volumetric representation. Its first two
features (polygal mesh extraction and aligned metrics with hyperspec-
tral imagery) was presented at the ISRSE conference in 2015. This paper
presents a new feature implemented and how it is useful for assessing
forest health.

2.3. Field data

The field data were collected in July 2015 during the winter season
of Australia by Interpine Group Ltd and Forestry Corporation of NSW.
There are 33 plots with radius 35.68 m and area 0.4 ha allocated ran-
domly inside the study area. A total of 2386 trees were individually
measured. Tree measurements include the geo-location, the trunk dia-
meter at the breast height (1.3 m), species and health conditions (i.e.
dead or alive). The geo-location of each tree was calculated at post-
processing using the recorded magnetic bearing from the centroid of the
plot and the distance from the centroid. Here, it is worth mentioning
that a single tree may be recorded as multiple trees if there is a trunk
split bellow the breast height of 1.3 m. Furthermore, 91.59% of the
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Table 3

Explanation of a sample, the most relevant processed features, exported by DASOS.

No Label

Description

1 Height_Middle_Column
Height Mean
Height_Median

1 Height_Std

2 Top_Patch_Len_Std

3 Dis_Std

4 Per_Int_Above_Iso
5 Top_Patch_Len_Mean

Top_Patch_Len_Median
7 Dis_Mean

The height of the middle column of the shape
The Mean height of all the columns

The Median height of all the columns

The Standard Deviation of the heights

The Standard Deviation of all the top patches
The Standard Deviation of the distances between
the central voxel and every non-empty voxel
Percentage of voxels that contain an intensity
above the isolevel

The Mean length of all the top patches

The Median length of all the top patches

Mean distance from the central voxel to every non-

empty voxel

Median distance from the central voxel to every
non-empty voxel

The Mirror Summed Difference of the intensities
using the middle column in the z-axis as the axis of
symmetry

The Mirror Summed Difference of the intensities
using the middle column in the x-axis as the axis of
symmetry

8 Dis_Median

9 Sum_Int_Diff Z

10 Sum_Int_Diff X

trees are River Red Gum.

The field data contain information for 260 dead trees. Nevertheless,
not all of them are considered useful for biodiversity. Dead trees with
big Diameter at Breast Height (DBH) are more likely to contain hollows.
Additionally, trees with DBH smaller than the footprint spacing of the
LiDAR are not identifiable from the FW LiDAR. Table 1 shows the
number of dead and alive trees in respect to their DBH. Please note that
for training the classifier equal numbers of dead and alive trees have
been used to reduce statistical bias.

Within the field data, some plots exist on two flightlines due to
flights overlap. Overlaps exist at the edges of the flightlines and their
scan angle significantly varies. For that reason, each unique set of field
plot and flightline is considered as a test/training plot. This results into

Int J Appl Earth Obs Geoinformation 67 (2018) 135-147
50 plots used for training and cross-validation.

3. Classification challenges

Table 2 underlines the challenges faced while working on the de-
tection of dead standing Eucalyptus camaldulensis. The challenges are
categorised into three groups (the nature of the study area, the acquired
data, the field data) and they all influence the quality of the classifier.

4. Methods and algorithms

This sections explains the methodology applied. In a few words,
Random Forest is applied for identifying the most significant features.
Then, a weighted KNN algorithm is used for generating a probabilistic
field. Once ground pixels are removed, a seed growth algorithm seg-
ments potential dead trees and positions are finally assigned. More
details, including intermediate steps for noise reduction, are explained
below.

But before proceeding to the details, it worth highlighting the rea-
sons of choosing those algorithms. As shown in Fig. 4, the shapes of the
dead trees significantly vary from one to another. Therefore, during
statistical analysis they may form multiple clusters with variant shapes
and tangle between the clusters of the alive trees. For that reason, it is
preferable to use a classification algorithm that supports non-linear
boundaries and makes no assumptions of them. All parametric classi-
fiers (e.g. Support Vector Machine and Bayesian) create models that
summarise the properties of the class of interests, while the k-nearest
neighbour (KNN) algorithm preserves all the information in some way.
Nevertheless, KNN is prone to noisy parameters and for that reason the
Random Forest Algorithm is used first for identifying the most sig-
nificant features and reducing dimensionality.

4.1. Subtract DTM from FW LiDAR

For this paper, a new feature on DASOS was added for subtracting
pre-calculated DTMs generated using the Quick Terrain Modeller. The

Field data
divided into
6 datasets

DATASET_1 DATASET_2 DATASET_3 | DATASET_4

DATASET_5

Fig. 6. Information about the feature vectors cre-

ated.
DATASET_1_2_3

Training:10 plots ][Training:w plots ][Training:w plots ][Training:m plots ][Training:1 0 plots ] [Training:SO plots ]

Testing: 40 plots J| Testing: 40 plots J| Testing: 40 plots

Testing: 40 plots

Testing: 20 plots

For Each Dataset the d

Raw

Intensities

Same Structure as

following Priors are
Created using DASOS Processed
Intensities
Shape
Cylinder Cuboid
Shape Shape
Diameter: 7.2m Northing_x:7.2m
. Height: 9.6m Easting_y:7.2m
'T”;sgs'“es Resolution 0.8m Height_z: 9.6m
Resolution: 0.8m
List of Dead Alive each Dead Alive each
Feature
Trees Trees Column Trees Trees Column
Vectors
Usage Training Testing Training Testing

Processed Intensities
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Height_Std
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Fig. 7. Importance of variables, as identified by Random Forest.
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Fig. 8. The results of the K-NN algorithm.

subtraction of the DTM is done during the voxelisation; each terrain
value is subtracted from the position of each waveform sample and not
from the origin of the pulse since the terrain at the origin and the ter-
rain at the position may vary. Fig. 5 shows an example of a DEM gen-
erated before and after the subtraction using DASOS.

4.2. The new feature of DASOS; feature vectors

This paper presents the new feature of DASOS, which is useful for
characterising object inside the 3D space (e.g. trees). For each column
of interest, inside the voxelised FW LiDAR, information from around its
local area are exported as a feature vector. Multiple feature vectors are
listed within.csv files for easy interpretation within statistical software
packages. There are two types of exported information: processed and
raw. The processed option lists information like distribution of non-
empty voxels and standard deviation of heights (Table 3). The raw
option lists the voxel intensity values of the local area. Additionally,
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there are two shapes of the local area from where the features are ob-
tained (cuboid and cylinder). The size of each shape is user defined.
Here, this new feature of DASOS is used for generating feature vectors
used as a likelihood in the classifier.

Fig. 6 depicts the divisions of the datasets and related feature vec-
tors generated. As aforementioned, there are 50 plots (including over-
laps). For cross-validation, these plots were randomly divided into 5
equal training datasets. Another one was created by merging three of
them to check whether the increased training samples improves clas-
sification accuracy. The feature vectors generated for each field plot are
divided into two categories (processed and raw intensities) and two
sub-categories (cylinder and cuboid shape), resulting into four types of
feature vectors per plot. For each type, three.csv files are generated:
dead trees, alive trees and columns from unknown population. The first
two are used for training and the last one for testing. Each feature
vector represents the area within either a cuboid or cylinder. The di-
mensions of those shapes are slightly smaller than the average size of
the dead trees to reduce noise. Additionally, the values of the vectors
are normalised to belong in the range [0, 100].

4.3. Random Forest

Random Forest generates multiple regression trees by randomly
sampling the data at its nodes and chooses the best predicting variables
for each sampled data. The variable importance is defined by the in-
fluence it has to the classification once this variable is modified and the
rest remain unchanged (Liaw and Wiener, 2002). This paper uses the R
package for finding the most relevant features exported by DASOS
(Section 4.2 in identifying dead trees).

It worth highlighting that Random Forest failed to find any relation
between the feature vectors with the “Raw Intensities” due to the ir-
regular shapes of Eucalyptus camaldulensis and the variant scan angle
of each field plot. Nevertheless, “Raw Intensities” may be useful in
classifying trees with smaller shape variance (e.g. pine trees).

Regarding the “Processed Intensities”, Fig. 7 shows a list with the
feature importance according to Random Forest and Table 3 gives the
explanation of each important feature identified. The most important
one is the standard deviation of heights. This is reasonable since the
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(b) Filtering using a smoothing kernel

Fig. 9. Filtering the results of the K-NN algorithm.

canopy of dead trees has bigger height variance in comparison to alive
trees whose canopy is leafy. Please note that the order of the significant
features slightly vary according to the sub-dataset used.

4.4. Probabilistic field derived from weighted K-Nearest Neighbours
Algorithm

Once the ten most significant features are identified, a weighted
KNN is applied to generate a probabilistic field. As mentioned in Section
4.2, positive training feature vectors from dead trees and negative from
alive trees has been created. To reduce bias, the same number of dead
and alive trees is used at each training dataset.

Let's assume that T is a training dataset with n feature vectors:

T: (X, f (xn))s @

The function f(x,) € {0, 1} return O for alive trees and 1 for dead
trees. Therefore, the dataset T has this form:

T: (4, 1), (&, 0), (&, 0), (tg, 1). ......(ty, 1) 2)

Every feature vector t, € T contains the 10 most important features,
as identified by Random Forest (t = {tj, to, ..., tjo}). Every feature is
associated with a weight value according to its importance
(w = {wy, wy, ...,wye}). Additionally:

n = 1..N.

15} wip
;{2 erd w{ W2 e pd
ho Wio 3)

Let's define a data vector x = (x, ..., X10) of an unknown popula-
tion. How do we calculate the probability of vector x to belong to the
dead trees population? At first, the weighted Euclidean distance from x
to every t, € T is calculated as follow:

10
d(tg, x) = | D (i X (tgi — X))
1

i=

4

Then the k—nearest training samples are selected. Here, k = 7 was
considered sensible, but testing different values of k could lead to the
optimal k value. The nearest 7 indices of the training samples are se-
lected as follow:

q = argmind (¢, x)
teT

)

The dataset V = {v;, v,, ...,v;} is a subset of the training samples T and
contains the k-nearest indices to x, which could be positive, negative or
both.

For each v; € V a distance-weight u; is calculated:

1
u; =
d(t;, i)

(6)
Finally, the probability of being a dead tree is calculated as follow:

T (i x 6L, f (1))
T (i x S f W) + T, (i x 80, f ()

P(dead) =
@)

where the function &(a, b) returns 1 if a is equal to b and O otherwise.

For each column of the voxelised FW LiDAR, a testing data vector x
is created and its probability of being dead is calculated. Fig. 8 shows
the probability field of each column to belong to the dead trees popu-
lation. The big circle indicates the limits of the field plot and the small
circles the actual dead trees locations.

4.5. Filtering

As shown in Fig. 8, there is ‘Salt and Pepper’ noise. This occurs when
no pulses pass through the corresponding column of the voxelised space
or when the height of the shape used to calculate the corresponding
feature vector is bigger than the canopy height (common at ground). It
is removed using a median 3 x 3 filter which assigns to every empty
pixel the median value of its non-empty neighbouring pixels (Fig. 9a). A
smoothing filter is afterwards applied for further noise reduction
(Fig. 9b).

4.6. Removing ground pixels

Removing the ground pixels is a trivial task because the DTM has
already subtracted. A histogram of the heights, defined by the top non-
empty voxels times voxel size, was generated. There are three well-
defined classes: ground, trees and noise (Fig. 10b). Ground and noise
are removed and this processed is illustrated in Fig. 10.

4.7. Dead and alive thresholding, filtering, segmentation and position
assignment

Fig. 11a show how the the dead trees are thresholded from the alive
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trees. To reduce over-detection of dead trees, the outliers are filtered 6: find K(p4, ..., pn) such that K C P and every p;€K is a
out using a 3 X 3 median kernel (Fig. 11b). Afterwards, the pixels are neighbour of p
grouped using a seed growth algorithm (Algorithm 1, Fig. 12a). Each 7:  VpieK, p<—p; and repeat from line 5
group corresponds to a predicted dead tree. Its predicted location is the 8:  all pixels of segment s has been labelled
average geo-spatial location of the pixels that belong to that tree 9 se—s+1
(Fig. 12b).

Algorithm 1. Seed growth algorithm for grouping nearby pixels of dead 5. Evaluation

trees . . . .
The results are cross-validated according to the predicted locations
. . of the dead trees and their distance from the actual dead trees. Three
1: P—— all pixels classified as dead . ] . .
9 s 0 different test were undertaken during evaluation: does the increased
3 while not reached the end of set P do traini.ng samples improve dead tree detec.ti(.)n? What shape (cylinder or
. . . cuboid) performs better? Are the predictions better than a random
4:  get next pixel p € P that is not assigned to a segment . . . .
. . prediction? The random prediction was generated by uniformly dis-
5:  assign pixel p to segment s

tributing locations with density equal to the average density of the
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Fig. 12. Segmentation and dead trees’ position assignment.

Table 4
Precision achieved using the cylindrical shape to extract features.

(b) Estimated dead tree positions (brown dots)

Distance 1m 2m 3m 4m Sm 6m 7m 8m 9m 10m

D1 7.29 12.15 16.1 24.31 32.21 38.9 47.11 49.84 56.23 58.35
D2 2 3.67 8.36 18.39 25.08 33.11 35.78 40.13 46.48 50.5

D3 1.48 5.46 14.2 23.32 29.08 36.6 40.23 46.15 51.38 56.28
D4 0.96 7.24 20.04 28.26 33.09 40.09 44.68 52.17 56.28 62.07
D5 0.75 5.26 8.27 12.03 14.28 21.8 28.57 39.84 47.36 55.63
D123 0 8.69 13.04 19.13 24.34 29.56 34.78 36.52 41.73 55.65
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Table 5
Recall achieved using the cylindrical shape to extract features.
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Distance 1m 2m 3m

10m

D1
D2
D3

2.55
8.22
6.69
D4 5.16
D5 0.89
D123 0

9.26
13.48
14.49
15.5
4.45
7.22

18.84
23.02
26.55
30.09
12.75
14.45

32.26
31.25
34.77
38.29
24.03
20.07

45.04
38.48
40.97
43.46
29.37
45.19

53.35
51.31
48.6
45.89
35.9
50.6

56.23
62.17
56.61
51.06
41.83
51.8

58.78
65.78
59.18
52.58
49.85
62.65

63.25
66.11
60.71
55.31
59.34
63.85

68.05
69.07
63.41
57.75
61.12
73.49

Precision - TP/(TP+FP)
Cylinder

60

50

TPATP+FP)
30 40

20

10

Distance (m)

Fig. 13. Precision obtained using a cylindrical shape to extract features. Dataset D_1_2 3
contains more training samples than the rest.

Recall - TP/(TP+FN)
cylinder

60

40

TPITP+FN)

20

Distance (m)

Fig. 14. Recall obtained using a cylindrical shape to extract features. Dataset D_1_2_3
contains more training samples than the rest.

actual dead trees.

Tables 4 and 5 shows the precision and recall percentage achieved
using a cylindrical shape to extract features for the likelihood. The D1,
D2, ..., D5 corresponds to the five divided datasets in the cross-vali-
dation. The D_1_2_3 uses all the training samples from D1, D2 and D3 to
train the classifier. As shown in the corresponding charts of precision
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(Fig. 13 and recall Figure 14), the increased amount of training samples
do not improve the prediction. The bigger the training set is, the shorter
the distances to the k nearest neighbours should be. But the field data
contain noise (Section 3), which compensates the value of the increased
samples. A less noisy training dataset with trees of similar heights
should improve the results.

The second comparison between using a cuboid and cylindrical
shape to extract features. Tables 4 and 5 and Figs. 13 and 14 show the
results of the prediction using a cylindrical shape to extract features,
while Tables 6 and 7 and Figs. 15 and 16 show the results obtained
using a cuboid shape. The average results are similar but the cuboid
shape has a wider range of predicted results. Trees do not have corners
and therefore the information retrieved with the cuboid shape are less
meaningful. Nevertheless, the cuboid shape is slightly bigger and
therefore collects better information from big trees but more noise from
small trees. This justifies the wider range of good/bad results.

Finally, there is a comparison between the average results obtained
and the evaluation of the random prediction are shown in Tables 8 and
9 and Figs. 17 and 18. During the evaluation a predicted tree is clas-
sified as TP if there is a dead tree within the given distance. As the
minimum distance to a dead tree increases, the number of FP reduces.
The precision of the random classifier significantly increases after the
6m distance from an actual dead tree, because its distribution is uni-
form. Additionally, the dimensions of the shapes used are 7.2m dia-
meter and width for cylinder and cuboid respectively. Therefore, eva-
luation above this distance is meaningless.

From the aforementioned figures, it is shown that the methodology
proposed performs better than random. This indicates that forest health
assessment is possible without tree delineation. Additionally, field
surveying could be improved by better planning using the results of this
systems. Of course, this is a new research direction and there are many
improvements to be made (e.g. extracting features resistant to tree
height variations).

6. Conclusions and future work

The importance of dead wood in our ecosystem is large and it is
monitored for managing biodiversity. The study area of these projects is
a native Australian forest with Eucalyptus camaldulensis, where
shortage of hollows available for colonisation is predicted. Dead trees
are more likely to be aged and contain hollows and therefore detecting
them is essential for protecting their inhabitants.

This paper proposed a new direction for detecting dead standing
Eucalyptus camaldulensis and presents the new feature of DASOS (ex-
traction of feature vectors). Previous work on forest health assessment
uses tree delineation but this leads to over-segmentation when applied
to Eucalyptus camaldulensis due to their irregular shapes and multiple
trunk splits. Additionally the density of the acquired LiDAR makes
bottom to top delineation impossible since information about the trunks
are missing. Therefore, this paper investigates the possibility of de-
tecting dead trees from voxelised FW LiDAR without tree delineation.

Field data were provided by Forestry Corporation of NSW, Australia
and Interpine Group Ltd, New Zealand. The GPS positions of the dead
and alive trees within the plots are given but these data contain noise.
Additionally, some small trees listed within the field data are not
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Table 6

Precision achieved using the Cuboid shape to extract features.
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Distance

1m

2m 3m

6m 7m 8m 9m 10m

D1
D2
D3
D4
D5

7.78
3.66
1.24
8.36
1.96

10.47 14.07
12.5 16.37
3.42 20.56
19.86 33.79
1.96 5.88

24.85
22.84
25.23
36.58
15.68

32.63 40.11 47.9 53.59 59.28 61.97
26.72 34.26 42.02 46.76 51.72 56.68
29.28 36.76 41.74 43.92 50.15 53.27
39.02 44.25 50.52 55.05 63.76 66.89

19.6

25.49 35.29 41.17 45.09 62.74

Table 7
Recall achieved using the Cuboid shape to extract features.

Distance

Im

2m 3m

4m

S5m

6m 7m 8m 9m 10m

D1
D2
D3
D4
D5

9.58
10.52
5.48
7.9
4.74

19.16 35.14
20.39 33.22
20 31.93
17.93 24.92
4.74 5.34

44.4
37.82
38.7
26.74
11.86

50.47 56.86 62.93 65.49 69.96 74.76
47.36 62.17 67.1 70.39 74.01 75.65
46.12 54.83 60.64 67.09 72.9 77.09
33.13 38.29 45.28 47.41 50.75 52.27
16.02 16.32 21.95 23.73 27.29 31.75

TPITP+FP)
20 30 40 50 60

10

Fig. 15.

TPITP+FN)
40 60

20

Precision - TP/(TP+FP)
Cuboid

Precision results obtained using a cuboid shape to extract features.

Distance (m)

Recall - TP/(TP+FN)
Cuboid

Distance (m)

Fig. 16. Recall obtained using a cuboid shape within to extract features.

detectable from the FW LiDAR.

Regarding the methodology, feature vectors characterising dead and
alive trees are generated. Then those feature vectors are run over the
volume to generate a 2D image for each testing plot with the prob-
ability of a pixel to be from a dead tree or not. Salt and pepper noise
removal and smoothing filters are applied. The ground is afterwards
removed and a threshold is defined to separate pixels containing dead
and alive trees. Then extra filtering is applied and a seed growth al-
gorithm is used to label each segment. Each segment corresponds to a
dead tree prediction and its estimated location is the average position of
the pixels that belong to the segment.

The results have been cross-validated. Overall, there are three out-
comes. The increase amount of training samples does not improve the
results of the classification because of the noise within the field data.
The feature vectors derived from cylindrical shape are more reliable
because the range of the recall and precision is smaller. By the end, the
most important outcome is that the results was clearly better than the
random prediction, justifying that it is possible to identify dead trees
without tree delineation.

Nevertheless, this is the first attempt to assess health forest without
tree delineation and therefore many improvements could be made. Fore
example:

e Check and improve accuracy of the field data using visualisations of
the FW LiDAR.

o Adjust features extracted so that they are not height dependant.

e Categorise the trees according to their size and derive a sets of
training feature vectors according to their height.

® Once the seed growth algorithm is applied, check the size and shape
of the segments and the possibility of dividing big segments into
multiple dead trees.

o Add negative samples from the ground and the edges of alive trees,
because the system is confused at the edges of the alive trees.
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Table 8
Average precision of each shape (Cylinder and Cuboid) and the Random prediction.

Int J Appl Earth Obs Geoinformation 67 (2018) 135-147

Distance 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m
Cylinder 2.50 6.76 13.40 21.27 26.75 34.10 39.28 45.63 51.55 56.57
Cuboid 4.60 9.645 18.14 25.04 29.45 36.18 43.50 48.10 54.00 60.31
Random 0 0 2.56 8.06 11.36 23.81 52.75 57.14 72.16 79.49
Table 9
Average recall for each shape (Cylinder and Cuboid) and the Random prediction.
Distance 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m
Cylinder 4.71 11.44 22.26 32.13 39.47 47.02 53.58 57.24 60.95 63.88
Cuboid 7.65 16.45 26.11 31.91 38.63 45.70 51.59 54.83 59.00 62.31
Random 0 0 6.18 7.34 8.88 10.04 12.74 20.85 21.62 28.59
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