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ABSTRACT

In recent years, genomic analyses have arisen as an exciting way of investigating the functional capacity and
environmental adaptations of numerous micro-organisms of global relevance, including cyanobacteria. In the extreme cold
of Arctic, Antarctic and alpine environments, cyanobacteria are of fundamental ecological importance as primary
producers and ecosystem engineers. While their role in biogeochemical cycles is well appreciated, little is known about the
genomic makeup of polar and alpine cyanobacteria. In this article, we present ways that genomic techniques might be used
to further our understanding of cyanobacteria in cold environments in terms of their evolution and ecology. Existing
examples from other environments (e.g. marine/hot springs) are used to discuss how methods developed there might be
used to investigate specific questions in the cryosphere. Phylogenomics, comparative genomics and population genomics
are identified as methods for understanding the evolution and biogeography of polar and alpine cyanobacteria.
Transcriptomics will allow us to investigate gene expression under extreme environmental conditions, and metagenomics
can be used to complement tradition amplicon-based methods of community profiling. Finally, new techniques such as
single cell genomics and metagenome assembled genomes will also help to expand our understanding of polar and alpine
cyanobacteria that cannot readily be cultured.
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INTRODUCTION

The application of genomic technologies has emerged as a pow-
erful tool in helping to understand the diversity, function, adap-
tation and evolution of microbes and microbial communities in
diverse global environments. In habitats where light and liq-
uid water are readily available, cyanobacteria can make up an

important component of these communities, contributing to
both carbon and nitrogen fixation and often acting as ecosystem
engineers (see Whitton 2012 and chapters therein). Cyanobac-
teria have had billions of years of evolution (Schirrmeister,
Sánchez-Baracaldo and Wacey 2016) and have persisted through
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profound global environmental including extreme climatic fluc-
tuations and global-scale glaciation (e.g. Neoproterozoic Snow-
ball Earth) (Fairchild and Kennedy 2007). As such, they are highly
resilient organisms and have evolved strategies to survive in
many extreme environments, with evolutionary radiations into
the cryosphere occurring multiple times (Chrismas, Anesio and
Sánchez-Baracaldo 2015). In the polar regions, the biomass of
vascular plants is reduced with increasing latitude (Walker et al.
2016). As such, the relative importance of other photoautotrophs
such as cyanobacteria is enhanced, and on glaciers and ice
sheets cyanobacteria are responsible for considerable carbon
sequestration and driving of the microbial food chain (Anesio
et al. 2009; Stibal, Šabacká and Z̧árskÝ 2012). With the advent
of -omic technologies (e.g. genomics, metagenomics, transcrip-
tomics and proteomics), the limits of our appreciation of these
cyanobacteria mediated processes have expanded from obser-
vations and measurements of nutrient fluxes to a much deeper
understanding of the molecular mechanisms that allow these
processes to take place, while simultaneously shedding light
on how cyanobacteria have evolved and adapted to a variety
of different ecosystems. For example, the use of genomics (in
particular where studies have involved the sequencing of com-
plete or near complete genomes) has expanded our knowledge
of cyanobacteria in marine ecosystems by allowing considerable
insight into niche differentiation, functional adaptation and bio-
geography in globally distributed lineages such as Trichodesmium
erythraeum (Walworth et al. 2015), Crocosphaera watsonii (Shi et al.
2010; Bench et al. 2011), Synechococcus spp. (Palenik et al. 2003;
Palenik et al. 2006; Six et al. 2007; Scanlan et al. 2009) and Prochloro-
coccus spp. (Dufresne et al. 2003; Scanlan et al. 2009; Coleman
and Chisholm 2010; Biller et al. 2014; Kashtan et al. 2014; Sun
and Blanchard 2014; Kent et al. 2016). Similarly, whole genome
sequences of cyanobacteria from hot springs have helped to elu-
cidate the mechanisms by which they survive in such extreme
environments (Bhaya et al. 2007; Klatt et al. 2011). Genomics
studies based on organisms kept in culture collections such as
the Pasteur Culture Collection of Cyanobacteria have yielded
information about the production of cyanobacterial secondary
metabolites (Pancrace et al. 2017) and allowed for broad reach-
ing studies covering the entire cyanobacterial phylum (Shih et al.
2013). Yet cyanobacteria in the cryosphere have received much
less attention at a genomic level, despite having high levels
of local ecological importance (Anesio et al. 2009; Anesio and
Laybourn-Parry 2012).

Until recently, microbial genomics in the cryosphere has
been limited to a few studies using metagenomics as a means
of evaluating overall community composition or bioprospect-
ing for cold active genes (e.g. Arctic (Choudhari et al. 2013),
Antarctic (Berlemont et al. 2013; Lopatina et al. 2016), alpine
(Edwards et al. 2013)). Much more widespread use has been made
of amplicon sequencing. Cyanobacteria specific studies have
mainly revolved around the use of SSU rRNA, ITS and LSU rRNA
sequences to examine the extent of cyanobacterial diversity in a
variety of polar environments including Antarctica (Taton et al.
2003; Wood et al. 2008; Namsaraev et al. 2010) and Svalbard (Stru-
neckÝ, Komárek and Elster 2012; Pushkareva et al. 2015; Palinska,
Schneider and Surosz 2017) as well as possible biogeographic
links between them (Casamatta et al. 2005; Jungblut, Lovejoy
and Vincent 2010; StruneckÝ, Elster and Komárek 2010; Chris-
mas, Anesio and Sánchez-Baracaldo 2015; Segawa et al. 2017).
Although these studies are both useful and of considerable inter-
est, they do not address the full extent of functional diversity
that only full genome sequences can reveal.

Only now are we truly beginning to look at cyanobacte-
ria from the cryosphere from a genomic perspective (Chrismas
et al. 2016; Chrismas 2017). Phormidesmis priestleyi BC1401 (Acces-
sion number: LXYR01000000), Leptolyngbya sp. BC1307 (Acces-
sion number: NRTA01000000) and Pseudanabaena sp. BC1403
(Accession number: PDDM01000000) (Fig. 1) are among the
first cyanobacteria from polar environments to have their
genomes sequenced and are yielding new information about
how cyanobacteria might be adapted to these environments. No
genomic indications of true psychrophily were found in these
genomes, but genes for other important adaptations such as
EPS production, which is implicated in freezing tolerance (Chris-
mas et al. 2016), and mechanisms for tolerating light conditions
in Antarctica (Chrismas 2017) were revealed. This work repre-
sents the first steps in this area. There are many ways in which
the genomics of polar and alpine cyanobacteria might move for-
ward our understanding in a variety of currently underexplored
areas including evolutionary biology, functional adaptation to
cold environments, regulation and activation of cold associated
genes, interactions with viruses and microbial community ecol-
ogy.

With each year setting a new low point in global glacier cov-
erage (Zemp et al. 2015), it is imperative that we explain how key
organisms in these environments, such as cyanobacteria, might
respond and evolve with anthropogenic climate change. This
article serves to outline the prospects for future research into
the genomics of cyanobacteria in the cryosphere. We introduce
a variety of ways in which genomics can be used to answer bio-
logical questions and give examples of how these applications
have been previously used. Most of these examples are taken
from studies that have used genomics to investigate cyanobac-
teria in marine ecosystems, although some from more diverse
environments such as hot springs are also given. We discuss
how these methods can be used to answer specific questions
about cyanobacteria in polar and alpine environments.

GENOMICS OF POLAR AND ALPINE
CYANOBACTERIA

Evolution and adaptation

Recently, phylogenomics (phylogenetic analysis using multiple
conserved genes) has emerged as an important tool for under-
standing the evolution of diverse groups of cyanobacteria over
broad timescales and may help us to understand the mecha-
nisms by which cyanobacteria radiated into cold environments.
Expanding phylogenies to include more than just the rRNA
genes has been shown to give much improved resolution of
clades of cyanobacteria such as the Synechococcus/Prochlorococcus
group (Cabello-Yeves et al. 2017), unicellular marine diazotrophs
such as Cyanothece, Crocosphaera, and UCYNA (Bombar et al. 2014;
Cornejo-Castillo et al. 2016) and the Nostocales (Dagan et al.
2013; Warshan et al. 2017). Furthermore, phylogenomic analy-
ses have allowed for links between cyanobacterial diversifica-
tion and global scale changes in the environment to be inferred
(Larsson, Nylander and Bergman 2011; Schirrmeister et al. 2011;
Schirrmeister et al. 2013; Shih et al. 2013; Sánchez-Baracaldo,
Ridgwell and Raven 2014; Sánchez-Baracaldo 2015; Schirrmeis-
ter, Sánchez-Baracaldo and Wacey 2016). The current lack of
genomes from cold environments has prevented true phyloge-
nomic studies of polar and alpine cyanobacteria from being
carried out. However, the use of a phylogenomic tree using
cyanobacterial genomes from many environments to constrain
phylogenies constructed from SSU rRNA sequences of polar and
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Figure 1. Phylogenomic tree using 136 proteins genes (Blank and Sánchez-Baracaldo 2010) of 95 cyanobacterial taxa indicating the positions of the polar strains

Phormidesmis priestleyi BC1401, Pseudanabaena sp. BC1403 (Greenland, Arctic) and Leptolyngbya sp. BC1307 (McMurdo Dry Valleys, Antarctica).

alpine lineages has helped to begin to explain the complexities
of cyanobacterial diversity in the cryosphere (Chrismas Anesio
and Sánchez-Baracaldo 2015). By using this approach, Chrismas,
Anesio and Sánchez-Baracaldo (2015) suggested a mixture of
mechanisms for different lineages, varying between (i) ancient
cold tolerant ancestors to entire groups of cyanobacteria, and
(ii) recent radiations of temperate strains into cryo-ecosystems.
Once more genomes from polar and alpine cyanobacteria are
available, robust phylogenomic trees can be used to perform
more in-depth evolutionary studies and molecular clock anal-
yses. These will help to determine the time that such radia-
tions occurred, and inferring the ecological conditions that pre-
vailed at the time will help us explain how different cold tolerant
cyanobacteria originated, while highlighting any links that may
exist between the appearance of cold tolerant cyanobacteria and
global environmental change.

Arguably one of the most important reasons for generat-
ing complete genome sequences of cyanobacteria from cold
environments is to better understand how those cyanobacte-
ria are adapted to the variety of environmental pressures of the
cryosphere (e.g. freezing, desiccation, high light in summer and
low light in winter) (Laybourn-Parry et al. 2012), and the impli-
cations that such adaptations have for overall ecosystem func-
tion (e.g. ecosystem engineering) (Cook, Edwards and Hubbard
2015). While it is becoming increasingly clear from both growth
experiments and genomic analysis that cyanobacteria in the
cryosphere are not true psychrophiles (Tang and Vincent 1999;
Chrismas et al. 2016; Chrismas 2017), there is still speculation as
to what other mechanisms exist to protect cyanobacteria from
the harsh polar and alpine environments, and how those mech-
anisms first evolved.

Cyanobacteria genomes can be divided into two parts, a ‘sta-
ble core’ and a ‘variable shell’ (Shi and Falkowski 2008). The
stable core consists of conserved genes needed for essential
cellular components such as ribosomes and parts of the pho-
tosynthetic apparatus. The variable shell includes metaboli-
cally non-essential genes that may confer important environ-
mental adaptations, and may be subject to evolution and peri-
odic loss/acquisition of genes via horizontal gene transfer (HGT)

(Mulkidjanian et al. 2006; Shi and Falkowski 2008). This flexible
shell (also referred to as the pan-genome (Vernikos et al. 2015))
also includes strain-specific genes and it is here that we might
expect to find the genes responsible for allowing the survival of
cyanobacteria in a variety of polar and alpine environments.

Variation of genome content within the cyanobacterial pan-
genome that includes ecologically relevant genes has already
been demonstrated in marine cyanobacteria. For example,
changes in levels of nutrient availability have led to quantifiable
differences in the genomes of the picocyanobacteria Prochloro-
coccus, where different ecotypes can be found crossing environ-
mental gradients (Johnson et al. 2006; Kashtan et al. 2014; Kash-
tan et al. 2017). Differences in phosphorous acquisition genes
in Prochlorococcus can be seen between the phosphorus rich
Pacific and phosphorous deplete North Atlantic (Coleman and
Chisholm 2010). A further example of environmentally driven
changes in physiological capabilities can be seen in Synechococ-
cus isolated from alkaline siliceous hot springs, which contained
ferrous iron transport related genes not present in a related ref-
erence genome (Klatt et al. 2011). Conversely, considerable vari-
ation in genomic amino acid identity can also occur between
closely related organisms with the same functional and ecologi-
cal role such as in the symbiotic diazotroph UCYN-A (Bombar
et al. 2014). Changes in gene complement such as the exam-
ples above highlight the plasticity of cyanobacterial genomes,
and how knowledge of genomic variation within both lineages
and populations is fundamental to our understanding of how
cyanobacteria interact with, and contribute to, the environment.

Exactly what these adaptations are in polar and alpine
cyanobacteria requires further investigation. The production of
EPS is known to confer freezing and desiccation tolerance in
cyanobacteria (Tamaru et al. 2005; Knowles and Castenholz 2008)
and the genes for EPS production have already been identified
in Phormidesmis priestleyi BC1401 (Chrismas et al. 2016), but how
they are regulated or vary between cold tolerant lineages across
the cyanobacterial phylum is as yet unknown. Ice binding pro-
teins (IBPs) are another key adaptation in ice dwelling organ-
isms. IBPs are a diverse group of proteins (Davies 2014; Bar Dolev,
Braslavsky and Davies 2016) that prevent ice nucleation and
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have been found in bacteria from polar environments such as
sea ice (Raymond, Fritsen and Shen 2007) and cryoconite (Singh
et al. 2014). Antarctic cyanobacterial mats have also been shown
to inhibit ice crystal formation, a property not seen in temper-
ate cyanobacterial mats (Raymond and Fritsen 2001), and com-
bined proteomic and genomic approaches will help to under-
stand the importance of IPBs in cold adapted cyanobacteria.
Fatty acid desaturation represents another mechanism of cold
tolerance in cyanobacteria, helping to maintain membrane flu-
idity at low temperatures (Murata and Wada 1995; Chintalap-
ati, Kiran and Shivaji 2004). Fatty acid desaturase gene comple-
ment varies across the cyanobacterial phylum (Chi et al. 2008)
and, by expanding upon the number of available genomes of
polar cyanobacteria, it will be possible to see the full extent that
desaturase genes vary in cold tolerant lineages. Other adapta-
tions unrelated to cold but needed for withstanding other envi-
ronmental stressors such as light are also important. Antarc-
tic eukaryotic algae are adapted to survival under polar light
regimes (Morgan-Kiss et al. 2006; Morgan-Kiss et al. 2015), and
there is evidence for adaptation of the light harvesting com-
plex in the Antarctic Leptolyngbya sp. BC1307 (Chrismas 2017);
combining genome interrogation with photophysiology exper-
iments will therefore be key to explaining light adaptation in
these organisms. There are doubtless other adaptations yet to
be discovered, and investigating the presence of these ecologi-
cally important genes in polar and alpine cyanobacteria is essen-
tial to understanding how they have evolved to survive in such
extreme environments.

Biogeography and population genomics

There is considerable scope to investigate genomic differen-
tiation within lineages that are only found in cold habitats
that can tell us about both adaptation and biogeography of
these organisms. For example, Phormidesmis priestleyi is an eco-
logically important cyanobacterium that can be found both in
the Arctic and Antarctica (Komárek et al. 2009; Chrismas, Ane-
sio and Sánchez-Baracaldo 2015) with highly similar SSU rRNA
sequences between populations from either side of the globe.
Investigating genomic variability between organisms isolated
from the Arctic and Antarctica such as Phormidesmis priestleyi
BC1401 (Chrismas et al. 2016) and Phormidesmis priestleyi ULC007
(Lara et al. 2017) may tell us a great deal about similarity between
these geographically distant but ecologically related environ-
ments (Fig. 2). Additionally, many lineages of cyanobacteria
found in the cryosphere (e.g. Nostoc, Leptolyngbya, Chroococcid-
iopsis) are thought to be cosmopolitan with some members of
a lineage being found in cold habitats, while others may exist in
temperate, tropical or arid environments (Bahl et al. 2011; Chris-
mas, Anesio and Sánchez-Baracaldo 2015). Comparing between
the genomes of organisms from these distinct populations can
yield information into subtle adaptive changes between them
depending on the prevailing ecological conditions. For exam-
ple, variation in the photosynthetic genes in Leptolyngbya sp.
BC1307 compared to closely related lineages suggests the ability
to account for light conditions in Antarctic terrestrial environ-
ments (Chrismas 2017). Many other such adaptations are likely
to exist and by expanding the number of sequenced genomes
of cyanobacteria from the cryosphere and further identifying
genomic components likely to be under selection in cold envi-
ronments, we may begin to observe ecological differentiation
within lineages found both in and out of cold environments that
is masked by closely related SSU rRNA sequences.

Environmental gradients within an ecosystem can also be big
drivers for both changes in cyanobacterial community structure
(Bolhuis, Fillinger and Stal 2013) and genomic diversification
(Koza et al. 2011; Hahn et al. 2016). Many types of environmen-
tal gradient can be seen in the cryosphere, and they have been
shown to influence microbial community composition and drive
interspecific, or between species, variation in cyanobacteria. For
example, on the Tibetan Plateau over an elevation gradient of
5300 m–5900 m, the relative abundance of cyanobacteria has
been shown to shift in response to an increase in elevation and
a decrease in phosphorous and nitrogen availability (Janatková
et al. 2013). Similar changes in microbial community structure
caused by local environmental conditions such as nutrient avail-
ability (Logares et al. 2013; Borghini et al. 2016) and oxygen gradi-
ents (Jungblut et al. 2016) have been demonstrated in Antarctic
lakes, in the Arctic along developing soils in pro-glacial moraines
(Hodkinson, Coulson and Webb 2003; Kwon et al. 2015) and in
the Alps in recently isolated proglacial lakes (Peter and Som-
maruga 2016). While interspecific differences in polar cyanobac-
terial communities in these situations are well documented,
much less is understood about intraspecific or within species
variation. In many of the situations described above, certain key
cyanobacteria (e.g. Leptolyngbya and Phormidesmis) can be found
in varying abundance across the entire environmental gradi-
ents, yet the extent to which these organisms vary at a genomic
level is unknown.

Population genomics, which deals with genome wide vari-
ation within lineages to understand biogeographical links and
the extent of dispersal between populations, will be of great
importance in understanding how distinct populations of polar
and alpine cyanobacteria interconnect. Evidence for population
structuring within the SSU rRNA and ITS sequences of several
lineages of cryoconite cyanobacteria has already been shown
(Segawa et al. 2017), and by expanding this to look at differ-
ences across the genome, a much clearer resolution of cyanobac-
terial biogeography will become apparent. Single cell sequenc-
ing is now emerging as the optimal way of doing population
genomics (Kashtan et al. 2014) as it has the benefit of produc-
ing an entire genome and single nucleotide polymorphisms
(SNPs) for a single cell. Methods of cell isolation are more com-
plex than culture-based techniques, with cells being captured
by a variety of methods including flow cytometry, microfluidics
and dilution to extinction. However, alternative approaches to
cell isolation may be applicable to cyanobacteria. Hayes et al.
(2002) successfully carried out PCR of specific loci on single fil-
aments of Nodularia derived from natural populations in the
Baltic sea allowing for SNP analysis in single genes. This might
be a suitable approach for cyanobacteria from the cryosphere
since many cold environments are dominated by filamentous
lineages; when combined with whole genome amplification and
sequencing this could represent an efficient way of investigating
population level diversity in filamentous lineages of polar and
alpine cyanobacteria without the need to resort to cell isolation
methods requiring expensive specialized equipment. Alterna-
tively, new bioinformatics approaches are improving on our abil-
ity to generate metagenome assembled genomes (MAGs). This
allows draft genomes to be obtained directly from environmen-
tal samples (Hugerth et al. 2015; Parks et al. 2017; Tully et al. 2017)
and has the potential to greatly increase the number of available
cyanobacterial genomes directly linked with specific geograph-
ical locations. Together, these methods will make it possible to

Downloaded from https://academic.oup.com/femsec/article-abstract/94/4/fiy032/4904125
by National Marine Biological Library user
on 01 May 2018



Chrismas et al. 5

Figure 2. Potential methods to be used for investigating (1) important questions regarding polar and alpine cyanobacteria, including (2) sampling type (e.g. envi-
ronmental samples, isolated strains or single cells/filaments), (3) data generated (e.g. metagenomes, metagenome assembled genomes (MAGs), whole genomes or

transcriptomes) and (4) analytical methods required (e.g. analysis of community composition, phylogenomics, comparative genomics or transcriptomics).

use cyanobacteria in the cryosphere as model systems for inves-
tigating mechanisms of microbial evolution, including environ-
mental adaptation, rates of genomic evolution and the extent of
gene flow and recombination within and between populations.

Response to physiological stress

As discussed in the previous section, evidence is growing to sup-
port the fact that cyanobacteria from the cryosphere are not
true psychrophiles. The overwhelming majority of cultured cold
cyanobacteria have thermal optima well above their ambient
environments (Tang, Tremblay and Vincent 1997), and there are
no clear genomic signatures of cold adaptation in the genomes
of the Arctic Phormidesmis priestleyi BC1401 and the Antarctic Lep-
tolyngbya sp. BC1307 (Chrismas et al. 2016; Chrismas 2017). Yet
these and other cyanobacteria are still capable of withstanding
the intense environmental pressures of the polar regions. The
mechanisms for doing so may, therefore, lie in the regulation
of existing mechanisms that are common throughout the group
(Chrismas et al. 2016; Sinetova and Los 2016a).

Levels of gene expression are known to vary dramatically
under different environmental conditions with upregulation
of stress response genes being a prime example of this. In
cyanobacteria, iron limitation (Ludwig and Bryant 2012; Kopf
et al. 2014), light stress (Billis et al. 2014; Kopf et al. 2014; Kopf et al.
2015), salt (Billis et al. 2014; Al-Hosani et al. 2015), and nitrogen
limitation (Kopf et al. 2014; Choi et al. 2016) among others all initi-
ate expression of groups of specific genes in order to alleviate the
cellular stress that these environmental pressures incur. Cold
stress is no different. In microarray expression experiments,
over 100 genes in Synechocystis were upregulated by a factor of
at least two under cold stress (although only 38 of these being
exclusively implicated in cold stress response) (Sinetova and Los
2016b). Since most cyanobacteria from the cryosphere do not
grow preferentially at low temperatures (Tang, Tremblay and
Vincent 1997) (except for Ant-Orange (Nadeau and Castenholz
2000)), they are likely to be experiencing constant stress in their
environment. However, constant expression of cold shock genes
is likely to be metabolically expensive and as such cells may be
acclimated to growth at low temperatures rather than exhibit-
ing a persistent cold shock response. Determining the time and
rate at which cold response genes in cold-adapted cyanobacte-
ria are expressed is therefore essential if we are to understand

how these organisms survive. Where the mechanisms allow-
ing cold tolerance are common throughout the cyanobacterial
phylum (e.g. the production of EPS, Pereira et al. 2015; fatty acid
desaturase genes, Chi et al. 2008), differences may exist in the
way these shared characteristics are regulated to account for the
increased levels of expression required in cold environments.
Indeed, in Antarctic Nostoc sp., constitutive expression of desat-
urase genes has been observed rather than being upregulated
upon temperature reduction, as is seen in temperate lineages
(Chintalapati et al. 2007). Identifying how these processes are
regulated is therefore key to explaining mechanisms of long
term cold tolerance.

Investigation into the cyanobacterial transcriptome can take
one of two forms. Either a global transcriptome can be gener-
ated under stress conditions (e.g. Ludwig and Bryant 2012; Harke
and Gobler 2013; Teikari et al. 2015) to show all genes transcribed
at any given time, or RNA-sequencing can be targeted at key
transcripts or regulatory RNAs of interest. The availability of the
genomes of key organisms is essential for this; by identifying
key genes of interest within the genome (e.g. the genes respon-
sible for the production of EPS in Phormidesmis priestleyi BC1401,
Chrismas et al. 2016, or genes involved in cold shock response),
transcriptomic studies can be targeted towards these genes and
their putative regulatory networks to establish how cold toler-
ant cyanobacteria might be reacting to their environment at a
molecular level.

Community ecology and interactions

While cyanobacteria often dominate the habitats that they
inhabit in the cryosphere, they do not exist in isolation within
their environment. Instead, they are members of complex
communities containing multiple types of cyanobacteria, het-
erotrophic bacteria and eukaryotes (e.g. Gordon et al. 2000; Paerl,
Pinckney and Steppe 2000; Torre et al. 2003; Jungblut et al. 2012;
Edwards et al. 2013; Ambrosini et al. 2017). Determining the struc-
ture of these communities is fundamental to understanding the
overall function of microbially dominated cryo-environments.
Typically, SSU rRNA gene amplicon-based approaches have been
used to determine abundances of different cyanobacteria within
cryospheric environments. Such techniques have been used to
show that the relative abundance of the cyanobacterial com-
ponent of snow communities varies from site to site in alpine
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snow (Wunderlin, Ferrari and Power 2016), and revealed regional
scale variation in cryoconite communities from glaciers on the
Tibetan Plateau (Liu et al. 2017). Community profiling such as this
has revealed many insights into how cyanobacteria interact with
the environment. These include how cyanobacterial abundance
varies in response to soil development and abiotic factors like
pH (Pushkareva et al. 2015), succession in glacial forefields (Knel-
man et al. 2012; Rime et al. 2015), and changes in altitude and
nutrient composition as discussed earlier (Janatková et al. 2013;
Logares et al. 2013; Borghini et al. 2016; Jungblut et al. 2016). How-
ever, PCR bias is known to influence the resolution and sensitiv-
ity of operational taxonomic unit (OTU) recovery, and metage-
nomics can recover 1.5 to ∼10 × more phyla than amplicon-
based approaches (Poretsky et al. 2014). The extent of cyanobac-
terial diversity (indeed, all microbial diversity) in the cryosphere
is therefore likely to be much greater than is presently known,
which has considerable implications for how we interpret micro-
bial ecology in the cryosphere and associated biogeochemical
processes. Expanding on existing studies with metagenomics is
therefore essential if we are to know the true diversity of both
polar cyanobacteria and their associated microbial communi-
ties, and the ability to obtain cyanobacterial MAGs from these
metagenomes will allow for deeper investigation of cyanobacte-
ria that cannot be isolated or cultured using traditional methods
(Hugerth et al. 2015; Parks et al. 2017; Tully et al. 2017).

Understanding how members of these communities interact
with each other is also of great importance. For example, lami-
nated cyanobacterial mats (such as those common in polar and
alpine environments) include layers of methanogens and sulfur-
reducing bacteria (Stal 1995; Bolhuis, Fillinger and Stal 2013)
that interact to form a network of metabolic interdependen-
cies. In many cases, such interactions are essential for survival,
and when cyanobacteria are removed from their community,
growth can sometimes be impaired or inhibited altogether (Xie
et al. 2016). Multi-omic techniques can help us understand these
community interactions (Franzosa et al. 2015). Differences in
transcriptional regulation were observed in different strains of
Prochlorococcus when they were grown in co-culture with marine
Alteromonas (Aharonovich and Sher 2016), and metagenomics
has revealed that Microcystis is dependent on associated micro-
biota for Vitamin B12 synthesis (Xie et al. 2016). The extent to
which cyanobacteria are reliant upon the community and vice
versa is a therefore a key question in microbial ecology, and
cyanobacteria-dominated communities in the cryosphere repre-
sent excellent systems for investigating these kinds of commu-
nity interactions. In particular, cryoconite holes act as a semi-
closed system of cyanobacteria-dominated microbial communi-
ties that may be investigated in the field or reproduced in the lab.

Another important ecological interaction in polar environ-
ments is the cyanobacteria-fungus symbiosis in cyanolichens.
Cyanobacteria are the main photobiont in several Arctic lichens
such as Peltigera, Solorina and Nephroma spp. (Rikkinen 2015)
and Peltigaria spp. have also been shown to exhibit consid-
erable diversity in maritime Antarctica (Zúñiga et al. 2015).
Lichen cyanobionts are primarily diazotrophs such as Nostoc and
Stigonema, which can also exist as nitrogen fixing symbionts
alongside green algal photobionts in tripartite lichens (Rozema,
Aerts and Cornelissen 2007). The importance of cyanolichens for
nitrogen fixation in Arctic environments is clear; Weiss, Hobbie
and Gettel (2005) showed that abundance of Peltigaria aphthosa in
tundra was diminished when an eternal source of nitrogen was
added, and cyanolichen-mediated nitrogen cycling is likely to
have widespread ecosystem implications in the Arctic (Wookey

et al. 2009). However, the molecular biology of the cyanobacteria-
fungus symbiosis is still developing (Rikkinen 2013) and genomic
approaches have great potential to improve our understanding
of polar cyanolichens in terms of their evolution and ecology.
Metagenomics can be used to investigate the entire lichen con-
sortium (Grube et al. 2013), which can shed light on the genomic
composition of not only the main symbiotes but also the associ-
ated microbiome (Bates et al. 2011; Sigurbjörnsdóttir, Andrésson
and Vilhelmsson 2015). Investigating the cyanobiont alone may
also provide interesting evolutionary insights. Genome reduc-
tion is common in symbiotic prokaryotes (McCutcheon and
Moran 2012) including cyanobacteria (Bombar et al. 2014), and by
sequencing cyanobiont isolates from cyanolichens we may bet-
ter understand the extent of the symbiotic relationship. How-
ever, culturing the cyanobiont from lichens is not trivial. Iso-
lates obtained from cyanolichens are often found not to be the
main photobiont (Summerfield, Galloway and Eaton-Rye 2002),
and using new single cell genomics approaches may be of help
here.

It is well understood that interactions with viruses are
an important part of the processes that drive the evolution
of microbial genomes (Weinbauer and Rassoulzadegan 2004),
and the same is likely to hold true for cyanobacteria in the
cryosphere. It has been proposed that viruses are one of many
factors that contribute to the evolution of cyanobacteria (Shes-
takov and Karbysheva 2015) and direct interactions of viruses
with cyanobacterial genomes are fundamental to this. Genes
native to cyanobacteria (e.g. genes involved in the cyanobacte-
rial photosynthetic apparatus) are regularly found within the
genomes of cyanophage (Sullivan et al. 2005) and the genomes
of some cyanobacterial T4-like myophage have been found to
be significantly shaped by their host organism (Ignacio-Espinoza
and Sullivan 2012). Likewise, cyanophage help to mold the
genomes of their cyanobacterial hosts (Coleman et al. 2006; Lin-
dell et al. 2007) and virus-mediated HGT is thought to be respon-
sible for the acquisition of novel genes and may be involved
in the rearrangement of genome structures (Kuno, Sako and
Yoshida 2014). There is considerable potential for these pro-
cesses to be acting on cyanobacteria from the cryosphere (Ane-
sio and Bellas 2011; Rassner et al. 2016). Viruses are found at
relatively high numbers in cryoconite holes. In cryoconite from
Greenland and Svalbard, abundance of viruses was between
5.62 × 108 (Midtre Lovénbreen, Svalbard) and 24.5 × 108 (Green-
land Ice Sheet, 11 km) virus-like particles per gram of dry
weight sediment (Bellas et al. 2013). The assembly of potential
virus genomes from the virus size fraction of these cryoconites
resulted in four scaffolds of viruses that had putative cyanobac-
terial hosts (Bellas, Anesio and Barker 2015) and the genomes of
eight viruses were recovered from cyanobacterial mats on the
McMurdo Ice Shelf (Zawar-Reza et al. 2014). A high proportion of
cyanobacterial cells in various Antarctic lakes were observed to
contain prophage (Säwström et al. 2007). In some cases, these
viruses may be specific to polar cyanobacteria and a novel lin-
eage of cyanophage, S-EIV1, was found to infect Arctic Syne-
chococcus (Chénard et al. 2015).

Modern genomics techniques can be used to investigate the
influence of these abundant viruses on cyanobacteria in the
cryosphere. Metagenomes can be used to link virus-host inter-
actions in cyanobacterial mats (Voorhies et al. 2016) and once
a cyanobacterial genome has been sequenced, detecting past
virus-host interactions is possible due to viruses leaving distinct
signatures on microbial genomes. Insertion elements can be evi-
dence of HGT, while clustered regularly interspaced short palin-
dromic repeats (CRISPRs) are evidence of previous exposure to
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viruses. More direct evidence might be found in the form of in
situ prophage integrated into a cyanobacterial genome (Chénard,
Wirth and Suttle 2016). With the availability of new genomes of
cyanobacteria from the cryosphere, our knowledge of the effect
of viruses in cyanobacterial dominated ecosystems will increase
correspondingly.

CONCLUSION

Genomics is no longer next-generation science; it is both
contemporary and essential. The advances that large-scale
genomics projects have had on our understanding of marine
cyanobacteria have been substantial, leading to new discoveries
in terms of their global biodiversity and biogeochemistry. The
earth’s polar and alpine regions are ripe for expanding these
techniques into extreme environments that have been hitherto
underexplored in respect to cyanobacterial genomic diversity.
By sequencing many genomes of single cyanobacterial lineages
from diverse polar and alpine habitats, we may better under-
stand their population structure and begin to answer questions
about biogeography, dispersal and functional adaptation. Such
genomes will help to complement metagenomic and transcrip-
tomic approaches allowing us to better understand their role in
polar microbial communities and how they might react to envi-
ronmental pressures. In a changing climate where the extent of
glaciers is in widespread decline, efforts should be made how
these organisms might respond to these changes from both an
evolutionary and ecological perspective.
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