Convergence of marine megafauna movement patterns in coastal and open oceans

Ana M. M. Sequeira¹, Jorge Rodríguez², Victor Eguíluz², Robert Harcourt³, Mark Hindell⁴, David Sims⁵, Carlos Duarte⁶, Daniel Costa⁷, J. Fernández-Gracia², Luciana Ferreira⁸, Graeme Hays⁹, Michelle Heupel⁸, Mark Meekan⁸, Allen Aven¹⁰, Fred Bailleul¹¹, Alastair Baylis¹², Michael Berumen¹³, Camrin Braun¹⁴, Jennifer Burns¹⁵, Julian Caley¹⁶, Richard Campbell¹⁷, Ruth Carmichael¹⁰, Eric Clua¹⁸, Luke Einoder¹¹, Ari Friedlaender¹⁹, Mike Goebel²⁰, Simon Goldsworthy²¹, Christophe Guinet²², John Gunn⁸, Derek Hamer¹¹, Neil Hammerschlag²³, Mike Hammill²⁴, Luis Huckstadt²⁵, Nicolas Humphries⁵, Mary-Anne Lea⁴, Andrew Lowther¹¹, Alice Mackay¹¹, Elizabeth McHuron⁷, Jane McKenzie¹¹, Lachlan McLeay¹¹, Clive McMahon²⁶, Kerrie Mengersen²⁷, Monica Muelbert²⁸, Anthony Pagano²⁹, Bradley Page¹¹, Queiroz Nuno³⁰, Patrick Robinson³¹, Scott Shaffer³², Mahmood Shivji³³, Gregory Skomal³⁴, Simon Thorrold¹⁴, Stella Villegas-Amtmann⁷, Michael Weise³⁵, Randall Wells³⁶, Bradley Wetherbee³⁷, Annelise Wiebkin¹¹, Barbara Wienecke³⁸, Michele Thums³⁹

¹The University of Western Australia, ²IFISC (CSIC-UIB), ³Macquarie University, ⁴University of Tasmania, ⁵Marine Biological Association of the UK, ⁶King Abdullah University of Science and Technology, ⁷University of California, Santa Cruz, ⁸Australian Institute of Marine Science, ⁹Deakin University, ¹⁰Dauphin Island Sea Lab, ¹¹South Australian Research and Development Institute, ¹²South Atlantic Environmental Research Institute, ¹³King Abdullah University of Science and Tecnology, ¹⁴Woods Hole Oceanographic Institution, ¹⁵University of Alaska, ¹⁶Queensland University of Technology, ¹⁷Department of Parks and Wildlife, ¹⁸Ecole Pratique des Hautes Etudes, ¹⁹University of California Stara Cruz, ²⁰NOAA Fisheries Service, ²¹SARDI Aquatic Science, ²²CNRS-Université de La Rochelle, ²³University of Miami, Rosenstiel School of Marine & Atmospheric Science, ²⁴DFO, ²⁵University of California at Santa Cruz, ²⁶Macquarie University of Tasmania, ²⁷Queensland University of Technology (QUT), ²⁸Universidade Federal do Rio Grande, ²⁹U.S. Geological Survey, Alaska Science Center, ³⁰CIBIO, University of Porto, ³¹Center for Ocean Health, Institute of Marine Sciences, ¹³Office of Naval Research, ³⁶Chicago Zoological Society, ³⁷University of Rhode Island, ³⁸Department of the Environment, ³⁹Australian Institute of Marine Sciences

Submitted to Proceedings of the National Academy of Sciences of the United States of America

The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of \sim 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.

global satellite tracking | probability density function | Root mean square | turning angles | displacements

Introduction

Unifying theoretical frameworks that explain general principles of animal life-history (1), optimal foraging (2, 3), and metabolic scaling in organisms (4, 5), facilitate the interpretation of data and the generation of testable hypotheses. Animal movement accounts for most of the energy budgets of vertebrates because it underpins critical components of their behaviour, such as feeding and mating. Following the challenge posed by Aristotle millennia ago^[1] in *De Motu Animalium* (On the Movement of Animals) (6), efforts have been made to develop a unifying framework to study movement (7). Such efforts have provided clarification that the primary challenge for understanding animal movement lies in the identification of the key external factors, internal states, and the motion and navigation capacities influencing movement (7). It is also known that animal movement patterns are underpinned by common principles, such as 'optimal' resource exploitation by

Significance

Understanding the key drivers of animal movement is crucial to assist mitigating adverse impacts of anthropogenic activities on marine megafauna. We found that movement patterns of marine megafauna are mostly independent of their evolutionary histories, differing significantly from the well-known patterns for terrestrial animals. We detected a remarkable convergence in the distribution of speed and turning angles across organisms ranging from whales to turtles (epitome for the slowest animals on land, but not at sea). Marine megafauna shows a prevalence of movement patterns dominated by search behaviour on coastal habitats compared to more directed, ballistic movement patterns when the animals move across the open ocean. The habitats through which they move will therefore need to be considered for effective conservation.

Reserved for Publication Footnotes

60°N

Fig. 2. Results of the analysis of displacements(A) Probability density function of displacements (d, km) at the species level with 1 day time windows for species with low (mean < 0.3; left), mixed (centre) and high (mean > 0.7, right) coastal affinity (bottom), and example tracks for each group (top; black and white scale bars represent 100 km; black dotted lines: PDF for the example track shown).(B) Relationship between coefficient of PDF spread (CS) and coastal affinity (CA) obtained from the boosted regression trees (BRT, dashed black line; also shown in the top right inset). To the top and right are histograms of CA and CS, respectively. Outlier green point: western gulls (0 ≤ CA ≤ 1; Table S4). Average coefficients of variation: 22.94 %, 38.10 %, and 40.37 % for CS, and 243.55 %, 85.93 %, and 11.48 % for CA for low (blue), mixed (green), and high (red) CA species, respectively. Solid black: mean ± sd among all species with coefficient of variation 37.20 % for CS and 39.51 % CA.

predators ('optimality paradigm'; 2, 3, 8, 9), or the use of more efficient search trajectories ('random' paradigm; 10, 11, 12). Overall, animal movement patterns have been attributed to intrinsic properties (13-19), including allometric and metabolic scaling with day or home range and locomotion speed, particularly for terrestrial animals (4, 15, 20-23), and constrained by extrinsic factors, including the dynamic nature of the environments they inhabit (24-26). However, the relative importance of extrinsic versus intrinsic properties in determining the observed patterns of movement of free-ranging animals remains ambiguous. To effectively partition the relative contributions of extrinsic versus intrinsic factors and effectively investigate whether a unifying

Α

Footline Author

Fig. 3. Comparison of movement patterns in open and coastal oceans. The classification into open or coastal was based on the depth at which the displacements occurred with depth \leq 150 m classified as coastal ocean. A) Distribution of turning angles (arrow points to 0°) in open (blue) and coastal oceans (red). The circular plot reveals high frequency of 0° angles in open ocean, and a large number of angles between 90° and 270° angles (peaking at 180°, i.e., returns) in coastal oceans. Black inner circle: uniform distribution of angles. B) Boxplot of $d_{\rm RMS}$ exponents (μ) for individuals showing coastal affinity below (blue) and above (red) 0.5 (μ = 0.784 – 0.085 *x coastal ocean*; *p* < 0.001).

framework exists irrespective of location, scale of movement, and stage or phase, a large scale comparison across multiple species is needed (27, 28).

Rapid technological developments in animal-attached electronic tags (telemetry/biologging) have generated large tracking datasets across an array of marine vertebrates now available for multiple regions, temporal scales and habitats across the globe. Such large datasets provide the foundational information required to discover commonalities in movement patterns across species and environments and to assess the influence of a range of intrinsic and extrinsic factors. Because marine vertebrates have diverse life histories, and include all extant vertebrate classes except Amphibia, they provide an ideal group for the exploration of the underlying principles that might govern animal movement. Moreover, marine vertebrates range broadly in their movement patterns, from species with small home ranges (m to km) to highly migratory animals travelling hundreds to thousands of km while crossing entire ocean basins (24, 25, 29). For these reasons, answering questions about marine animal movement will have broad-reaching application to understanding movement in species from terrestrial vertebrates to aquatic invertebrates (30). Moreover, marine vertebrates include many threatened species that are particularly vulnerable to changing environments (e.g., polar bears and penguins) (31) or to extractive anthropogenic activities (e.g., whales, sharks and seals), as well as species with important economic value to human societies (32, 33). Hence, understanding how marine vertebrates move is critical to broadly understand mechanisms of animal movement, as well as, to assist development of effective conservation measures and predict the potential impacts of global change on populations.

Here, we synthesize movement data from the largest satellite telemetry dataset yet assembled at a global scale for large marine vertebrate species (termed "megafauna"), to quantify the relative importance of both extrinsic and intrinsic factors as drivers of movement and identify unifying patterns in marine megafauna movement. Our dataset includes species that fly, swim and walk/paddle, with distributional ranges varying across tropical, temperate, and polar regions, and comprising sharks, turtles, flying and swimming birds, true and eared seals, cetaceans, sirenians, and polar bears (Figure 1A). We analysed individ-341 342 ual movement by characterizing horizontal displacements as the 343 shortest great circle distances between two consecutive locations and the turning angles between them. We tested for differences in 344 these attributes among taxonomic groups (taxa, family, species), 345 allometric scaling (body length and mass), life history traits (e.g., 346 breeding and foraging strategies), energy requirements, as well as 347 locomotion mode, region (polar, temperate, tropical) and coastal 348 affinity, defined as the fraction of displacements within the 0-150 349 350 m depth range (here referred to as 'coastal ocean') (see Methods for details, and Tables S1-S3). 351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

Results

The mean displacements per day (d in km/day; effective speed), referred to in the terrestrial animal movement literature as "day range" (21) or "daily movement range" (20), were mostly independent of body length and mass (Figure S1) both among species and within species groups. Exceptions include true seals (body length only) and turtles, but the latter is simply associated with the different mode of foraging of the largest turtle considered, the leatherback turtle, which constantly travels large distances in search of prey. The other turtle species included in the analysis tend to be neritic as adults, living most of their lives in shallow coastal waters where they move little. The root-mean-square analysis of displacements (d_{RMS}) scaled with time as a power law $(d_{\rm RMS} \sim T^{\mu})$ with exponents (μ) mostly above the value of 0.5 (commonly associated with Brownian motion) (Figure 1B), indicating that most individuals moved super-diffusively, *i.e.*, faster than expected in a normal diffusion process. Using predetermined time-windows of one day, we compared the probability density functions (PDF) of the observed displacements for each individual using a dimensionless coefficient of PDF spread (CS), defined as the ratio between the second moment (average square displacement) and the square of the first moment (square of the average displacement). Our CS can be used for comparison across all individuals irrespective of scale and provides an estimate of the spread of the resulting PDF normalized by the square of the average displacement (Figure 2A). Generally, CS>1 indicates wide distributions with heavy tails, such as a power law or lognormal. Lower values generally highlight a narrower range of displacements identified in the tracked movement resulting in a smaller spread of the PDF. Our CS results show high variability among individuals within and among species (Figure 2B and Table S4), revealing substantial within-species variability in movement patterns, with increasing mean coefficient of variation from 22.94, 38.10%, and 40.37 % for species grouped within low, mixed and high coastal affinity, respectively (Figure 2B). Lower CS values generally represented simpler, more linear paths while higher values represented more varied, complex movement patterns (Figure 2A).

391 Model fits from boosted regression trees (BRT; 34) to the 392 resulting CS for all individuals showed that species group and 393 coastal affinity had the highest relative importance (74.0 and 394 21.5 %, respectively), and identified an interaction (size = 36.0) 395 between these two variables (Figure S2). This interaction high-396 lights that the different movement patterns in the coastal and 397 open ocean are not uniquely a species-specific trait, and partly 398 accounts for the high variability in movement patterns among 399 individuals within species (Figure 2 and Figure S2). Moreover, 400 life-history traits, such as breeding and foraging strategies, as 401 well as allometric traits, such as body mass and length, were not 402shown to greatly influence CS, and were mostly removed during 403 the simplification procedure in the BRT. Based on our modelling 404 results, CS increases with greater coastal affinity (Figure 2B) indi-405 cating a larger range of displacements observed when individuals 406 move mostly through coastal areas (i.e., including small and very 407 large displacements). An association between coastal affinity and 408

^[1] "Now we must consider in general the common reason for moving with any movement whatever (for some animals move by flying, some by swimming, some by stepping, some in other comparable ways)."

Fig. 4. Analysis of distances between the cumulative distribution functions of displacements for each pair of species. The colours shown correspond to the classification of each species as having high (red) or low coastal affinity (blue) based on the proportion of their observed displacements occurring completely within coastal ocean for each individual of the same species (Table S4). A) Dendrogram obtained from the distance matrix derived from the Kolmogorov-Smirnov analysis showing two main branches (anchored by the line for California sea lions) broadly associated with low (<0.5; upper branch) and high (>0.5, lower branch) coastal affinity. B) Distance matrix (mirror image from diagonal) with darker colours indicating short distances (d_{KS}) between the species' cumulative distribution functions. C) and D) show the cumulative density functions (CDF) of displacements for species in the upper and lower branch of the dendrogram, respectively, highlighting distinct displacements regions ('d' in the *x*-axis) for the curves relative to species occurring mostly on open and coastal ocean, respectively.Supporting Information

the d_{RMS} exponent (with 0.5 to 1.0 indicating normal random to super diffusive, more directed, ballistic motion) was also detected. Higher d_{RMS} exponents were found for all displacements taking place in the open ocean where depths $\geq 150 \text{ m} (d_{\text{RMS}}$ exponent = 0.791 - 0.112 x ocean, where ocean = "open ocean" or "coastal ocean", p < 0.001 for the linear model) (Figure 3). This result is congruent with simple, extensive, and directed movements in that habitat. It is also supported by the finding of prevailing frequency of angles of 0°, *i.e.*, more directed, forward movement patterns in open ocean (depths $\geq 150 \text{ m}$), and less directed patterns for displacements in the coastal ocean (depths < 150 m) with higher frequency of lateral and backward angles (Figure 3 and Figure S3).

The Kolmogorov-Smirnov analysis of the distances between the cumulative distributions of displacements for each species pair was used to compute a dendrogram which resulted in two main clusters above and below California sea lions (a species with mixed coastal affinity). The split of clusters was consistent with a split between species moving in coastal and open oceans (i.e., high and low coastal affinities as shown in the colour scale for Figure 4A). The resulting dendrogram was unrelated to phylogeny, such that closely related species were no more similar in their displacement patterns than were distantly related ones. This result further reinforces that habitat structure is an important driver of the movement patterns among marine megafauna and re-iterates that differences are not fully dependent on intrinsic traits.

Discussion

Our integrated, multi-species study reveals that differences in
movement patterns of large marine vertebrates are primarily
defined by the species to which they belong (74 % relative influbut underpinned by a strong interaction with the habitat

through which the animals move (open or coastal ocean; 21 % relative influence). This interaction

partly accounts for the large variability in movement patterns among individuals of the same species (Figure 2 and Figure S6), and is likely related to a combination of directed- and residenttype movements that can occur over the course of an individual's track in association with different behaviours (e.g., transiting and foraging, resting, breeding) (35). Here, we used an analysis of displacements with no prior assumptions for the movement patterns observed, and show, for the first time, that coastal and open ocean habitats directly influence the horizontal movement patterns of marine megafauna potentially in association with habitat complexity and related prey availability. The patterns we found emerged consistently across a diverse array of marine vertebrates and locomotion modes, confirming that habitat structure is a powerful driver of movement patterns. Species with movements that occurred mostly in coastal environments displayed a greater variety of displacement lengths (indicated by the generally higher CS; Figure 2 and Figure S6), regardless of the intrinsic factors related to each species. In contrast, species moving mostly off-shelf in deep, oceanic habitat conformed to a relatively narrower range of displacements, which indicated less variability in displacement lengths (generally larger). We suggest that this difference in behaviour between on- and off-shelf movements is related to habitat complexity with open water habitats off the continental shelves being comparatively less complex (i.e., more homogeneous physical habitat) despite their highly dynamic nature. Open ocean species tend to use oceanographic features, such as fronts, eddies and currents, as foraging and movement cues (e.g., 36). This difference may explain the convergence of movement behaviours characterized by more directed movement with generally higher d_{RMS} exponents among species when mov545 ing off the continental shelf. In contrast, animals moving over the 546 shelf and in the coastal ocean experience a much wider variety of 547 structurally complex habitats (e.g., reef, seagrass) that support a 548 diverse suite of varying resources (e.g., prey, refuges) and threats 549 (e.g., predators, human disturbance), stimulating more complex 550 movement patterns and covering a larger range of displacements 551 (Figure 2 and Figure S6). This complex mix of features provides 552 a rich and diverse array of opportunities for foraging, breeding 553 and other behaviours (37). Previous studies of vertical movement 554 have also revealed different patterns exhibited by marine fish and 555 foraging albatrosses in a manner consistent with prev distribution 556 between coastal shelf and oceanic areas (26, 38).

557 Our results reveal a remarkable convergence in movement 558 patterns among a large range of marine vertebrates, departing 559 from those reported for terrestrial animals in that the patterns 560 we detected were independent of body length and mass (despite 561 these ranging 10 orders of magnitude among the species studied). 562 By contrast, for a variety of terrestrial species, the day range 563 (DR) is known to scale with body mass, following power laws 564 with exponents around 0.25 (20, 21), with slight differences in 565 the scaling for different taxonomic groups associated with diet 566 types and foraging habitats (21). Our finding suggests that the 567 fluid dynamics (air and water) of the ocean environment has 568 lessened some of the physical constraints that operate on land, 569 for example, the similarity between the density of seawater and 570 animal bodies largely reduces the energetic costs of body mass 571 displacement in the ocean compared to land (15). Also, the 572 marine environment is a three-dimensional foraging habitat, a 573 factor which has also been found to decrease the scaling of day 574 range for primates (which use the 3-D habitat offered by forest 575 canopies) in comparison to other terrestrial mammals (21). We 576 found no significant phylogenetic differences in the components 577 of movement analysed here despite the evolutionary histories of 578 these animals spanning millions of years from turtles to polar 579 bears with evolutionary ages of \sim 157 million and \sim 150 thousand 580 years, respectively. 581

Our comparative analysis of movement across this diverse 582 group of marine megafauna contributes two key underpinnings 583 to our understanding of its movements. First, internal factors that 584 affect movement are species-specific and independent of phylo-585 genetic history or traits shared at higher taxonomic or functional 586 groupings (such as family or taxa) and of life-history traits alone, 587 such as breeding strategies or central place foraging. Second, 588 we identified that the key external factor influencing movement 589 of marine megafauna species is their interaction with coastal or 590 open ocean habitats. This finding was corroborated by the den-591 drogram based on the Kolmogorov-Smirnov distances between 592 the cumulative distribution functions (CDF) of displacements for 593 each pair of species (Figure 4). As a consequence, there is a 594 broad diversity of individual movement patterns, ranging from 595 random searching patterns to more directed movement, largely 596 in response to extrinsic forcing (i.e., depending on whether they 597 occur in an offshore or coastal environment). Such differences of 598 scale are consistent with differences in oceanographic processes 599 and the related bio-physical coupling (39). We highlight, however, 600 that when available, the internal species-specific factors that may 601 affect movement patterns should be included in future models to 602 further assess how individual movement varies within species. 603

The study of the different movement behaviours of single species has mostly been framed within the random or optimality paradigms, but when applied in isolation, such theories fail to encompass all the components associated with movement (7). We propose that a more encompassing framework for understanding animal movement, its connections with habitat, and the speciesspecific traits that influence it, would define *how*, *where* and *why* animals move in three sequential levels of analysis. The first level would focus on *how* animals move by analysing the characteristics of their displacements, for example, as we have done here using 613 predetermined time-windows to understand and describe the 614 observed movement patterns. The second level would focus on 615 quantifying the drivers of movement and specifically on where 616 animals move, for example, by using models to estimate the 617 618 relative importance of drivers throughout the range of habitats where movement occurs (e.g., open versus coastal oceans or 619 micro-habitats). If habitat information is not available, discretiz-620 ing space into low and high occupancy areas can also be a practical 621 622 method (40). The final level would focus on why animals move and 623 involve hypothesis testing for specific behaviours as commonly 624 undertaken using the random and the optimality paradigms (12). We expect that a unifying framework of animal movement would 625 consist of the integration of these multiple assessments rather 626 than on the results from specific single assessments completed in 627 isolation. This hierarchical framework encompassing three levels 628 629 of quantitative exploration to understand movement, will provide a strong basis from which to predict potential changes in ani-630 631 mal movement associated with forecasted severe environmental 632 changes.

633 The 'common reason for moving' sought by Aristotle and many 634 others since appears to be, at least for the vast group of marine 635 megafauna, largely associated with the contrasting use of the 636 coastal and open ocean habitats. The convergence of movement patterns across marine vertebrates separated by millions of years 637 638 of evolution and using fundamentally different locomotion modes 639 is remarkable. Given recurring changes in the extent and location 640 of continental shelves over the millennia, the influence of habitat change on the evolution of species should not be underestimated 641 642 (41-43). Indeed, the importance of understanding palaeobiology 643 in the conservation of terrestrial ecosystems was recently iden-644 tified (44). The importance of habitat shaping the movement 645 patterns of marine megafauna might also be associated with 646 habitat-specific ecological roles of these large species, and be key 647 to identifying specific areas of behavioural interest. Our study 648 suggests that efforts to understand marine megafauna move-649 ment through analysis of its evolutionary history may yield fewer advances than a focus on understanding the habitats through 650 651 which animals move (e.g., movement phases in coastal versus 652 open ocean). Such a shift in focus, together with the use of a 653 more encompassing framework, will assist predicting the effects 654 of changes already underway, for example, with the reduction in Arctic shelf areas (45) and predicted sea level rise during the 655 656 next millennia (46, 47). The great behavioural plasticity of coastal 657 marine vertebrates provides some hope of their higher resilience 658 in a rapidly changing coastal marine environment. 659

Materials and Methods

Tracking datasets. Our dataset spans three decades (1985 – 2015) and includes a total of 2557 individuals from 50 marine vertebrate species. Details given in SI Supporting Materials and Methods.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

Probabilistic analysis of displacements. We characterized movement patterns from the time-series of displacements recorded in the spatial trajectories of tagged animals. Displacements were measured as the shortest great circle distance between two locations separated by a predetermined time-window T (e.g., 1 day) along an individual track. Details given in SI Supporting Materials and Methods.

Assessing coastal affinity. We considered coastal habitats to be those located in emerging and submerged lands within depths of 0 - 150 m, and calculated *coastal affinity* as the fraction of observed displacements completely occurring within coastal habitats for each individual. Further details given in SI Supporting Materials and Methods.

Boosted regression trees. We fitted Boosted Regression Trees models to the final set of 2303 individuals across 38 species and the 12 predictor variables (Tables S2-S4). Modelling details given in SI Supporting Materials and Methods.

Dendrogram of movement. We calculated the Kolmogorov-Smirnov distance between the set of displacements for each species pair when using a time window of 1 day. We then used those distances to produce the dendrogram. Details given in SI Supporting Materials and Methods.

Acknowledgements

604

605

606

607

608

609

610

611

612

Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education). We are thankful to I Jonsen for initial discussions, and all involved with the many aspects of fieldwork and data collection; details included in SI Supporting Acknowledgments. **Data availability**. The data reported in this paper will be archived in digital.csic (e.g., http://dx.doi.org/10.20350/digitalCSIC/XXXX). Information on how to access the individual datasets is included in Supporting Information. **Author contributions**: MT, AMMS, VME, CMD obtained funding and organized workshops; AMMS, MT, VME, CMD, JPR, RH, MH, DWS, DPC, JF-G, LCF, GCH, MRH, MGM, AA, FB, MLB, MJC, RHC, SDG, JG, M-AL attended workshops

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

- Stearns C (1976) Life-history tactics: a review of ideas. The Quartely Review of Biology 51(1):33-47.
- Charnov EL (1976) Optimal foraging, the marginal value theorem. *Theoretical Population Biology* 9(2):129-136.
- Stephens D & Krebs J (1986) Foraging Theory (Princeton University Press, Princeton, NJ, USA).
- Schmidt-Nielsen K (1972) Locomotion Energy cost of swimming, flying, and running. Science 177(4045):222-228.
- Brown JH, Gillooly JF, Allen AP, Savage VM, & West GB (2004) Toward a metabolic theory of ecology. *Ecology* 85(7):1771–1789.
- Nussbaum MC (1978) Aristotle's De motu animalium : text with translation, commentary, and interpretive essays; 1947 (Princeton University Press ;, Princeton, N.J).
- Nathan R, et al. (2008) A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences 105(49):19052–19059.
- Fauchald P (1999) Foraging in a hierarchical patch system. American Naturalist 153(6):603-613.
- Kareiva P & Odell G (1987) Swarms of predators exhibit preytaxis if individual predators use area-restricted search. *American Naturalist* 130(2):233-270.
- Bartumeus F, Da Luz MGE, Viswanathan GM, & Catalan J (2005) Animal search strategies: A quantitative. random-walk analysis. *Ecology* 86(11):3078-3087.
- Turchin P (1998) Quantitative Analysis of Movement (Sinauer Associates, Sunderland, MA, USA).
- Viswanathan G, da Luz M, Raposo E, & Stanley H (2011) The physics of foraging: an introduction to random searches and biological encounters (Cambridge University Press, Cambridge, UK).
- Morales JM, et al. (2010) Building the bridge between animal movement and population dynamics. Philos T R Soc B 365(1550):2289-2301.
- Hays GC & Scott R (2013) Global patterns for upper ceilings on migration distance in sea turtles and comparisons with fish, birds and mammals. *Funct Ecol* 27(3):748-756.
- Bale R, Hao M, Bhalla APS, & Patankar NA (2014) Energy efficiency and allometry of movement of swimming and flying animals. P Natl Acad Sci USA 111(21):7517-7521.
- Singh NJ & Ericsson G (2014) Changing motivations during migration: linking movement speed to reproductive status in a migratory large mammal. *Biology Letters* 10(6).
 Shaffer SA, Weimerskirch H, & Costa DP (2001) Functional significance of sexual dimor-
- Inited by, Weining Albatrosses, Diomedea exulans. Funct Ecol 15(2):203-210.
 Whitleck BE et al. (2015) Direct quantification of energy intake in an apex marine predator
- Whitlock RE, et al. (2015) Direct quantification of energy intake in an apex marine predator suggests physiology is a key driver of migrations. Science Advances 1(8):9.
- Sims DW, et al. (2008) Scaling laws of marine predator search behaviour. Nature 451:1098-1103.
- Garland T (1983) Scaling the Ecological Cost of Transport to Body-Mass in Terrestrial Mammals. American Naturalist 121(4):571-587.
- Carbone C, Cowlishaw G, Isaac NB, & Rowcliffe JM (2005) How far do animals go? Determinants of day range in mammals. *American Naturalist* 165(2):290-297.
- Jetz W, Carbone C, Fulford J, & Brown JH (2004) The scaling of animal space use. Science 306(5694):266-268.
- Donovan ER & Gleeson TT (2008) Scaling the duration of activity relative to body mass results in similar locomotor performance and metabolic costs in lizards. *Journal of Experimental Biology* 211(20):3258-3265.
- 24. Block BA, et al. (2011) Tracking apex marine predator movements in a dynamic ocean. Nature

and contributed to discussions; RH, MH, DWS, DPC, GCH, MRH, MGM, AA, 749 FB, AB, MLB, CDB, JB, RC, RHC, EC, LE, AF, MEG, SDG, CG, DH, NH, MH, LAH, M-AL, AL, AM, EM, JM, LM, CRM, MM, AMP, BP, NQ, PWR, SAS, MS, 750 751 GBS, SRT, SV-A, MW, RW, BW, AW, BW, MT provided data; MT, JF-G, JPR, 752 AMMS, LCF collated the datasets; AMMS, JPR, VME, JF-G conducted the analyses with assistance from KM and NEH; VME, MT, CMD, RH, MH, DWS, 753 DPC, GCH, MRH, MGM provided crucial guidance and assisted with data 754 interpretation and discussions; AMMS led the writing with MT, CMD, RH, MH, 755 DWS, DPC, LCF, GCH, MRH, MGM, JPR, VME; All co-authors commented on the manuscript. Author Information Reprints and permissions information 756 is available at www.pnas.org. The authors declare no competing financial 757 interests. Correspondence and requests for materials should be addressed to 758 ana.sequeira@uwa.edu.au 759

475:86-90.

- Hindell MA, et al. (2016) Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere 7(5):e01213.
- Humphries NE, et al. (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. *Nature* 465(09116):1066-1069.
- Lidicker Jr WZ & Stenseth NC (1992) To disperse or not to disperse: who does it and why? *Animal dispersal*, (Springer, Netherlands), pp 21-36.
- Rubenstein DR & Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. *Trends Ecol Evol* 19(5):256-263.
- Hussey NE, et al. (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348(6240):1221-1231.
- Hays GC, et al. (2016) Key Questions in Marine Megafauna Movement Ecology. Trends Ecol Evol 31(6):463-475.
- Barbraud C & Weimerskirch H (2001) Emperor penguins and climate change. Nature 411(6834):183-186.
- Gallagher AJ & Hammerschlag N (2011) Global shark currency: the distribution, frequency, and economic value of shark ecotourism. *Current Issues in Tourism* 14(8):798-812.
- Queiroz N, et al. (2016) Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots. P Natl Acad Sci USA 113(6):1582-1587.
- Elith J, Leathwick JR, & T. H (2008) A working guide to boosted regression trees. *Journal of Animal Ecology* 77(4):802 - 813.
- Jonsen ID, et al. (2013) State-space models for bio-loggers: A methodological road map. Deep-Sea Res Pt Ii 88-89:34-46.
- Bost CA, et al. (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. Journal of Marine Systems 78(3):363-376.
- Villegas-Amtmann S, Costa DP, Tremblay Y, Salazar S, & Aurioles-Gamboa D (2008) Multiple foraging strategies in a marine apex predator, the Galapagos sea lion Zalophus wollebaeki. *Marine Ecology Progress Series* 363:299-309.
- Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, & Sims DW (2012) Foraging success of biological Levy flights recorded in situ. P Natl Acad Sci USA 109(19):7169-7174.
- Steele JH & Henderson EW (1994) Coupling between Physical and Biological Scales. *Philos* T Roy Soc B 343(1303):5-9.
- Rodriguez JP, et al. (2017) Big data analyses reveal patterns and drivers of the movements of southern elephant seals. Sci Rep 7(1):112.
- Harley CDG, et al. (2006) The impacts of climate change in coastal marine systems. Ecology Letters 9(2):228-241.
- 42. Schipper J, et al. (2008) The status of the world's land and marine mammals: Diversity, threat, and knowledge. *Science* 322(5899):225-230.
- Halpern BS, et al. (2008) A global map of human impact on marine ecosystems. Science 319:948-952.
- Barnosky AD, et al. (2017) Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355(6325).
- Post E, et al. (2013) Ecological Consequences of Sea-Ice Decline. Science 341(6145):519-524.
 Nicholls RJ & Cazenave A (2010) Sea-level rise and its impact on coastal zones (June, pg 1517, 2007). Science 329(5992):628-628.
- Duttor A, et al. (2015) Sea-level rise due to polar ice-sheet mass loss during past warm periods. *Science* 349(6244).

814

815

816

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

6 | www.pnas.org --- ---