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Abstract— Over the Arctic regions, current conventional
altimetry products suffer from a lack of coverage or from
degraded performance due to the inadequacy of the standard
processing applied in the ground segments. This paper presents
a set of dedicated algorithms able to process consistently
returns from open ocean and from sea-ice leads in the Arctic
Ocean (detection of water surfaces and derivation of water
levels using returns from these surfaces). This processing extends
the area over which a precise sea level can be computed.
In the frame of the European Space Agency Sea Level Climate
Change Initiative (http://cci.esa.int), we have first developed a
new surface identification method combining two complementary
solutions, one using a multiple-criteria approach (in particular
the backscattering coefficient and the peakiness coefficient of
the waveforms) and one based on a supervised neural network
approach. Then, a new physical model has been developed (modi-
fied from the Brown model to include anisotropy in the scattering
from calm protected water surfaces) and has been implemented
in a maximum likelihood estimation retracker. This allows us
to process both sea-ice lead waveforms (characterized by their
peaky shapes) and ocean waveforms (more diffuse returns), guar-
anteeing, by construction, continuity between open ocean and ice-
covered regions. This new processing has been used to produce
maps of Arctic sea level anomaly from 18-Hz ENVIronment
SATellite/RA-2 data.

Index Terms— Arctic Ocean, oceans sea level, radar remote
sensing, satellite altimetry, sea ice.

I. INTRODUCTION

THE Arctic is an important component of the climate
system whose exact influence on the global oceanic and

atmospheric circulation is still not well known. It is also
a very sensitive region to global warming and some of its
direct effects, such as ice melting, are already particularly
visible [35], [43], [51]. In this context, knowledge of the
variability of a field, such as the sea level in the Arctic Ocean,
and of the mechanisms which are responsible for it would
enable us to better understand the rapid changes at work in
this region. For more than 20 years, satellite altimetry has
been recognized as the most accurate technique to measure sea
surface height (SSH) at scales ranging from basins down to the
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mesoscale regimes [39], with the gradients in SSH providing
quantitative values for the surface geostrophic currents [24].
As large parts of the Arctic Ocean are still regularly covered
by sea ice, there are a few sources of in situ data that
can contribute to monitoring such a climatically important
environment. The mean ice extensions during March (sea-ice
maximum) and September (end of the ice-melting period) are
shown in Fig. 1. This reveals that only the North Atlantic is
totally ice free. Coastal areas, where freshwater fluxes from
river runoffs have a strong influence [8], [50], have seasonal
ice cover. The central Arctic region has been, until recently,
permanently ice covered, including the Beaufort Gyre, which
is a major feature of the Arctic circulation [25]. Studying
and understanding the dynamic circulation of the Arctic thus
necessitate the development of an SSH retrieval system that
operates consistently through the changes between open ocean
and floes with leads. This paper constructs such a product
using nearly 10 years of ENVIronment SATellite (ENVISAT)
altimetry data.

Radar altimeters emit a rapid series of pulses and record
the resultant reflections from the Earth’s surface. A wind-
roughened ocean surface will have a wide region of reflecting
facets contributing to the overall return echo. This waveform
from a diffuse set of reflectors has a broad shape [see
Fig. 2(a)], which is described by the Brown model [16].
Geophysical informations are usually derived by fitting a sim-
ple mathematical form, using a processing called “retracking”
relating geophysical variables to the parameters controlling the
shape and position of the waveform [16], [31]. Over the ocean,
the amplitude of the signal relates to the mean square slope
of the sea surface, which is due to wind; the slope of the
leading edge conveys information about the significant wave
height, and the position of the leading edge [see Fig. 2(a)]
informs us about the distance to the sea surface from which we
determine the SSH. For normal ocean processing, the retracked
point (which provides the range) should be close to the
position of half power (corresponding to the median height of
reflecting facets); in other contexts (e.g., ice sheet processing),
a lower threshold may be used [10].

The European Space Agency (ESA) has set up the Climate
Change Initiative (CCI, http://cci.esa.int) to construct and
maintain consistent long-term data sets of essential climate
variables. The component focusing on sea level has already
completed its first two phases [1], [47] showing great improve-
ments in the quality of the data set in the Arctic using the algo-
rithm presented in this paper. Indeed, geophysical information
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Fig. 1. Map of Arctic Ocean with mean ice extent in September shown in white and the mean ice extension for March in light blue. (Figure derived from
50% SICs for March and September from SSM/I data for 1979–2015, provided by NSIDC. The central gray disk marks region for which there is no SSM/I
coverage. Individual years will have greater or less coverage than shown.)

is severely impacted by the presence of sea ice affecting the
results of standard altimetry processing. We must note that
most of the previous studies using altimetry data in the Arctic
Ocean have been devoted to sea-ice characterization (sea-ice
extent, freeboard and ice thickness estimation, and so on).
A very few have been focused on sea level determination
with the constraint to ensure continuity of the observations
between deep ocean and sea-ice regions, which is based on the
computation of geographical bias between sea level estimates
in the two areas [8], [25], [45]. It is the objective of this paper
to present the processing allowing the provision of accurate
sea level measurements over the majority of the Arctic Ocean.
We can also note that this processing will be of great interest
for the determination of ice thickness, based on the com-
putation of the freeboard height, itself linked to the precise
determination of sea level in the leads enclosed in sea ice.

Ice floes within the radar waveform footprint affect the
accuracy of measurements derived from standard altimetry
processing. First, this may be because radar waves backscat-
tered by the top of the floes form an ocean-like echo (but at
a range corresponding to the surface of the floes and not to
the surface of the sea). Second, the altimeter footprint may
contain both floes and leads or polynyas (area of open water
surrounded by sea ice), generating complex waveforms with
specular reflection from the near-glassy surface within them
producing a very different waveform [see Fig. 2(b)]. Some
researchers [19], [46] have investigated changes in Arctic sea
level using only standard altimetry processing and a careful
selection of the data. However, a better coverage and more
reliable data can be produced using a processing scheme
that accounts for the different shapes of waveforms in the
Arctic.
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Fig. 2. Illustration of the different Arctic waveform shapes. Schematic of (a) typical ocean (“Brown”) waveform and (b) ice lead waveform, both of which
are retracked in this paper. (c) More extensive variety of waveform shapes that may be encountered, and upon which the neural net is trained.

A. Previous Approaches to Altimetry in Sea-Ice Regions

One of the first processing dedicated to sea ice has been
developed in [36] and [37]. It was based on the identification
and the retracking of altimeter waveforms, which allowed the
estimation of sea level and sea-ice thickness in the Arctic from
ERS-1 data. The method, based on the analysis of altimeter
measurements, distinguishes leads from ice floes depending
on their radar echo shape [an illustration of the backscat-
tered power over lead is given in Fig. 2(b), while Fig. 2(c)
gives the various possible conventional altimeter returns] and
then estimates the SSH using an empirical retracker also
called “threshold retracker.” This processing has been further
implemented in [45] using ERS-1 and ERS-2 measurements
to determine the first altimeter-derived SSH variability map
of the Arctic Ocean. In that paper, the authors explain that
even though residual errors in SSH estimates are greater in
ice-covered region than in ice-free regions, they are small
enough to carry out geophysical analyses from these data.
An update of the lead retracking step has been developed
in [26] and was used in [38] with CRYOSAT-2 data. The
simple leading-edge threshold algorithm has been replaced by
an empirical Gaussian-plus-exponential model to fit the echo
in order to reduce the estimation noise. For the retracking of
the CRYOSAT-2 Delay/Doppler waveforms over leads, [34]
has recently proposed a physical model based on the variation
of the backscattering coefficient (σ 0) with incidence angle.
The use of a physical approach to fit returns from leads

allows estimates to be less sensitive to the combined effect
of bandwidth-limited range resolution and surface rough-
ness variations compared with empirical retrackers. A similar
approach is developed in this paper but for conventional
altimeter returns. It is detailed in Section III.

B. Arctic Ocean Data Sets

In this paper, we develop an end-to-end processing system
able to yield estimates of sea level in both ice-free and
ice-covered Arctic Ocean using ENVISAT RA-2 data. The
ENVISAT satellite was launched by ESA in March 2002 and
has been operating until April 2012. It principally flew in a
35-day repeat orbit with a high inclination (82◦), giving it cov-
erage of the majority of the Arctic Ocean. Its radar altimeter,
termed RA-2, operated in the Ku-band (13.6 GHz) and the
S-band (3.2 GHz) with the data at the former frequency being
used here due to their greater precision (higher bandwidth).
The RA-2 provided average waveforms at 18 Hz (≈370 m
along track), each of them being obtained by summa-
tion of 100 independent pulses and sampled over 128 bins
of 3.125 ns (with two additional bins at the beginning of
the waveform leading edge called “discrete Fourier trans-
form (DFT) points”). For this paper, we make use of the
Sensor Geophysical Data Records (SGDRs), which contain
all the waveform information plus all the ancillary corrections
required to compute an accurate SSH. More details on the
operation of radar altimeters can be found in [24] and specific
informations on RA-2 are detailed in [13].
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The system is based on the general methodology already
mentioned and defined in [45]. The processing scheme,
summarized in Fig. 3, commences with an initial selection
and editing (quality control) of the data. Two independent
approaches are used for the waveform classification (detailed
in Sections II-B and II-C), which are then combined into a
hybrid approach, marrying the cautious nature of one with
the greater data coverage of the other. A new mathematical
model for tracking the waveforms associated with leads [see
Fig. 2(b)] is then introduced in Section III. This model (based
on a modified version of the Brown model commonly used
for ocean waveforms) allows us to process ice-free and lead
measurements using the same unique retracker. A further data
editing step is described in Section IV, as the overall approach
is designed to be very conservative, keeping only the best
data rather than accepting a large quantity of possibly useful
measurements. The remit of the CCI project is to produce
monthly averages of sea level rather than to map the mesoscale
variability at scales smaller than 50 km. Section V evaluates
the performance of the new adaptive retracker, and Section VI
is a summary of the methodology espoused in this paper;
the results and oceanographic interpretation of the reprocessed
CCI data will be published subsequently.

II. CLASSIFICATION OF REFLECTING SURFACES

A. Background on Cause of Different Waveform Shapes

The first key step for extending sea level estimation in the
Arctic sea-ice region is to discriminate between measurements
over water, where an altimeter range may be retrieved and
converted into an estimate of sea level, and reflections from
ice floes that must be ignored (but the same method would
allow us to process sea-ice reflections and to derive freeboard
heights and ice thicknesses by differentiation with water level).
For a conventional altimeter such as ENVISAT, the waveforms
are built up as the sum of the backscattered power from
the reflectors at the Earth’s surface in a series of concentric
annuli, with the strength of the reflection from each part
of the surface being directly linked to the roughness of the
water surface. For a homogeneous slightly rough surface,
the relative strength of the reflected signal from successive
annuli is principally controlled by the instrument beamwidth,
leading to the Brown waveform described in Fig. 2(a). The
assumption of surface backscattering homogeneity, a strong
hypothesis for standard ocean models [16], [31], is generally
true over the open ocean (in nominal conditions), but much
less in sea-ice regions or in coastal regimes for example where
bays or polynya protected from the wind may produce a near-
glassy surface and thus specular returns are quite different than
the Brown waveform [28].

In the Arctic environment, a uniform cover of sea ice can
produce Brown-like returns, although typically with a much
stronger signal due to the greater reflectivity of sea ice with
respect to water. Indeed, [22] and [45] noted that consolidated
ice, such as fast ice or vast floes, generates an isotropic rough
surface. However, a conventional altimeter often observes at
the same time a large variety of reflecting surfaces [37].
In particular, leads and polynyas mainly composed of calm
water or new sea ice can produce altimeter waveforms that

Fig. 3. Flowchart describing the data processing for the along track SSH
computation in the Arctic Ocean

look like an impulse function, as shown in Fig. 2(b). Between
these two extrema, complex waveform shapes are observed
over sea-ice regions with varying contributions from solid ice
floes, new ice, and protected open water. Strong rain events
can also cause unusual waveforms shapes [29] due to regions
of different apparent reflectivity.

In this paper, we investigate two different approaches for
discriminating returns from these various surfaces. An algo-
rithm able to identify waveforms as from ocean, leads, or floes
has been developed. The first two classes will be used for
Arctic sea level studies, and the third for estimating freeboard
height and ice thickness (not presented in this paper). The clas-
sification step is preceded by “high-level editing” (see Fig. 3)
to check that the SGDR confidence flag is “OK,” that the data
are in high-resolution (320 MHz) mode and that they present a
clear thermal noise region before the leading edge. The results
of the two approaches are then compared to generate a hybrid
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TABLE I

ENVISAT/RA-2 WAVEFORM DISTRIBUTION IN EACH CLASS IN THE LEARNING AND TEST DATABASES IDENTIFIED BY MANUAL CLASSIFICATION

classification algorithm that is used in the production of our
Arctic sea level records.

B. Neural Network Approach
1) Building the Neural Network Classification: The first

approach implemented in this paper consists of a neural
network algorithm aiming at classifying the echo shapes and at
discriminating exploitable measurements for SSH estimation
from sea-ice waveforms. Many classification methodologies
have already been used to discriminate radar altimetry echoes
from threshold criterion [37] to Bayesian classifier [53].
Zhang [58] presents the advantages of using neural networks
for classification activities. Zhang [58] shows that neural
networks can provide the estimates of posterior probabil-
ity required by statistical pattern classifiers. Neural network
classifiers directly model discriminant functions (functions
enabling the prediction of group membership of a sample
based on the values of the input predictive variables) if
output values are defined in an appropriate way. Thereby, a
neural network represents a good supervised classifier. This is
why we have chosen this method to perform our waveform
classification.

The principle is similar to the classification used in the
CNES Prototype Innovant de Système de Traitement pour
les Applications Côtières et l’Hydrologie (PISTACH) prod-
ucts [41]. A shape class number is assigned to each single
18-Hz RA-2 waveform using a neural network algorithm.
Following the PISTACH classification procedure, a large
number of radar echoes acquired by RA-2 (in the Ku-band
only) over different basins (not just the Arctic) and different
surfaces (ocean, sea ice, land ice, and hydrology) have been
analyzed. The purpose is to classify the different geomet-
rical shapes of the echoes and not the different surfaces,
even if some links can be made between them. Therefore,
the observed echo types have been divided into 12 classes
shown in Fig. 2(c). It is important to define not only classes
for all echo shapes of interest but also for all other waveforms
numerous enough to impact the classifier. Even if they do
not provide useful information, their identification as a dedi-
cated class number prevents the algorithm from misclassifying
them as shapes of interest. Among all the identified classes,
only classes 1 and 2 are considered here. They, respectively,
represent Brown waveforms observed over open ocean and
peaky echoes, which are mainly produced by reflection in
leads or polynyas but also melt ponds (thin layers of water
above a floe). None of the other classes are further exploited
here.

TABLE II

PERFORMANCES OF THE NEURAL NETWORK CLASSIFIER ON THE TEST

DATABASE FOR OCEAN WAVEFORMS (CLASS 1), PEAKY WAVEFORMS
(CLASS 2), AND OTHER CLASSES

The implementation and the parameterization of a neural
network are critical steps, which determine the classification
performance. Several network design parameters must be
defined in order to ensure a good learning phase. These
include the network size (the number of input, output, and
hidden neurons), the input feature variables, the transfer func-
tion (also called the activation function), and the training
database definition. We choose to implement a single hidden
layer neural network using a sigmoidal function. Cybenko [21]
shows that any continuous function can be approximated by
a neural network, having only one internal hidden layer and
sigmoidal nonlinearity by adapting the number of neurons.
Even if a second hidden layer can allow a faster and more
consistent response of the network, [14] explains that problems
can appear during the learning phase due to local minima,
which make multilayer networks difficult to use. At the end,
the transfer function used for output neurons consists of an
identity function providing the probability of a sample to
belong to a specific class. To avoid the “curse of dimension-
ality” detailed in [14], we reduced the number of inputs by
not considering all the waveform bins as input of the neural
network, but instead a set of seven parameters, which fully
describe the waveform. These include peakiness, the slope of
the logarithm of the trailing edge, the slope of the leading
edge, the presence of a peak in the trailing edge (a simple
test flag), and the average amplitudes and slopes computed in
different subwindows within the waveform.

Then, the learning step is performed using a representative
training data set of the real data conditions in order to
avoid both overfitting and underfitting. To build this database,
∼2500 ENVISAT/RA-2 waveforms are preselected over sev-
eral areas of interest, such as sea ice (Arctic and Antarctic),
continental ice (Greenland and Antarctic), hydrology (different
basins), and coastal zones. Pure open ocean waveforms (with
different sea states) are then manually added in order to better
represent the standard Brown shape in the training database.
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Adding these extra ocean data is crucial to have a more
representative data set of the real measurement repartition
but it is essential to not exceed 50% in order to not overfit
this echo shape and to keep enough data in each other class.
Finally, a class number is manually assigned to each waveform
and then the learning algorithm is performed. A second data
set is built by randomly picking ENVISAT echoes from the
previous regions in order to evaluate the neural network
classification performance. The waveform distribution in each
class is presented in Table I for both data sets. The overall
misclassification rate of this algorithm is computed from the
test database and is presented in Table II for the two classes of
interest here: ocean waveforms identified by class 1 and peaky
waveforms identified by class 2. The “good identification”
percentage corresponds to waveforms identified by manual
classification as ocean or peaky, which are also identified by
neural network, respectively, as class 1 or class 2. In the oppo-
site, the percentage of failure corresponds to measurements
identified in a different class from that given by the manual
classification. The final configuration of the neural network
classification is then applied to the entire ENVISAT/RA-2
period.

2) Classification Results: The geographic distribution
of classes assigned by the neural network is shown
in Fig. 4(a), (c), and (e). In the North Atlantic, virtually 100%
of waveforms are deemed to be Class 1 (“ocean”), whereas
floes (represented by classes 4–6) dominate the central Arctic
region. Class 2 echoes (representing leads) occur throughout
most of the ice-covered Arctic, but their proportion (for this
period) varies from 5% to 20%. These are essential for our
effort to track the level of the sea rather than its covering
of ice. However, some regions, such as the coastal part of the
Laptev Sea and the sector 270◦E–300◦E, have few returns from
leads. An examination of the neural network classification for
other months of the year (not shown) demonstrates that the
ocean classification (“Class 1”) follows the known migration
of the ice edge, and that in the summer large regions have
a proportion of class 2 waveforms exceeding 60%. This is
particularly associated with regions of ice melt and breakup.
In September, class 2 echoes are located all over the remaining
sea covered by sea ice except in the Canadian Archipelago
and more particularly around the Sverdrup islands (northwest
of Greenland).

The temporal evolution of the classes proportion in the
Arctic (above 60◦ of latitude) is plotted in Fig. 5 over all the
ENVISAT period. The percentage of class 1 echoes (“ocean”)
is plotted in black curve, the proportion of class 2 wave-
forms (“leads”) in red curve, and the ice floe propor-
tion (classes 4–6) is in blue curve. This time series clearly
shows the seasonal variation of each class. Above 60◦N,
the predominant proportion of the ice is well represented.
A peak in the ocean proportion identified by the neural
network classifier (in black curve) in September 2007 is clearly
visible and corresponds to the record ice extent minimum [25].
Finally, a strong increase followed by a strong decrease of
the peaky echoes population (class 2 in red) is noted at
each ice breakup period. This behavior gives us confidence in
the lead identification, especially combined with the nonzero

proportion during winter. Of course, it is challenging to
separate melt pond waveforms from lead waveforms, and
no reliable discrimination between the two currently exists.
A significant portion of the strong increase of the peaky echoes
fraction in early summer may be due to melt ponds and it is
possible that a seasonal bias could impact the lead level during
the melting period.

C. Multiple-Criteria Approach

1) Principle of the Multiple-Criteria Classification:
The second approach does not directly use the waveform data
in the classification, but rather parameters that the standard
processing has already calculated from the waveforms. The
chief diagnostics are the normalized backscatter strength (from
the robust ice retracker), σ 0, and the pulse peakiness, Pk [37].
Additional parameters were applied to detect waveforms that
cannot be classified reliably. Daily records of sea-ice con-
centration (SIC) from the National Snow and Ice Data Cen-
ter (NSIDC) are used to provide contextual assistance. This
method is designed to only select waveforms that can be
confidently classified; thus it is expected and accepted that
a high proportion of waveforms will be left unclassified.

The waveforms are classified into “specular” and “diffuse”
by using a double-threshold scheme applied to the σ 0 and
peakiness Pk values (Table III).

As stated earlier, this approach deems a large proportion
of data “unclassified” and these are discarded from further
analysis. A further round of editing is then applied according
to whether the classified waveforms can now allow a good
fit to the appropriate waveform model. The main criteria
correspond to the position of the waveform within the window,
specified by the position of the track point (TP) (see Fig. 2 and
Section III), the maximum power in an individual waveform
bin (Pmax), and measures of how well a normalized version
of the waveform corresponds to its appropriate fit model (e.g.,
fitLE and fitTE, for the rms fit along the leading/trailing edge,
respectively). The further requirements for selection are then

OCEAN: 43 ≤ TP ≤ 47 & fitTE < 0.18

FLOES: 44 ≤ TP ≤ 46 & fitTE < 0.3 & widthLE < 1.0

LEADS: 44.5 ≤ TP ≤ 46.5 & Pmax > 50 & σ 0

> 25 dB & fitTE < 0.015 & Ptail < 0.27

where TP is the output of the retracking algorithm described in
Section III Ptail is the summation of the power in the waveform
bins more than 3 beyond TP normalized by Pmax and widthLE
is the difference between retracking bin numbers esti-
mated by using the offset-center-of-gravity (OCOG) retracker
(Wingham et al. [56]) using the 25% and 50% thresholds.

The threshold values were selected experimentally from
numerical analysis of waveforms identified manually as
unreliable, diffuse, or reflective. For each classification,
the mean values and deviations of the above-mentioned
parameters were estimated and applied in the threshold
selection. The parameters were fine tuned to minimize
the chance of misclassifying unreliable waveforms and
introducing errors into the retracking process, see Table III.



POISSON et al.: DEVELOPMENT OF AN ENVISAT ALTIMETRY PROCESSOR PROVIDING SEA LEVEL CONTINUITY 5305

TABLE III

DESCRIPTION OF THE DOUBLE-THRESHOLD SCHEME FOR SURFACE CLASSIFICATION

2) Validation of Multiple-Criteria Classification: We
validate the waveform classification achieved by the multiple-
criteria system by using optical data from the Medium-
Resolution Imaging Spectrometer (MERIS). An algorithm for
sea-ice detection has been developed for moderate-resolution
imaging spectroradiometer (MODIS) [55], but here we choose
to use MERIS for two main reasons: 1) in its fine resolution
mode, it provides data at 300-m resolution commensurate
with the waveform spacing for the RA-2 altimeter and 2) it
is on the same satellite platform (ENVISAT), which means
that the two sets of observations are simultaneous. These are
both critical points, as the individual leads are of the order
of hundreds of meters across, and features can move several
kilometers per day.

An optical classification into “ocean,” “floes,” and “leads”
is particularly challenging in that a fourth possibility exists:
“clouds.” These are hard to distinguish simply from ice floes.
Simple methods based on the thresholds of optical parame-
ters (analogous to the ones used to successfully separate water
from nonwater pixels) do not usually provide accurate results.
Thus, more sophisticated methods based on a combination
of neural network algorithms, Bayesian statistics, and the
synergy of optical and thermal sensors [17], [27], [32] have
been recently developed. In this paper, cloud identification
was performed using the IdePi x algorithm for water pixel
classification distributed with the BEAM software suite devel-
oped for ESA by Brockmann Consult. The classification is
mainly based on the algorithms described in [15, Ch. 5], which
defines a cloudiness likelihood index ranging from 1 (certainly
clear) to 2 (certainly cloud). A cloud mask is then defined by
choosing a given threshold. Choosing too low a value results
in only open-water pixels being passed, whereas the default
value of 1.4 is usually too permissive for our application with
several cloud-covered regions remaining unmasked. Therefore,
we adopted a value of 1.3, as this allowed us to include
cloud-free ice and lead pixels in our validation. However,
the technique is not perfect, as evidenced by the red pixels
in the southeast portion of Fig. 6(b).

This difficulty in finding a threshold that worked for all
cases prevented the development of a completely automated
validation approach, since the final estimates of the perfor-
mance of the altimeter classification would have been strongly
affected by the inclusion of unmasked cloud pixels. To circum-
vent the issue, we based the validation on a series of manually
identified cloud-free sections within our MERIS images taking
note of the top-of-atmosphere radiances that had passed the
Idepi x cloud clearing. Fig. 6 shows an example of such a
section, with Fig. 6(c) showing the high spatial variability of
a region with leads and Fig. 6(d) showing the homogeneity
characteristic of ice floes.

The selected cloud-free MERIS images were individually
examined to identify the parameters to be used for the
optics-based classification of open-water, leads, or ice regions.
Absolute values of radiance were not a useful discriminator
due to their variations as a function of the solar angle.
Thus, we normalized all spectra by the radiance value at
489.88 nm. Spectra from open-water pixels are characterized
by a sharp exponential decay from blue to red wavelengths,
whereas for leads and ice, the decay is more gradual (see
Fig. 7). (The full-width view from MERIS is composed from
five different cameras; this normalization also minimizes dis-
continuities between the different cameras’ swaths.) However,
this normalization does not provide a clear separation of ice
and leads, as the envelopes of observations for these two
classes overlap. This likely occurs because, despite being
characterized by open waters, the optical signal associated
with leads is strongly contaminated by the signal associated
with the surrounding ice. In order to distinguish between them,
we look at the heterogeneity within a 7×7 pixel square, which
corresponds to the 2-km-diameter disk that is the minimum
resolution of the RA-2 altimeter over flat conditions. Fig. 6(c)
and (d) shows that such a segment from a region with leads
will have considerable variability between the pixels’ relative
radiances, whereas variation will be small where ice floes are
complete.

Denoting the observed radiance at wavelength x by rx ,
we define the normalized radiance at 779 nm as S779 =
r779/r489. [The selection of two widely spaced wavelengths
simply gives a measure of the spectral slope, without being
sensitive to the low values at 761 nm (oxygen absorption,
see Fig. 7) or to the wavelengths above 800 nm that may
respond to atmospheric cloud.] Then for each altimeter loca-
tion, we consider the 7×7 array of MERIS pixels surrounding
it but only retain the matchup if all those MERIS pixels are
both land- and cloud-free. The two metrics to be considered
for the classification are the minimum value of S779 among
those pixels and the range, i.e., difference between maximum
and minimum values.

A total of 42 MERIS cloud-free sections were identi-
fied resulting in a total of 5173 waveforms classified by
the multiple-criteria method (3776 open water, 887 leads,
and 510 ice). A scatter plot of the two metrics (Fig. 7)
shows the open water to be readily identified by low
values for both minimum and range, and the leads hav-
ing higher values for the range than was the case for
the floes. Thus, a good correspondence is demonstrated
between the optical properties in the 7 × 7 pixels centered
on the nominal location of the altimeter return and the
surface-type classification produced by the multiple-criteria
approach.
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Fig. 4. Comparison of percentages of classifications according to (a), (c), and (e) neural net and (b), (d), and (f) multiple-criteria approach. (Top row)
“Ocean” (class 1). (Middle row) “Floes” (classes 4–6). (Bottom row) “Leads” (class 2). Color bar has a nonlinear scale to enhance the differences at low
percentages.

D. Comparison of Approaches and the Combined
Classification

Sections II-B and II-C have detailed two very different
approaches to the classification of waveforms in the Arctic.

The neural network approach classifies waveforms among a
set of characteristic shapes using geometrical and geophysical
parameters associated with ocean and typical specular reflec-
tors. The multiple-criteria approach uses numerical diagnostics
pertinent to each altimeter return, although clearly some (such
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Fig. 5. Temporal evolution of the class proportion identified by the neural network algorithm during the ENVISAT period over the ocean above 60° of
latitude.

Fig. 6. Example MERIS data for April 9, 2008. (a) Map showing location of swath. (b) Zoomed-in view of region at southern end of track with pink line
showing altimeter nadir view, orange indicating land, and red mark indicating cloud. (Note unflagged pixels in the bottom-right corner of image). (c) and
(d) Details of regions of leads and ice floe, respectively, showing the greater spatial heterogeneity in the former. Pink box: example regions of 7 × 7 pixels.

as peakiness) do provide information on waveform shape
rather than amplitude. In this section, we compare the results
of these two approaches and define a hybrid classification,
which is used to disentangle ocean and lead returns (repre-
senting sea level) from those emanating from the sea ice. The

specified algorithm is then used in the creation of the new CCI
sea level record for the Arctic.

Fig. 4 and Table IV show the classifications of the two meth-
ods for cycle 13 (January–February 2003), which corresponds
to a period when the ice coverage is still growing. In this
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TABLE IV

CORRESPONDENCE MATRIX OF THE TWO CLASSIFICATION SCHEMES FOR CYCLE 13, NORTH OF 65◦N. COLORED CELLS ARE RELATED
TO THE HYBRID CLASSIFICATION: BLUE FOR THE OCEAN AND CYAN FOR THE LEADS

Fig. 7. Spectra normalized by value at 489.88 nm, with coloring according
to the altimeter classification. Solid line: mean. Shading: ±1 s.d.

representation, neural network class 1 [see Fig. 2(c)] is taken
to be indicative of ocean returns, classes 4–6 to be typical of
ice floes, and classes 2 to represent different combinations
of specular returns indicative of leads within the ice floe.
The corresponding groups for the multicriteria approach are
shown in the right-hand column.

There are broad similarities between the two, but one major
difference is the amount of data classified. The multicriteria
approach is very conservative, in that for 72% of wave-
forms it does not provide a definite classification as “ocean,”
“floe,” or “lead,” whereas for the neural network only 1.6%
of data lie in classes other than 1, 2, 4, 5, or 6. A more
detailed examination of Fig. 4(a) shows a number of “class 1”
waveforms in high-latitude regions where open ocean is very
unlikely to be present. Fig. 4(e) and (f) shows that there are
also a number of waveforms in class 2 in regions for which the
multicriteria approach has no definitive “leads”; in this case,
we feel the characteristic waveform shapes picked out by the
neural net are credible for narrow leads that fail to pass the
σ 0 threshold in the multicriteria approach.

With these observations in mind, we define a hybrid classi-
fication (see Fig. 3) that captures the benefits of each method.
It is intended to select only the most reliable SSH values,
as the CCI products are designed for studying long-term
changes rather than mapping individual mesoscale features.

Thus, the hybrid algorithm leans heavily on the conservative
approach to only use sea level from waveforms that can be
unequivocally classified and retracked (as the ultimate goal is
to recover accurate records of SSH, it is clearly of no benefit
here to maintain many different classes of waveforms if they
are not then able to be reliably retracked.) The hybrid scheme
thus adopts the multiple-criteria classification for “ocean”
and treats as “leads” points either classified as such by the
multiple-criteria scheme and class 2 or members of class 2
that were “unclassified” in the multicriteria approach. This
increases the number of credible returns within the interior of
the polar cap. However, there is a further editing step after the
retracking (see Section IV).

III. NEW ADAPTIVE RETRACKING SOLUTION

A. Current Retracking Strategies

The next and crucial step for extending the sea level
estimation in the Arctic Ocean is to process the selected
waveforms (corresponding to “lead” returns) in order to esti-
mate the altimeter range. This is the role of the retracking
step. Altimeters are designed to measure reflections from open
ocean which produces waveforms that conform to the Brown
model for which retracking techniques are sufficiently mature
to provide high accuracy range estimates over open ocean [3].

However, in the case of “lead” waveforms which have
a peaky shape, the information is carried by only 3 or
4 bins (unlike for ocean returns that spread over all range gates
of the waveform), and to retrack accurately, those waveforms
becomes more difficult. The most widespread retracking tech-
nique used to estimate the altimeter range from quasi-specular
waveforms is the empirical approach. In the case of sea-ice
regions, and more specifically for the retracking of lead wave-
forms, [37] and [45] used a threshold retracker, which extracts
the altimetric range corresponding to 50% of the maximum
value of the waveform. Another threshold retracker proposed
in [10] considers a fraction of the center of gravity of the echo
instead of the maximum value. All threshold retrackers are
extremely robust and provide an estimate of the altimeter range
whatever the waveform shape. However, several limitations are
intrinsically linked to this kind of algorithm.

First, these algorithms are purely empirical with no physical
bases regarding the radar reflection on the water surface,
the antenna gain pattern, and the point target response (PTR)
of the instrument. Over ocean surfaces, it is well known that
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Fig. 8. Variation of normalized radiance (r778/r490) within a 7 × 7 box. (a) and (c) Histograms for the two axes. (b) Scatter plot of minimum value against
the difference of the maximum and minimum values with coloring according to the altimeter classification.

the altimeter impulse response strongly impacts the values and
dependences of the different estimated parameters, as shown
in [52]. This impact is even stronger in the case of the steep
leading edges found on specular echoes: the PTR commonly
approximated by a sinc shape spreads and shifts the leading
edge of the echo, and the position of the retracked point
corresponding to a given threshold is dependent on the width
and position of the PTR. Second, the same threshold can-
not be considered for all altimeter missions and has to be
adapted with respect to the mission and instrument charac-
teristics (orbit height, antenna aperture, frequency band, and
so on). Not considering that point makes it very difficult to
compare estimates between several missions. Moreover, not
accounting for the instrumental PTR is obviously problematic
when trying to observe climate signals over the ice cap without
considering that the instrument characteristics can vary with
time (aging of the electronic components). Finally, the discrete
rendition of waveforms means that a small lateral shift of
the sampling positions (determined by the relative distance
between the satellite and the sea surface knowing moreover
that the range gate width is about 47 cm) changes the apparent
shape of the waveform (depending where the sampling points
are on the peaky echo) [see Fig. 9(a)]. Using a simple threshold
method may be the cause of intrinsic errors of the order
of 10 cm.

Another retracking approach for quasi-specular echoes has
been proposed in [26]. This retracking solution is based
on fitting an empirically derived model specific for peaky
waveforms. The empirical function is described by a com-
bination of three functions: a Gaussian for the leading edge,
an exponential decaying function for the trailing edge, and a
polynomial function which links the previous two functions.
With this definition, the retracked point corresponds to the
maximum of the Gaussian, which means that the radar
cross section is assumed to be a single specular point [30].
This definition is not in accordance with [22] who explains that
the calm water within the lead cannot be totally smooth (with-
out any roughness). Fig. 9(b) shows an indicator of the
asymmetry found within ENVISAT waveforms over leads.
It is a histogram of the range difference obtained by an
OCOG retracker and a simple 50% threshold. The distri-
bution is not fully symmetric because there is, in gen-
eral, a weak tail to the specular echoes. Again, in this
solution, instrumental characteristics (antenna gain pattern
and PTR) are not considered with the consequences already
explained.

In this way, the point corresponding to the lead water surface
cannot be where the backscattered power is maximum, but
must be located in the leading edge in accordance with the
Brown model description.
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Fig. 9. Illustration of the challenge of accurately resolving waveform position for a peaky echo only persisting for a few bins. (a) Schematic of idealized curve
(dashed curve) and the discrete bins recorded (solid line) for waveform positions separated by one-third of a waveform bin. (b) Analysis of real ENVISAT
peaky waveforms, showing the difference in range bin recorded for OCOG and 50% threshold retrackers.

To conclude, both empirical and Gaussian retrackers are
not adapted to process open ocean waveforms. We must
recall at this point that they have been designed originally
by people working on freeboard height and sea-ice thickness,
not by people concerned by sea level. A very last point to be
discussed is that using these retrackers will not guarantee any
estimation continuity with deep ocean measurements, which
are determined using dedicated retrackers such as the MLE-3
or MLE-4 [3] for all conventional missions. Such retrackers
are of course based on physical models inherited from Brown’s
original work. Thus, biases may exist between lead and ocean
retrackers, which are not desirable when computing complete
maps of Arctic sea level. Biases may thus exist (and depend
on significant waveheight) due to specific and inhomogeneous
“lead” and “ocean” retrackers, which is unsatisfactory when
computing complete maps of Arctic sea level.

B. Modified Brown Model

We describe here a solution accounting for a physical
model directly derived from the Brown model [16] but flexible
enough to fit peaky lead waveforms [see Fig. 2(b)] as well as
diffuse ocean waveforms [see Fig. 2(a)]; this has been first
proposed in [2], [4], [16], and [33] but not implemented.

The double-convolution defined in [11] and [42] describing
the radar return as a function of time is written as

S(t) = FSSR(t) ∗ PDF(t) ∗ PTR(t) (1)

where FSSR is the flat sea surface response, PDF is the
surface elevation probability density function of scattering
elements, and PTR is the radar altimeter point target response.
As described in [22], the effective reflective surface of a
radar return from sea ice plus lead is dramatically reduced
to the area of the lead, as the reflective surface of calm
water will dominate the surrounding sea-ice return. This effect
corresponds to a variation in σ 0 with incidence angle as
detailed in [34]. In the Brown formulation, this dependence has
been ignored because the model is dedicated to the open ocean
with nonnull sea surface roughness. The author explained that

this is a reasonable assumption knowing that the range of
incidence angle considered in the case of satellite altimetry
is small, and the σ 0 variation with the incidence angle is very
low near the nadir. However, what is valid for open ocean
is no more true for sea-ice leads with almost null roughness
conditions.

Numerous σ 0 modeling exist in the literature [12], [33]
mainly based on cosine powers and negative exponential. All
these modeling assume a Gaussian and isotropic distribution
of surface slopes. Reference [2] chose to use a formulation
similar to geometrical optics

σ0(θ) = σ0(0) exp (− sin2(θ)/mss) (2)

with θ being the incidence angle (with respect to the nadir
direction) and mss the mean-square surface slope of the
dominating reflective surface in the altimeter footprint.

The antenna gain pattern is formulated using an exponential
in the Brown model [16]. Using (2), the FSSR given in [31]
can be written without mispointing as

FSSR(t) = A exp(−δt)I0(0)U(t) (3)

with

δ = 4c/(�h) (4)

in which � = 4γ mss/(4mss + γ ), c is the speed of light, h is
the satellite altitude, and γ is related to the antenna beamwidth
parameter defined in [16]. In (3), I0(0) is a modified Bessel
function and U(t) is the unit step function. The double-
convolution between this new FSSR, the altimeter impulse
response (assumed to be Gaussian in the Brown model), and
the surface elevation probability density of scattering surface
elements is then computed in a similar way as in [31]. The
resultant model can be formulated according to the Hayne
model by replacing γ by �. The final formulation (without
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Fig. 10. Retracked modified Brown model superimposed on ENVISAT waveforms over (a) ocean and (b)–(d) three different sea-ice lead waveforms with
their associated waveform class assigned by the neural network classification. The two DFT samples added by the RA-2 altimeter are considered and are
localized at samples 44.5 and 45.5 (starting from 0).

mispointing) is the following:

S(t) = Aσ0
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where σ 0 is the ocean surface backscattering cross section
at normal incidence, τ is the epoch, and Nt is the altimeter
additive thermal noise. σc is the composite sigma defined by
σc = (σ 2

s + σ 2
p)1/2, where σs is the rms height of the specular

points relative to the mean sea level and σp is related to the
PTR width at −3 dB.

In this formulation, the � parameter is related to the surface
roughness, and for very high mss values (approaching infinity),
the Hayne model is retrieved (in this case � = γ ). For
lower values, this parameter notably impacts the slope of the
model trailing edge, enabling the fit of peaky echoes, as shown
in Fig. 10.

Another effect highlighted by the dashed curve in Fig. 11
is the reduction of the model power. In fact, both models have
been computed using the same σ 0 distributed over the entire
waveform footprint. The returned power is thus proportional
to the effective reflective surface. This means that for a similar
returned power the corresponding backscatter coefficient will
be higher for a smooth surface. Over sea-ice leads, the increase

of the maximum waveform power [22], [57] is consistent with
this model feature.

Finally, the position of the water surface level (the key
parameter for the estimation in sea-ice leads) in the modified
Brown model is still located on the leading edge even in the
case of small mss and not at the maximum. It is assumed that
sea-ice leads have a nonzero surface roughness in accordance
with the histogram in Fig. 9(b).

C. Estimation Process

In our approach, the modified Brown model described
by (5) is combined with a maximum likelihood estimator (the
same estimation process used for ocean MLE-3 or MLE-
4 retrackers) to estimate the ocean geophysical parameters.
Four parameters are solved to fit the modified Brown model
to the measured waveform: the epoch (τ ), the composite
sigma (σc), the backscatter coefficient (σ 0) and, the � parame-
ter (related to the mss). Because the modified Brown model has
the ability to be equivalent to a classical Brown model (with
a strong mss value and its associated � parameter), it can also
fit well normal ocean waveforms, as shown in Fig. 10(a).

Despite that, the retracking algorithm encounters some
difficulties in converging for the case of very peaky echoes.
The main reason is that the fitting algorithm (MLE) is based
on a maximum likelihood criterion which accounts for the
speckle noise statistics impacting the waveform [3]. Over
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ocean, the speckle noise impacting the 18-Hz RA-2 waveforms
is assumed to follow a Gamma distribution depending on the
number N of averaged individual pulses [54]. The resulting
criterion is [23], [48]

C = cst + N
K−1�
k=0

yk

Sk
− (N − 1)

K−1�
k=0

ln(yk) + N
K−1�
k=0

ln(Sk)

(6)

with yk the measured waveform, Sk the model, k the waveform
bin number, and cst a constant.

But in the case of radar echoes from sea-ice leads,
the returned power has been reflected by a very small surface
of calm water and the same noise statistic is no more found.
Furthermore, the number of nonnull waveform bins within
peaky echoes is very small and it becomes difficult for the
estimator to distinguish signal from the noise. In order to
avoid such convergence problems, we choose to adapt the
fitting criterion to a pure least square criterion only if the
hybrid classification performed beforehand identifies a peaky
waveform. The least square criterion used in our adaptive
algorithm is

C =
K−1�
k=0

(yk − Sk)
2. (7)

Finally, the number of waveform samples considered to
adjust the model is reduced to only those carrying infor-
mation (nonzero points). This results in an adaptive analysis
window, whose size depends upon the waveform shape. The
waveform class assigned by the hybrid classification described
in Section II-E is used as input of the adaptive retracker.
Numbering the waveform bins from 0 to 127, the process-
ing of “ocean waveforms” uses samples 4–123 (as for the
standard ocean processing) but for “lead waveforms” the last
sample used is the eighth point after the waveform maximum.
Considering more points is not necessary, since their value is
zero, but a few null points are required to help the retracker
to increase the slope of the model trailing edge through the �
parameter for specular waveforms. This algorithm strategy is
very close to the adaptive strategy used for the RED3 algo-
rithm developed in the frame of the PISTACH project [41] and
the ALES [44] retracker. These two ocean retrackers primarily
focus on the leading edge where most of the information
content is, plus a few on the trailing edge decay. However,
the adaptive window is large enough to include all the bins in
the trailing edge of the peaky echo.

Illustrations of the fitting quality of the retracker on class 2
waveforms are shown in Fig. 10 with three different examples.
Waveform samples are plotted as gray crosses connected by
gray solid curves. (The RA-2 waveform contains two addi-
tional bins at positions 44.5 and 45.5 on the leading edge; these
two bins are used by the fitting process.) The black dashed
curve represents the modified Brown model resulting from
the adaptive retracker with an oversampling factor of 64 (for
visualization). These three examples show that the fit model
relies on the few nonzero waveform samples and is not limited
to these points. The model maximum may be greater than the
maximum of the waveform samples. The retracker determines

Fig. 11. Modified Brown model with a high mss value (gray solid curve)
and a small mss value (black dashed curve)

a geophysical solution of the effective reflective surface from
the few meaningful waveform samples acquired by the altime-
ter. As expected for class 2 waveforms, the estimated � and
σc, respectively, correspond to a very small mss and SWH.

IV. DATA EDITING TO OVERCOME “HOOKING”

The preceding sections have covered initial data editing,
waveform classification, and retracking. In this section, we dis-
cuss a final data editing step (see Fig. 3) to remove “uncertain”
SSH retrievals when the altimeter is close to a lead but not
directly at its nadir.

In the calculation of SSH, there is the assumption that the
range recorded onboard the satellite is that to the nearest
reflecting surface, which will generally be at nadir. However,
the signal from a strongly reflecting lead will dominate the
return signal for many consecutive waveforms (see Fig. 12).
The retracking algorithms tend to follow such a feature leading
to large errors in the estimates of surface height, with the
distance from such a “bright target” tracing out a hyperbola
in the waveform data [28]. This phenomenon is referred to
as “snagging” in [45] and was given the name “off-nadir
hooking” with application to radar altimetry over rivers in [40]
and [49]. Using high-resolution MODIS imagery coincident
with an ENVISAT track, [20] has shown that reflections from
a lead more than 1 km off the subsatellite track can dominate
the signals. The range error related to an off-nadir lead return
has been quantified in [9] using CryoSat-2 SARin data, leading
to strong biases in the ice thickness estimation.

To reduce this effect and improve the surface height esti-
mation accuracy, the RA-2 waveforms contaminated by strong
off-nadir reflections are automatically edited. The procedure
consists in first detecting the waveforms with strong reflection
in the nadir direction and then discarding their neighboring
waveforms affected by off-nadir reflections. Fig. 13(a) shows
the RA-2 Ku-band waveforms over Arctic leads and floes.
The variation of waveform intensity along the altimeter track
and for the bin position selected at the top of the leading
edge is given in Fig. 13(b). It is seen that strong nadir
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Fig. 12. Example of hooking where leading edge follows a hyperbola as altimeter approaches and recedes from a bright specular point. (a) Radargram
illustrating power in each waveform bin for a section ∼110 km along track (306 waveforms) with the color indicating intensity on a logarithmic scale to
show the wide range of values. There is minimal power in bins 0–40 with a steep leading edge around bin 45. Strong reflectors dominate even away from
nadir with the delayed responses producing hyperbolae. (b) 3-D representation of the power in each bin for a shorter segment.

Fig. 13. (a) Series of 370 ENVISAT RA-2 waveforms spanning 120 km along track. (b) Power value in bin at the top of leading edge (absolute units) and
the result of a running 21-point mean. (c) Ratio of actual value to 21-point mean, with a threshold for peak detection at 3.5. (d) SLA calculated using the
Giles and the adaptive retracker. For the latter, the five waveforms either side of a “significant peak” are discarded, so the rapid spatial changes associated
with hooking are avoided.

reflections produce sharp spikes, which can be automatically
discriminated from the rest of waveforms. Individual wave-
form peaks are compared with a 21-point running average
value, with the five waveforms immediately before and after
such a peak being discarded. Fig. 13(d) shows that the output
of the retracker developed in [26] is affected by the strong
off-nadir reflection effect with larger range estimates produced
in the neighborhood of spikes. In the output of our adaptive
retracker (blue dots), the measurements around spikes are
discarded since they are likely to produce biased results.
Hence, the developed editing approach improves the retracker

accuracy by discarding potentially biased range measurements
around strong nadir reflection points.

V. PERFORMANCE ANALYSIS

A. Performances in Open Ocean

The first step for ensuring the SSH estimate continuity
between the open ocean and the ice-covered ocean consists
of validating the adaptive retracker performances in the deep
ocean. A full ENVISAT/RA-2 cycle (cycle number 85) has
been reprocessed with our new algorithm. Then, a new 18-Hz
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Fig. 14. Gridded map of the range difference between the adaptive retracker and the standard ENVISAT/RA-2 ocean retracker over open ocean on cycle
85 (1◦ × 1◦). The histogram of the differences is presented at the bottom, which has a mean bias of −6.28 mm and a standard deviation of 2.37 mm.

altimeter range has been computed from the adaptive retracker
estimates with all the necessary corrections detailed in [13]
with the aim of being compared with the 18-Hz standard
altimeter range from the ENVISAT/RA-2 products. Fig. 14
presents a map of the mean differences per boxes of 1◦ × 1◦
between the new and original altimeter ranges. This map is
characterized by a good homogeneity: negligible geographical
pattern highlighting a potential wave height dependence is
observed. However, a global bias of about −6.28 mm separates
the two range estimates with a standard deviation of 2.37 mm.
The observed bias can be due to changes introduced in the
model but it is not a major concern, since the bias is global
and the standard deviation of the difference is very small.
This result highlights the quality of the adaptive retracker
and its good consistency with the standard ENVISAT-RA-2
altimeter range in the open ocean. The few discrepancies
observed at the ice edge are due to sea-ice measurements
that are still present in the open ocean selection. The standard
ENVISAT/RA-2 ocean retracker is not dedicated to process
sea-ice waveforms and consequently provides different esti-
mates than the adaptive retracker on these points.

B. Continuity Between Deep Ocean and Ice Regions

The adaptive retracker has been performed in the Arctic
Ocean on waveforms identified as ocean or leads by the
hybrid classification. The hooking editing has been applied

to echoes from leads as described in Section IV. Then,
the retrieved altimeter range has been subtracted from the
ENVISAT/RA-2 orbit to get the SSH. The Arctic sea level
anomaly (SLA) is built by subtracting the DTU 2013 mean
sea surface [5], wet and dry tropospheric corrections from
ERA-Interim, FES 2014 ocean tide correction, earth and pole
tide corrections, ionospheric correction from GIM, the inverse
barometer correction, and finally the ENVISAT/RA-2 sea
state bias (SSB) correction but only on ocean measurements.
We chose to not apply the SSB correction for leads data
because of very small SWH estimates related to specular
echoes.

Fig. 15(a) shows in gray curve the result of the SLA
calculations for the pass 788 of cycle 64 with the background
shading indicating where passive microwave data record SIC
from OSI-SAF is greater than 50%. Around 77.5◦N, there
is great variability in derived SLA, but these points are not
classified as “open ocean” by the hybrid classification (which
requires SIC = 0%, see III). Data are only accepted as “leads”
if classified by the neural net as class 2 and by the multiple-
criteria approach as “unclassified” or “leads” (the latter of
which requires SIC > 75%). Given the effective resolution
of the SIC gridded fields and our conservative classification
approach, we do not find points classified by the hybrid system
as “open ocean” or “leads” in close proximity. However,
Fig. 15(a) shows that there can sometimes be “unclassified”
data showing a near-continuous link of SLA between the other
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Fig. 15. SLA profiles on ENVISAT pass 788 for (a) cycle 64 (December 2007), (b) cycle 66 (March 2008), and (c) cycle 69 (June 2008), contrasting the
performances of different retrackers. The SLA computed with the adaptive retracker is plotted in gray curve. Measurements classified as “ocean” are colored
in dark blue dots and points classified as “leads” are colored in red dots. Green crosses: SLA computed with the ENVISAT standard ocean retracker on the
“ocean” points. Magenta crosses: SLA computed using the ice1 retracker from the ENVISAT products on “leads” points. Only points definitely classified as
“ocean” or as “leads” are used in our analysis. The output of the standard ocean retracker lies close to that of the adaptive retracker, whereas, in this instance,
the ice1 retracker for leads gives much higher values.

Fig. 16. Gridded map of the Arctic SLA for December 2007 produced by the new retracking solution (box 2◦ × 1◦). The solid dark curve is the contour
of 50% SIC (from OSI-SAF) for the same month.

groups. However, our conservative approach avoids the use of
such data as their interpretation may be unreliable. In this
example, the unclassified data appear ∼0.1 m higher than
the open ocean data, but part of this may relate to the step
changes in the implementation of SSB and DAC. In the “open

ocean” part, the ENVISAT/RA-2 standard ocean SLA (green
crosses) is almost superimposed on the SLA computed with
the adaptive retracker which illustrates the agreement shown in
the map in Fig. 14. In contrast, if the data believed to be leads
are processed with a simple threshold retracker (Ice1 retracker
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Fig. 17. Standard deviation of monthly change in the Arctic SLA from June 2002 to May 2010. (a) Computed for the new solution. (b) Computed with
DTU Arctic SLA maps.

from the ENVISAT/RA-2 products represented by magenta
crosses), there is a large offset [∼0.4 m in Fig. 15(a) compared
with the SLA computed with the adaptive retracker]. Fig. 15(b)
and (c) shows the same comparison on the same track but
for two different cycles: cycle 66 (March 2008) and cycle
69 (June 2008). The same results are found concerning the
SLA computed with the adaptive retracker. The ocean retracker
and the adaptive retracker are still consistent, but the offset of
the ice1 SLA is varying from one cycle to another. More-
over, the ice1 SLA in leads shows a greater dispersion than
the adaptive retracker SLA. These along-track visualizations
illustrate the advantages of using a continuous method with
the same retracking algorithm to process both open ocean
and lead waveforms compared with the computation of a
bias between two different retrackers. A last point must be
noted in Fig. 15(c): the lead SLA computed with the adaptive
retracker appears to be a few centimeters higher than the ocean
SLA. This can be caused by an identification of melt ponds as
“leads,” as shown in [8]. Discriminating melt ponds from lead
waveforms is challenging and there is no melt pond detection
in the hybrid classification at this time.

After a simple 3-sigma spatiotemporal editing, gridded maps
are built for the entire ENVISAT/RA-2 period with a box size
of 2◦ × 1◦. One of the computed SLA maps is given in Fig. 16
for December 2007. The black solid curve indicates the 50%
contour of OSI-SAF SIC for the corresponding period. The
SLA coverage is near complete with a height value in almost
every box inside the ice area delimited by the black curve.
No significant jump is observed at the transition (from either
side of the black curve), which indicates a continuity in the
sea level estimate. It may be noted that the strong doming of
the Beaufort Gyre is clearly visible and is consistent with [25].

In order to assess the time consistency of the new Arctic
SLA product, we look at the changes between consecutive
monthly maps and compare that with another recent Arctic
altimetry data set produced by DTU [19]. The DTU data set

was built through a reprocessing of the corrections and orbits
of ERS-1, ERS-2, ENVISAT/RA-2, and CRYOSAT-2 data
from September 1992 to October 2014, but with standard
retracking applied [6]. In this comparison, we consider only
the ENVISAT period and sample both data sets at the same
resolution (monthly, 2◦ longitude × 1◦ latitude). The internal
consistency for each is evaluated by differencing consecutive
months and calculating the standard deviation of the changes
at each location.

There is much less intermonthly variability in the newly
processed data set [termed “CLS/PML,” see Fig. 17(a)] than in
the other [see Fig. 17(b)]. It indicates that the transition from
one map to another is smoother for the CLS/PML product
over all the Arctic. Both maps show large variations along
the Russian coastlines and in the Foxe Basin which are,
however, regions that are seasonally frozen. An interesting
feature is the low variation observed in the CLS/PML product
at the transition from the open ocean of the Greenland and
Norwegian seas to the rest of the inner Arctic Ocean.

Further geophysical analysis has been performed in [18]
who compare both the CLS/PML and DTU Arctic Sea Level
data sets corrected for steric effects with the observed mass
changes recorded by GRACE over the same 2002–2010 time
span. For example, this independent regional mean sea level
for the Beaufort Gyre shows a correlation of 0.48 with the
CLS/PML product, but is −0.33 for the one without retracking.
The correlations for the Baffin Bay region are 0.55 and 0.47,
respectively.

VI. CONCLUSION

Radar altimetry is a mature discipline with sea level records
provided on a near-global basis for both climate science and
operational applications. ESA’s Sea Level CCI [47] has recog-
nized that the two most challenging domains remaining are the
coastal zone and ice-covered seas (principally the Arctic), and
has supported research into improvements for both areas. Over
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the ice-covered Arctic, there are two processing challenges:
1) identification of the reflecting surface and 2) robust and
accurate derivation of the sea level information.

Although a wide variety of waveforms may be recorded
over the Arctic Ocean (see Fig. 2), in practice there are
three main classes—“ocean,” “floes,” and “leads.” An ocean
waveform corresponds to reflections from a homogeneous
reflecting surface with a slow decrease in power after the
leading edge [16]. Similar waveform shapes are produced
when the altimeter footprint is completely covered in rough sea
ice, so daily maps of sea-ice coverage from passive microwave
sensors are used to distinguish these two groups. On the
other hand, leads or polynyas within the ice cover produce
a very different waveform as the reflection from the calm
water greatly exceeds that from the surrounding sea ice to
give a specular or “peaky” echo. Reference [37] developed
the peakiness parameter to characterize such waveforms and
used this to discriminate between floes and leads [45]. We have
built upon this in our two approaches for waveform classifi-
cation. The classification from the multiple-criteria approach
has been validated by comparison with optical imagery from
MERIS (Section II-C1), while the assessment of the neural
network technique will be further detailed in a dedicated paper.
For those waveforms classified by both methods, there is good
agreement in their discrimination of waveforms (see Table IV),
but while the neural net classifies almost all records into one
of its predefined 12 classes, the multiple-criteria approach is
more cautious, leaving a higher proportion of data unclassified.
As our focus is more on accuracy than quantity of data,
a hybrid solution is built combining the two approaches.

The waveforms that have passed the classification (both
“oceans” and “leads”) are then retracked with the same mod-
ified Brown model (see Section III-B). This model includes
an extra term � that characterizes the mean square slope
of the reflecting facets of the water surface. For large mss,
the modified Brown reverts to the Hayne [31] formulation
of the Brown method, and Section V-A shows that there is
negligible bias between the two retracker solutions, providing
continuity with the CCI data routinely distributed for the rest
of the ocean.

As narrow ice leads can give specular reflections for dozens
of contiguous average waveforms, a key aspect of the editing
procedure is to only keep the signal corresponding to the
brightest return (assuming this to correspond to when the
reflecting surface is directly below the satellite) and thus
not to use those where the leading edge is caught on some
specific feature (known as “hooking” or “snagging”). While
this editing removes a significant proportion of the records,
those remaining are ones for which there is a high certainty
that nadir sea level is being recorded.

Within the sea level CCI project, the retracked ranges from
these highly selected ocean and lead waveforms are used to
produce monthly maps of sea level on a regular grid. The
details of the gridding and the oceanographic applications of
these data will be published separately, but they are expected
to show new insights into the mesoscale variability comple-
menting [7], the seasonal signal in Arctic sea level (due to
annual cycles in warming of surface waters, precipitation, and

riverine run-off) [8], and long-term trends. Reference [25] had
shown a marked spin-up of the Beaufort Gyre until 2010; our
processing of ENVISAT/RA-2 data will need to be combined
with those from AltiKa and CRYOSAT altimeters in order to
fully map the changes since then.

ACKNOWLEDGMENT

The authors would like to thank the European Space Agency
through the Sea Level Climate Change Initiative for providing
additional optical data acquired via the Category-1 proposal,
VICTORIA. They would like to thank E. Rinne for the
contribution of code and advice, S. Fleury for discussions
on optical recognition of ice, and the National Snow and Ice
Data Center for making their data so readily available. They
would also like to thank the French space agency (CNES)
who have supported important work on sea-ice classification
and dedicated retrackers.

REFERENCES

[1] M. Ablain et al., “Improved sea level record over the satellite altimetry
era (1993–2010) from the climate change initiative project,” Ocean Sci.,
vol. 11, pp. 67–82, Jan. 2015.

[2] L. Amarouche, S. Jourdain, and J. R. Deboer, “Rapport Tâche 2.2:
Retracking Spécifique Cellules de pluie et Blooms,” CNES, Toulouse
France, Tech. Rep. SALP-NT-P-EA-21776-CLS, 2010.

[3] L. Amarouche, P. Thibaut, O. Z. Zanife, J.-P. Dumont, P. Vincent, and
N. Steunou, “Improving the Jason-1 ground retracking to better account
for attitude effects,” Marine Geodesy, vol. 27, nos. 1–2, pp. 171–197,
2004.

[4] L. Amarouche and A. Vernier, “New methods for retracking altimeter sea
ice and ice sheets waveforms,” ESA, Toulouse France, Tech. Rep. CLS-
DOS-NT-10-192, 2011.

[5] O. Andersen, P. Knudsen, and L. Stenseng, “The DTU13 MSS (mean sea
surface) and MDT (mean dynamic topography) from 20 years of satellite
altimetry,” in IGFS (International Association of Geodesy Symposia),
vol. 144. Cham, Switzerland: Springer, 2015, pp. 111–121.

[6] O. B. Andersen and G. Piccioni, “Recent arctic sea level varia-
tions from satellites,” Front. Mar. Sci., vol. 3, p. 76, 2016, doi:
10.3389/fmars.2016.00076.

[7] T. W. K. Armitage, S. Bacon, A. L. Ridout, A. A. Petty, S. Wolbach, and
M. Tsamados, “Arctic Ocean surface geostrophic circulation
2003–2014,” Cryosphere, vol. 11, no. 4, pp. 1767–1780, 2017.

[8] T. W. K. Armitage, S. Bacon, A. L. Ridout, S. F. Thomas, Y. Aksenov,
and D. J. Wingham, “Arctic sea surface height variability and change
from satellite radar altimetry and GRACE, 2003–2014,” J. Geophys.
Res., Oceans, vol. 121, no. 6, pp. 4303–4322, 2016.

[9] T. W. K. Armitage and M. W. J. Davidson, “Using the interferometric
capabilities of the ESA CryoSat-2 mission to improve the accuracy of
sea ice freeboard retrievals,” IEEE Trans. Geosci. Remote Sens., vol. 52,
no. 1, pp. 529–536, Jan. 2014.

[10] J. L. Bamber, “Ice sheet altimeter processing scheme,” Int. J. Remote
Sens., vol. 15, no. 4, pp. 925–938, 1994.

[11] D. E. Barrick, “Remote sensing of sea state by RADAR,” in Proc. IEEE
Int. Conf. Eng. Ocean Environ. (Ocean), Sep. 1972, pp. 186–192.

[12] A. Sarkar and L. Bhaduri, “Wind dependence of quasi-specular sea
scatter,” Proc. Indian Acad. Sci., Earth Planetary Sci., vol. 93, no. 2,
pp. 111–116, 1984.

[13] J. Benveniste, A. Resti, M. Roca, M. Milagro-Pérez, and G. Levrini,
“ENVISAT radar altimeter system,” ESA Bulletin. Bulletin ASE.
European Space Agency, vol. 98, 2002, doi: 10.1117/12.452745.

[14] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY,
USA: Oxford Univ. Press, 1995.

[15] L. Bourg, “MERIS level 2 detailed processing model,” Tech. Rep.
PO-TN-MEL-GS-0006, 2006.

[16] G. S. Brown, “The average impulse response of a rough surface and
its applications,” IEEE Trans. Antennas Propag., vol. AP-25, no. 1,
pp. 67–74, Jan. 1977.

http://dx.doi.org/10.3389/fmars.2016.00076
http://dx.doi.org/10.1117/12.452745


5318 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 9, SEPTEMBER 2018

[17] C. E. Bulgin, S. Eastwood, O. Embury, C. J. Merchant, and C. Donlon,
“The sea surface temperature climate change initiative: Alternative
image classification algorithms for sea-ice affected oceans,” Remote
Sens. Environ., vol. 162, pp. 396–407, Jun. 2015.

[18] A. Carret et al., “Arctic sea level during the satellite altimetry era,” Surv.
Geophys., vol. 38, no. 1, pp. 251–275, 2017.

[19] Y. Cheng, O. Andersen, and P. Knudsen, “An improved 20-year Arctic
Ocean altimetric sea level data record,” Marine Geodesy, vol. 38, no. 2,
pp. 146–162, 2015.

[20] L. N. Connor, S. W. Laxon, A. L. Ridout, W. B. Krabill, and
D. C. McAdoo, “Comparison of Envisat radar and airborne laser
altimeter measurements over Arctic sea ice,” Remote Sens. Environ.,
vol. 113, no. 3, pp. 563–570, 2009.

[21] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control, Signals, Syst., vol. 2, no. 2, pp. 303–314, 1989.

[22] M. R. Drinkwater, “Ku band airborne radar altimeter observations of
marginal sea ice during the 1984 Marginal Ice Zone Experiment,” J.
Geophys. Res., vol. 96, no. C3, pp. 4555–4572, 1991.

[23] J.-P. Dumont, “Estimation optimale des paramètres altimétriques des
signaux radar Poséidon,” Ph.D. dissertation, Univ. Toulouse-ENSEEIHT,
Toulouse, France, 1985.

[24] L.-L. Fu and A. Cazenave, Satellite Altimetry and Earth Sciences:
A Handbook of Techniques and Applications (International Geophysics
Series), vol. 69. San Diego, CA, USA: Academic, 2000.

[25] K. A. Giles, S. W. Laxon, A. L. Ridout, D. J. Wingham, and
S. Bacon, “Western Arctic Ocean freshwater storage increased by wind-
driven spin-up of the Beaufort Gyre,” Nature Geosci., vol. 5, no. 3,
pp. 194–197, 2012.

[26] K. A. Giles et al., “Combined airborne laser and radar altimeter mea-
surements over the Fram Strait in May 2002,” Remote Sens. Environ.,
vol. 111, nos. 2–3, pp. 182–194, 2007.

[27] L. Gómez-Chova, G. Camps-Valls, J. Calpe-Maravilla, L. Guanter, and
J. Moreno, “Cloud-screening algorithm for ENVISAT/MERIS multi-
spectral images,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12,
pp. 4105–4118, Dec. 2007.

[28] J. Gomez-Enri et al., “Modeling Envisat RA-2 waveforms in the coastal
zone: Case study of calm water contamination,” IEEE Geosci. Remote
Sens. Lett., vol. 7, no. 3, pp. 474–478, Jul. 2010.

[29] T. H. Guymer, G. D. Quartly, and M. A. Srokosz, “The effects of rain on
ERS-1 radar altimeter data,” J. Atmos. Ocean. Technol., vol. 12, no. 6,
pp. 1229–1247, 1995.

[30] W. Hausleitner et al., “A new method of precise Jason-2 altimeter
calibration using a microwave transponder,” Marine Geodesy, vol. 35,
pp. 337–362, Dec. 2012.

[31] G. S. Hayne, “Radar altimeter mean return waveforms from near-normal-
incidence ocean surface scattering,” IEEE Trans. Antennas Propag.,
vol. AP-28, no. 5, pp. 687–692, Sep. 1980.

[32] A. Hollstein, J. Fischer, C. C. Henken, and R. Preusker, “Bayesian cloud
detection for MERIS, AATSR, and their combination,” Atmos. Meas.
Techn., vol. 8, no. 4, pp. 1757–1771, 2015.

[33] F. C. Jackson, W. T. Walton, D. E. Hines, B. A. Walter, and
C. Y. Peng, “Sea surface mean square slope from Ku -band backscatter
data,” J. Geophys. Res., vol. 97, no. C7, pp. 11411–11427, 1992.

[34] N. T. Kurtz, N. Galin, and M. Studinger, “An improved CryoSat-2 sea
ice freeboard retrieval algorithm through the use of waveform fitting,”
Cryosphere, vol. 8, pp. 1217–1237, Jul. 2014.

[35] R. Kwok and D. A. Rothrock, “Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008,” Geophys. Res. Lett., vol. 36,
no. 15, 2009.

[36] S. W. Laxon and D. McAdoo, “Arctic Ocean gravity field derived from
ERS-1 satellite altimetry,” Science, vol. 265, no. 5172, pp. 621–624,
1994.

[37] S. W. Laxon, “Sea ice altimeter processing scheme at the EODC,” Int.
J. Remote Sens., vol. 15, no. 4, pp. 915–924, 1994.

[38] S. W. Laxon et al., “CryoSat-2 estimates of Arctic sea ice thickness and
volume,” Geophys. Res. Lett., vol. 40, no. 4, pp. 732–737, 2013.

[39] P. Y. Le Traon, “From satellite altimetry to Argo and operational
oceanography: Three revolutions in oceanography,” Ocean Sci., vol. 9,
no. 5, pp. 901–915, 2013.

[40] P. Maillard, N. Bercher, and S. Calmant, “New processing approaches
on the retrieval of water levels in Envisat and SARAL radar altimetry
over rivers: A case study of the São Francisco River, Brazil,” Remote
Sens. Environ., vol. 156, pp. 226–241, Jan. 2015.

[41] F. Mercier, “Coastal and hydrology altimetry product (PISTACH) hand-
book,” CNES, Toulouse France, Tech. Rep. SALP-MU-P-OP-16031-CN
01/00, 2010.

[42] R. K. Moore and C. S. Williams, “Radar terrain return at near-vertical
incidence,” Proc. Inst. Radio Eng., vol. 45, no. 2, pp. 228–238, 1957.

[43] J. Morison et al., “Changing Arctic Ocean freshwater pathways,” Nature,
vol. 481, no. 7379, pp. 66–70, 2012.

[44] M. Passaro, P. Cipollini, S. Vignudelli, G. D. Quartly, and H. M. Snaith,
“ALES: A multi-mission adaptive subwaveform retracker for coastal and
open ocean altimetry,” Remote Sens. Environ., vol. 145, pp. 173–189,
Apr. 2014.

[45] N. R. Peacock and S. W. Laxon, “Sea surface height determination in
the Arctic Ocean from ERS altimetry,” J. Geophys. Res. C, Oceans,
vol. 109, no. 7, 2004, Art. no. C07001.

[46] P. Prandi, M. Ablain, A. Cazenave, and N. Picot, “A new estimation
of mean sea level in the Arctic Ocean from satellite altimetry,” Marine
Geodesy, vol. 35, pp. 61–81, Dec. 2012.

[47] G. D. Quartly et al., “A new phase in the production of quality-controlled
sea level data,” Earth Syst. Sci. Data, vol. 9, pp. 557–572, Aug. 2017,
doi: 10.5194/essd-2017-23.

[48] E. Rodríguez, “Altimetry for non-Gaussian oceans: Height biases
and estimation of parameters,” J. Geophys. Res., vol. 93, no. C11,
pp. 14107–14120, 1988.

[49] J. S. da Silva, S. Calmant, F. Seyler, O. C. R. Filho, G. Cochonneau,
and W. J. Mansur, “Water levels in the Amazon basin derived from the
ERS 2 and ENVISAT radar altimetry missions,” Remote Sens. Environ.,
vol. 114, no. 10, pp. 2160–2181, 2010.

[50] M. C. Serreze et al., “The large-scale freshwater cycle of the Arctic,”
J. Geophys. Res., Oceans, vol. 111, no. 11, 2006, Art. no. C11010.

[51] M. Steele, W. Ermold, and J. Zhang, “Arctic Ocean surface warming
trends over the past 100 years,” Geophys. Res. Lett., vol. 35, no. 2,
pp. 1–6, 2008.

[52] P. Thibaut, J. C. Poisson, E. Bronner, and N. Picot, “Relative per-
formance of the MLE3 and MLE4 retracking algorithms on Jason-2
altimeter waveforms,” Marine Geodesy, vol. 33, no. 1, pp. 317–335,
2010.

[53] J.-Y. Tourneret, C. Mailhes, J. Severini, and P. Thibaut, “Shape classifi-
cation of altimetric signals using anomaly detection and Bayes decision
rule,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 1.
Honolulu, HI, USA, Jul. 2010, pp. 1222–1225.

[54] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing,
Active and Passive: Radar Remote Sensing and Surface Scattering and
Emission Theory, vol. 2. Reading, MA, USA: Addison Wesley, 1982.

[55] S. Willmes and G. Heinemann, “Pan-Arctic lead detection from MODIS
thermal infrared imagery,” Ann. Glaciol., vol. 56, no. 69, pp. 29–37,
2015.

[56] D. J. Wingham, C. G. Rapley, and H. Griffiths, “New techniques in
satellite altimeter tracking systems,” in Int. Geosci. Remote Sens. Symp.
Dig. (IGARSS), 1986.

[57] E. A. Zakharova et al., “Sea ice leads detection using SARAL/AltiKa
altimeter,” Marine Geodesy, vol. 38, no. 1, pp. 522–533, 2015.

[58] G. P. Zhang, “Neural networks for classification: A survey,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 30, no. 4, pp. 451–462,
Nov. 2000.

Jean-Christophe Poisson received the master’s degree in space technology
and instrumentation from University Paul Sabatier, Toulouse, France, in 2007.

In 2007, he was involved in altimeter data processing at Collecte Local-
isation Satellites, Ramonville St-Agne, France, and more specifically in
waveform retracking techniques. His research interests include analyzing and
improving radar altimeter data processing over different surfaces, including
open ocean, coastal, sea ice, and inland water areas, and for various space
missions, such as Jason-1/2/3, ENVISAT, SARAL, CryoSat-2, and Sentinel-3.
He has been involved in the commissioning phase of Jason-2, Saral, Jason-3,
and Sentinel-3A missions on the assessment of the radar altimeter perfor-
mances. He has participated in many CNES projects, such as PISTACH,
SLOOP, and PEACHI, and also to the European Space Agency Climate
Change Initiative Project on the Sea Level Essential Climate Variables.

Mr. Poisson was a member of the International Space Science Institute
Bern International Team focused on altimetry processing in Arctic region in
2015 and 2017.

http://dx.doi.org/10.5194/essd-2017-23


POISSON et al.: DEVELOPMENT OF AN ENVISAT ALTIMETRY PROCESSOR PROVIDING SEA LEVEL CONTINUITY 5319

Graham D. Quartly received the B.A. degree in natural sciences from the
University of Cambridge, Cambridge, U.K., in 1985, and the Ph.D. degree in
underwater acoustics from the University of Bath, Bath, U.K., in 1990.

He was with the U.K.’s Natural Environment Research Council for
23 years, being latterly based at the National Oceanography Centre,
Southampton, Southampton, U.K. In 2012, he joined the Plymouth
Marine Laboratory, Plymouth, U.K. He was a Principal Investigator or a
Co-Investigator of over 10 satellite missions, mostly for altimetry. He is
currently a Co-Ordinator of the Expert Support Laboratories for the Sentinel-
3 Surface Topography Mission. He is involved in the Climate Change
Initiative projects focusing on both sea level and sea state. He has also been
heavily involved with in situ work, being a Principal Scientist leading four
research cruises. His research interests include the retracking of altimeter
data, development of long-term consistent data sets, study of rainfall, and the
oceanic circulation within the greater Agulhas system and its wider impacts.

Andrey A. Kurekin received the degree in radio-electronic engineering from
the Kharkov Aviation Institute, Kharkov, Ukraine, in 1994, and the Ph.D.
degree in radio engineering systems from the National Aerospace University,
Kharkov, in 1998. His dissertation research involved development of methods
and algorithms for multichannel radar remote sensing data processing.

From 2004 to 2008, he was a Research Associate with the Communication
Research Centre, School of Engineering, and the School of Computer Science,
Cardiff University, Cardiff, U.K., where he was involved in the project
sponsored by the Data Information Fusion Defence Technology Centre. From
2008 to 2010, he was a Research Fellow with the Faculty of Science and
Technology, University of Central Lancashire, Preston, U.K., where he was
involved in a project sponsored by BAE SYSTEMS. In 2010, he joined
the Plymouth Marine Laboratory, Plymouth, U.K., where he is currently
involved in remote sensing data processing. His research interests include
radar altimetry in Arctic and coastal regions, remote sensing of coastal waters
using synthetic aperture radar and optical sensors, and analysis of ocean colour
data.

Pierre Thibaut has over 22 years of experience in the domain of altimetry.
After the Ph.D. thesis in signal processing at the National Polytechnic Institute
of Toulouse, Toulouse, France, he joined CLS, New York City, NY, USA, as
an Expert in altimeter processing and products, on ESA and CNES projects,
with various data set: ERS, ENVISAT, Jason 1/2/3, SARAL, Cryosat-2, and
Sentinel-3 missions. He has also developed a strong experience in altimetry
simulation and processing over different surfaces including open ocean, land
ice, sea ice, and hydrology, for several projects. Since 2010, he has been
the Head of the Topography Department, Space Observation Division, CLS,
leading a group of about 10 people, experts in altimetry processing. From
2015 to 2017, he has led an ISSI Bern International Team focused on sea ice
problematics (sea level and sea ice in Arctic Ocean) gathering 15 scientists
recognized for their expertise in sea ice processing.

Duc Hoang received the master’s degree in space technology and instrumenta-
tion from Paul Sabatier University, Toulouse, France, in 2013. He was with the
Earth Observation Division, CLS Group, New York City, NY, USA, for four
years, especially in radar altimeter signal processing. He has participated in the
development of new solutions for the improvement of altimetry data, including
retracking methods, rain flag algorithms, and waveform classification.

Francesco Nencioli received the Ph.D. degree in marine science from the
University of California at Santa Barbara, Santa Barbara, CA, USA, in 2010.

From 2010 to 2014, he was a Post-Doctoral Researcher and a Marie
Curie Fellow with Aix-Marseille University, Marseille, France. He became a
member of the Plymouth Marine Laboratory, Earth Observation and Space
Application Group, Plymouth, U.K., in 2015. He was a member of the
Science Definition Team for the Surface Water and Ocean Topography mission
focusing on the development of in situ validation field experiments. He
participated in the ESA-funded GlobCurrent Project, involving in multisatellite
synergy for the reconstruction of surface ocean currents. He is currently
involved in the activities of the Sentinel-3 Mission Performance Centre and
a Contributor to the Ocean Surface Topography Science Team as a Co-I of
the TripleA Project, with a focus on the integration of altimetry and in situ
observations to study ocean dynamics in various regions of the globe.


