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Abstract  7 

Taylor’s law (TL) is a widely observed empirical pattern that relates the variances to the means of groups 8 
of non-negative measurements via an approximate power law: varianceg ≈ a × meang

b, where g indexes 9 
the group of measurements. When each group of measurements is distributed in space, the exponent b of 10 
this power law is conjectured to reflect aggregation in the spatial distribution. TL has practical application 11 
in many areas since its initial demonstrations for the population density of spatially distributed species in 12 
population ecology. Another widely observed aspect of populations is spatial synchrony, which is the 13 
tendency for time series of population densities measured in different locations to be correlated through 14 
time. Recent studies showed that patterns of population synchrony are changing, possibly as a 15 
consequence of climate change. We use mathematical, numerical, and empirical approaches to show that 16 
synchrony affects the validity and parameters of TL. Greater synchrony typically decreases the exponent 17 
b of TL. Synchrony influenced TL in essentially all of our analytic, numerical, randomization-based, and 18 
empirical examples. Given the near ubiquity of synchrony in nature, it seems likely that synchrony 19 
influences the exponent of TL widely in ecologically and economically important systems. 20 

Significance statement 21 

Two widely confirmed patterns in ecology are Taylor’s law (TL), which states that the variance of 22 
population density is approximately a power of mean population density; and population synchrony, the 23 
tendency of species' population sizes in different areas to be correlated through time. TL has been applied 24 
in many areas, including fisheries management, conservation, agriculture, finance, physics, and 25 
meteorology. Synchrony of populations increases the likelihood of large-scale pest or disease outbreaks 26 
and shortages of resources. We show that changed synchrony modifies and can invalidate TL. 27 
Widespread recent changes in synchrony, possibly resulting from climate change, may broadly affect TL 28 
and its applications. 29 

\body 30 

Introduction 31 

Taylor’s law (TL) is a widely observed empirical pattern that relates the variances to the means of groups 32 
of measurements of population densities or other non-negative quantities via a power law: varianceg =  a 33 
× meang

b, where g indexes the groups of measurements, a > 0, b is usually positive, and a and b are both 34 
independent of g. Equivalently, log(varianceg) = b × log(meang) + log(a). The parameter b has the same 35 
numerical value whether it appears as the exponent of the power law or as the slope of the linear relation 36 
between log(varianceg) and log(meang). Thus b may be referred to as the exponent or the slope of TL. 37 
 TL has been verified in data on the population sizes and population densities of hundreds of taxa, 38 
including aphids (1), crops (2), fish (3, 4), birds (5), and humans (6). TL has also been discovered in 39 
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many other non-negative measurements (7), including recently tornados per outbreak (8) and stocks (9). 40 
In physics, TL is sometimes called “fluctuation scaling”. TL has been generalized (10), and applied to or 41 
proposed for application to fisheries management (3, 4), estimation of species persistence times (11), and 42 
agriculture (2, 12, 13). Potential mechanisms of TL have been explored extensively (e.g., 9, 14, 15). 43 
Because of its ubiquity, it has been suggested that TL could be another “universal law,” like the central 44 
limit theorem (16). 45 
 There are multiple versions of TL. “Temporal TL” and “spatial TL,” on which we focus, use time 46 
series, Yi(t), of population densities measured in locations i = 1, …, n at times t = 1, …, T. For temporal 47 
TL, the groups, g, consist of all measurements made in a location, i (means and variances are computed 48 
over time). For spatial TL, groups are measurements at a single time, t (means and variances are over 49 
space). 50 
 Synchrony (metapopulation synchrony, spatial synchrony) is another ubiquitous and fundamental 51 
ecological phenomenon. It is the tendency for time series of population densities of the same species 52 
measured in geographically separated locations to be correlated through time. It has been observed in 53 
organisms as diverse as protists (17), insects (18), mammals (19, 20) and birds ((21); see also (22) for 54 
many other examples). It relates to large-scale pest or disease outbreaks and shortages of resources (23, 55 
24), and has implications for conservation because populations are at greater risk of simultaneous 56 
extinction if they are simultaneously rare (24). 57 
 Although some empirical and theoretical connections have been made between synchrony and TL 58 
(7, 14, 20, 25), the connections are far from completely understood, and do not encompass all versions of 59 
TL. Synchrony, like TL, may reflect aggregation because the spatial extent of correlations among 60 
population time series indicates the geographic size of outbreaks (26). Engen, Lande and Saether (25) 61 
connected TL with synchrony theoretically, but did not use spatial or temporal TL. Temporal TL has been 62 
related to a kind of synchrony that occurs on spatial scales smaller than that of sampling (7, 14). 63 
 The "Moran effect" refers to synchrony caused by synchronous environmental drivers. Changes 64 
in Moran effects as a consequence of climate change may alter synchrony. Long-term increases in the 65 
synchrony of caribou populations in Greenland were associated with increases in the synchrony of 66 
environmental drivers in the area, apparently through modified Moran effects (19). The latter were in turn 67 
linked to global warming. Similar associations held for North American bird species (21). Large-scale 68 
climatic changes in the North Atlantic Oscillation caused changes in winter temperature synchrony, which 69 
in turn caused changes in the synchrony of pest aphid species in the UK (27). Changes in the synchrony 70 
of plankton (26) and tree rings (28) have been associated with climate change. If synchrony influences 71 
TL, then changes in synchrony may change TL in ecologically and economically important systems. 72 
 We analyze connections between synchrony and spatial TL to answer the following questions. Do 73 
the presence and strength of synchrony in population time series influence whether TL holds, and if so, 74 
how? Do the presence and strength of synchrony influence the slope b of TL, and if so, how? Because of 75 
the fundamental importance of both TL and synchrony to population ecology, illuminating connections 76 
between these phenomena is of intrinsic interest, but we are also motivated by the applied importance of 77 
TL and by concern that climate change may modify synchrony. 78 

Results 79 

Analytic results 80 
Suppose the population size or density in location i at time t is modeled by the non-negative random 81 
variable Yi(t), for i=1,…,n. Assume that the multi-variate stochastic process Y(t) = (Y1(t), …, Yn(t)) is 82 
stationary and ergodic (29); these are standard assumptions (SI Appendix S1). We use the standard spatial 83 

sample mean and sample variance: 𝑚(𝑡) =
1

𝑛
∑ 𝑌𝑖(𝑡)
𝑛
𝑖=1  and 𝑣(𝑡) =

1

𝑛−1
∑ 𝑌𝑖(𝑡)

2𝑛
𝑖=1 −

𝑛

𝑛−1
𝑚(𝑡)2. The 84 

traditional plot to test spatial TL is the log(𝑣(𝑡))-versus-log(𝑚(𝑡)) scatter plot for a finite realization of 85 
these processes. TL hypothesizes that this plot will be approximately linear. The linear regression slope is 86 

𝑏𝑡 =
cov𝑡(ln(𝑚(𝑡)),ln(𝑣(𝑡)))

var𝑡(ln(𝑚(𝑡)))
 (30). The subscripts t indicate that the variance var𝑡 and the covariance cov𝑡are 87 
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computed across time for the finite realization, while each value of m(t) and v(t) is computed across space 88 

at time t. A standard (22) measure of average synchrony, Ω𝑡 =
1

𝑛2
∑ cor𝑡(
𝑛
𝑖,𝑗=1 𝑌𝑖(𝑡), 𝑌𝑗(𝑡)), averages the 89 

temporal correlations of every pair of population-dynamic time series. This summation includes the terms 90 
with 𝑖 = 𝑗, which equal 1, and hence Ω𝑡 is 1/n when the correlations with 𝑖 ≠ 𝑗 are 0. Ω𝑡 is 0 when the 91 
spatial-average time series is constant, and Ω𝑡cannot be negative (SI Appendix S1). We are interested in 92 
how Ω𝑡 may affect whether the relationship between the log-mean and the log-variance is linear, and the 93 
value of the slope 𝑏𝑡 when linearity holds. For long time series, it suffices (SI Appendix S1) to consider 94 

the population quantities 𝑏 =
cov(ln(𝑚),ln(𝑣))

var(ln(𝑚))
 and Ω =

1

𝑛2
∑ cor(𝑛
𝑖,𝑗=1 𝑌𝑖 , 𝑌𝑗), assuming all the expectations, 95 

variances and covariances in these and other expressions exist (details in SI Appendix). Thus we work 96 
with the time-independent distribution Y=(Y1, …, Yn). Autocorrelation in time series will not influence the 97 
relationships we study if time series are long enough for empirical and true marginal distributions to be 98 
similar (SI Appendix S1).  99 

 Applying the delta method (31), ln(𝑚) ≈ ln(E(𝑚)) +
𝑚−E(𝑚)

E(𝑚)
, ln(𝑣) ≈ ln(E(𝑣)) +

𝑣−E(𝑣)

E(𝑣)
, and 100 

var(ln(𝑚)) ≈
var(𝑚)

E(𝑚)2
, so (SI Appendix S1) 101 

 𝑏 ≈
(𝑛−1)E(𝑚)

𝑛

cov(𝑚,𝑣)

(𝐴−var(𝑚))var(𝑚)
,     (Eq. 1)  102 

where the first factor in this expression and the quantity 𝐴 =
1

𝑛
∑ E(𝑌𝑖

2) − E(𝑚)2𝑛
𝑖=1  depend solely on the 103 

marginal distributions, Yi, and not on the correlations, cor(𝑌𝑖, 𝑌𝑗). On the other hand, var(𝑚) equals 104 
1

𝑛2
∑ cov(𝑌𝑖, 𝑌𝑗)
𝑛
𝑖,𝑗=1 , which relates to synchrony, Ω, and is similar in form. Eq. 1 therefore provides the 105 

intuition behind our subsequent analyses: if synchrony (Ω or var(𝑚)) changes and the marginals, Yi, 106 
remain fixed, then one expects the slope b to change. The following theorem supports this intuition. 107 

Theorem. Suppose Yi are identically distributed (but not necessarily independent) with E(𝑌𝑖) = 𝑀 > 0 108 

and finite var(𝑌𝑖) = 𝑉 > 0. Assume 𝜇𝑖𝑗 = E((𝑌𝑖 −𝑀)(𝑌𝑗 −𝑀)), 𝜇𝑖𝑗𝑘 = E((𝑌𝑖 −𝑀)(𝑌𝑗 −𝑀)(𝑌𝑘 −109 

𝑀)), and 𝜇𝑖𝑗𝑘𝑙 = E((𝑌𝑖 −𝑀)(𝑌𝑗 −𝑀)(𝑌𝑘 −𝑀)(𝑌𝑙 −𝑀)) are finite for all i, j, k, l, and define 𝜌𝑖𝑗 =110 

cor(𝑌𝑖, 𝑌𝑗) =
𝜇𝑖𝑗

𝑉
 and 𝜌𝑖𝑗𝑘 =

𝜇𝑖𝑗𝑘

𝜇𝑖𝑖𝑖
. Then 111 

    𝑏 ≈ (
𝑀𝜇𝑖𝑖𝑖

𝑉2
) (

∑ 𝜌𝑖𝑗𝑗−
1

𝑛
∑ 𝜌𝑖𝑗𝑘
𝑛
𝑖,𝑗,𝑘=1

𝑛
𝑖,𝑗=1

𝑛2(1−Ω)Ω
).    (Eq. 2) 112 

The approximation is better whenever the coefficients of variation of the sample mean 
√var(𝑚)

E(𝑚)
=

√𝑉Ω

𝑀
 and 113 

sample variance 
√var(v)

E(𝑣)
 are smaller, and is asymptotically perfect as these quantities approach 0. 114 

Additional details, alternative mathematically equivalent expressions for b, and a proof of the theorem are 115 
in SI Appendix S2. 116 
 This theorem extends a theorem of Cohen and Xu (15) which assumes that the Yi are independent 117 

and identically distributed (iid). In that case, the second factor on the right of Eq. 2 is 1 and 𝑏 ≈ (
𝑀𝜇𝑖𝑖𝑖

𝑉2
), 118 

which equals the skewness 
𝜇𝑖𝑖𝑖

𝑉3/2
 of Yi divided by its coefficient of variation 𝑉1/2/𝑀. Independence of the 119 

Yi is not necessary here: the same formula holds if 𝜌𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 and 𝜌𝑖𝑗𝑘 = 0 whenever i, j, and k are 120 

not all equal. Cohen and Xu (15) concluded that, in the iid case, skewness of Yi is necessary and sufficient 121 
for TL to have slope 𝑏 ≠ 0. Our theorem extends this result to the case of identically distributed Yi that 122 
may be non-independent. 123 
 The denominator 𝑛2(1 − Ω)Ω in Eq. 2 is a ∩-shaped function of Ω(i.e., it increases, has a 124 
maximum and then decreases again as Ω increases). So Eq. 2 may seem to suggest that b is a ∪-shaped 125 
function of synchrony (it decreases, has a minimum, and then increases again). But the numerator of the 126 
second factor of Eq. 2 may, a priori, also be a ∩-shaped function of synchrony, so a ∪-shaped 127 
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dependence of b on synchrony is not mathematically certain, nor are any of the components of such a 128 
dependence (the initial decrease, and the internal minimum and subsequent increase of b as Ω increases). 129 
Dependence of the numerator of Eq. 2 on Ω also means lim

Ω→0
𝑏 and lim

Ω→1
𝑏 can be finite even though 130 

lim
Ω→0

(1 − Ω)Ω and lim
Ω→1

(1 − Ω)Ω are 0. 131 

Numeric results  132 
To illustrate the identically distributed case, we performed numerical simulations based on multivariate 133 
normal random variables X = (X1, …, Xn) with mean (0, …, 0) and covariance matrix with diagonal 134 
entries 1 and off-diagonal entries equal to a parameter, 𝜌 ≥ 0. We let Yi = φ(Xi), where the 135 
transformations φ(.) were chosen, in different simulations, to make the Yi a variety of Poisson, negative 136 
binomial, gamma, exponential, chi-squared, normal and log-normal distributions. Increases in ρ produced 137 
increases in Ω. Exponential and chi-squared distributions are special cases of gamma distributions. We 138 
produced separate results for these distributions because they are widely used. Results are in SI Appendix 139 
S3; fig. 1 shows typical results for Poisson and gamma examples. 140 
 Results generally agreed with the above intuitions and analyses. The linearity hypothesis of TL 141 
was usually, but not always, an adequate approximation in that linearity and homoscedasticity could not 142 
be rejected statistically (SI Appendix S6 for details on how this was tested). In agreement with our 143 
theorem and Cohen and Xu (15), when a shifted normal distribution (which has skewness 0) was used for 144 
Yi, b was approximately 0 for all values of Ω. For skewed distributions, the slope b was generally smaller 145 
for larger values of Ω, confirming the prediction that b depends on synchrony. Although b decreased 146 
steeply as Ω increased from 0 for all skewed distributions, b most commonly continued to decrease 147 
monotonically as Ω increased further, even for large values of Ω, except for a few cases using gamma 148 
distributions, for which modest increases were observed (SI Appendix figs S14-S20): the b-versus-149 
synchrony relationship was only occasionally ∪-shaped, and then only mildly so. The right side of Eq. 2 150 
was computed analytically (i.e., with formulas) for gamma, exponential, chi-squared, normal, and log-151 
normal examples, and the formulas were compared with numerical results. For some distributions and 152 
parameters, the approximation was very accurate, and it was always at least qualitatively accurate (in the 153 
sense that it showed similar declines of b with increasing synchrony), except for the log-normal 154 
distribution, for which it was very inaccurate for some parameters, due to insufficient sampling, as 155 
previously observed (15). As expected from the theorem, Eq. 2 was a better approximation for smaller Ω. 156 
 We also constructed non-identically distributed examples by applying transformations to 157 
multivariate normal random variables. Our theorem, which assumed identically distributed Yi, did not 158 
apply here. The random variable X was the same as above and Yi = φi(Xi) where the φi(.) differed for 159 
different i. The φi(.) were chosen so that all the Yi were from the same family (Poisson, negative binomial, 160 
gamma, exponential, chi-squared, normal or log-normal), though with different parameters. For gamma, 161 
normal, exponential, and log-normal examples, the φi(.) were chosen so that Yi was distributed in the same 162 
way as (but was not equal to) fiY1, where 0 < f1 < … < fn. This procedure was not possible for negative 163 
binomial, Poisson, or chi-squared distributions because these families are not closed under multiplication 164 
by positive real numbers. Distributions used for these families and the results are described in SI 165 
Appendix S4. 166 
 Results reinforced most of the generalities that emerged from the above analytical results and 167 
simulations, although a ∪-shaped dependence of b on Ω was more common and stronger in these 168 
examples (SI Appendix S4). Exceptions to general tendencies did occur. For gamma, exponential, normal, 169 
and log-normal examples, TL was usually a good approximation. Although linearity was often 170 
statistically rejected, departures from linearity were modest: log(v)-versus-log(m) plots stayed very close 171 
to the regression line. The slope b always showed an initial steep decrease as Ω increased from 0 for all 172 
gamma, exponential, normal, and log-normal examples. As Ω → 1, these examples approached the case 173 
for which Yi equals fiY1 almost surely in addition to having the same distribution as fiY1. In that limit, 𝑚 =174 
mean𝑖(𝑌𝑖) = mean𝑖(𝑓𝑖𝑌1) = 𝑌1mean𝑖(𝑓𝑖), whereas 𝑣 = var𝑖(𝑌𝑖) = var𝑖(𝑓𝑖𝑌1) = 𝑌1

2var𝑖(𝑓𝑖). Therefore 175 
TL should hold exactly with slope 2. This argument holds even for symmetric distributions like the 176 
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normal. Our numeric simulations confirmed that as Ω increased toward 1, root mean squared errors from 177 
log(v)-versus-log(m) regressions went to 0 and b went to 2, sometimes from above and sometimes from 178 
below. An approach from below was paired with ∪-shaped dependence of b on Ω, which was common 179 
and often pronounced in these examples. The earlier result (15) that skewness is required for TL to have 180 
slope 𝑏 ≠ 0 if 𝑌𝑖 are identically distributed does not hold when 𝑌𝑖 are not identically distributed: 181 
simulations with Yi normally distributed had 𝑏 ≠ 0 (SI Appendix figs S45-S50). For Poisson and chi-182 
squared examples, TL was usually a reasonable approximation, and b declined steeply as Ω increased 183 
from 0 and continued to decrease for larger Ω. Negative binomial examples often strongly violated TL, 184 
especially for large values of Ω (e.g., SI Appendix figs S63, S64). Nonetheless, the slope b tended to 185 
decrease with increasing Ω whenever linearity held approximately. 186 
 Another way to create families of random variables Y with fixed marginal distributions but 187 
varying synchrony is based on sums of independent random variables representing local and regional 188 
influences on populations (32). It is well known that for independent Poisson random variables X and Xi, 189 
the sum X+Xi is Poisson distributed. Similar facts are also true for the negative binomial, gamma, and 190 
normal families. Therefore Y was generated by setting Yi = X + Xi for independent X and Xi for i = 1, …, n. 191 
The variable X can be interpreted as the influence of a large-spatial-scale environmental or other factor 192 
that affects all populations; the Xi are local effects. Different relative variances of X and the Xi led to 193 
different amounts of correlation (synchrony) among the Yi. By this approach, we constructed Y such that 194 
the Yi were identically distributed according to a desired Poisson, negative binomial, gamma, exponential, 195 
chi-squared, or normal distribution, with a desired level of synchrony among the Yi. Details of this 196 
construction and the results are in SI Appendix S5. 197 
 Results were the same in some respects as the results above, and differed in others. Larger values 198 
of synchrony always decreased the slope b (except for normal Yi, for which b was always 0, as expected 199 
from the theorem since Yi are again identically distributed). The slope b went to 0 as Ω approached 1. The 200 
approximation Eq. 2 applied reasonably accurately. In all cases, the right side of Eq. 2 reduced to simple, 201 
monotonically decreasing functions of Ω. However, contrary to prior simulations, log(v)-versus-log(m) 202 
plots often strongly violated the linear hypothesis of TL. Values of synchrony Ω larger than 0 smeared 203 
points rightward in log(v)-versus-log(m) space, destroying the linear relation expected from TL. This 204 
smearing decreased b, but also changed its meaning from representing the slope of a linear pattern to 205 
representing the slope of a linear approximation to a nonlinear pattern. The decrease in b did not reflect 206 
maintenance of a linear pattern with a changed slope, as in prior examples (fig. 1, SI Appendices S3-S4). 207 
SI Appendix S5 gives an explanation for this effect. 208 

Empirical results  209 
We examined the influence of synchrony on empirical data using 82 spatiotemporal population data sets. 210 
The datasets included annual time series of population density for 20 species of aphid sampled for 35 211 
years in 11 locations across the UK, annual density time series for 22 plankton groups sampled in 26 212 
regions in the seas around the UK for 56 years, and chlorophyll-a density time series measured at several 213 
locations at each of 10 depths in four distance categories from the coast of Southern California over 28 214 
years. We henceforth refer to distance categories from shore in the chlorophyll-a data as groups 1-4, 215 
where 1 refers to the closest category to shore, and larger group numbers correspond to farther categories 216 
from shore. See Methods for further descriptions of the data and their processing. 217 
 The spatial TL was reasonably well supported by all 82 datasets. SI Appendix figs. S91-S96 plot 218 
log(v) versus log(m) and give statistical tests of TL. Conformity to TL was not perfect, but was quite good 219 
overall, except for the chlorophyll-a data in group 3 (SI Appendix fig. S95). Linearity or 220 
homoskedasticity of the log(v) versus log(m) relationship was rejected at the 1% level for 7 of 82 data sets 221 
(1 aphid species; 1 depth from group 1; 5 depths from group 3).  222 
 We examined correlations across species, taxonomic groups, or depths (for the aphid, plankton, 223 
and chlorophyll-a data sets, respectively) between measurements of b and Ω. Factors other than 224 
synchrony may have influenced these results and are accounted for below after examining the raw 225 
correlations here. Fig. 2 (left panels) shows that b and Ω were significantly negatively correlated across 226 
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aphid species, and across depths in the chlorophyll-a data, groups 1 and 2, and were non-significantly 227 
negatively correlated across plankton groups in the plankton data. Higher synchrony Ω was associated 228 
with lower slope b in these data, despite possible confounding influences. 229 

However, significant positive correlations occurred in the chlorophyll-a data, groups 3 and 4 (fig. 230 
2m, p). These positive associations appear to conflict with simulation results, which generally support a 231 
negative association between b and Ω, unless confounding factors overwhelmed a negative influence of 232 
synchrony on b in these data. For instance, changes across depths in b may be influenced for the 233 
chlorophyll-a data, groups 3 and 4, by changes across depths in Ω and by possible changes in time series 234 
marginal distributions. Simulations carried out above held time series marginal distributions constant 235 
when synchrony was varied. 236 
 To control for changes in time series marginal distributions that may have occurred in concert 237 
with changes in synchrony, we decomposed slopes b = bmarg + bsync into contributions due to synchrony, 238 
bsync, and due to time series marginals, bmarg, to separate influences of synchrony and time series marginal 239 
distributions on the slope b. We computed the marginal contribution, bmarg, by independently randomizing 240 
time series and then re-computing the log(v)-versus-log(m) slope (Methods) to eliminate synchrony and 241 
ensure that it cannot contribute to bmarg. Then we defined bsync as b - bmarg. Fig. 2 (right panels) shows that 242 
bsync was negatively associated with Ω in all cases (albeit not always significantly), even for chlorophyll-a 243 
data, groups 3 and 4 (fig. 2o, r). For these groups, bmarg was strongly positively associated with Ω (fig. 2n, 244 
q). This positive association overwhelmed the negative association of bsync with Ω to produce the overall 245 
positive association of b with Ω observed in fig. 2m, p. Thus group 3 and 4 results did not conflict with 246 
simulation results, but rather showed that other factors dominated. The change in time series marginal 247 
distributions for the chlorophyll-a data was not surprising because these data were gathered across 248 
different depths, and chlorophyll-a density varies with depth in the ocean. SI Appendix fig. S99 is like 249 
fig. 2, but identifies the species/groups/depths of plotted points; panels for the chlorophyll-a data show 250 
that depth probably played a role. Differing thermocline depths across groups 1-4 (SI Appendix fig. S101) 251 
may also have been important. 252 
 To examine in more detail the influence of synchrony on spatial TL in empirical data, we 253 
performed further randomizations (Methods). Randomizations reduced or increased the synchrony in each 254 
of our 82 spatiotemporal population data sets while not modifying the marginal distributions in each 255 
sampling location. In virtually every case, increasing synchrony decreased b, while decreasing synchrony 256 
increased b (fig. 3). The strength of the effect varied across data sets and was typically steeper for smaller 257 
values of synchrony. Values of bmarg correspond to the y-axis intercepts of the curves in fig. 3. In a few 258 
cases, b appeared to depend in a ∪-shaped way on synchrony, as in some simulations, but the ∪ shape 259 
was modest when it occurred, also in agreement with simulations (i.e., only modest increases in b with 260 
increasing Ω were observed on the right portions of plots in fig. 3). The linearity of TL was approximately 261 
supported across the range of synchrony values except possibly for the highest synchrony values and the 262 
chlorophyll-a data in group 3 (SI Appendix figs S97, S98). 263 
 All results are summarized, with hyperlinks to supporting figures and derivations, in SI Appendix 264 
tables S3-S4. 265 

Discussion 266 

Understanding the relationship of synchrony with TL is important because both patterns are widespread in 267 
population ecology, and because TL and recent observed climate-change-induced modifications in 268 
synchrony have applied importance (19, 21, 26-28). 269 

We showed that the strength of synchrony substantially influences the log(variance)-versus-270 
log(mean) scatter plot, of which TL is one special form. It can destroy linearity of TL, but more 271 
commonly it preserves linearity and changes the slope b of the plot. Synchrony influenced the slope of TL 272 
in essentially all of our analytic, numeric, empirical, and randomization-based examples. The one 273 
systematic exception occurred when the marginal distributions of time series in different locations were 274 
normally and identically distributed so that a nonzero-slope of TL was not expected with or without 275 
synchrony (15). As synchrony increased from 0, slope b almost always decreased quite sharply. For some 276 
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theoretical and randomization examples, increasing synchrony starting from higher levels of synchrony 277 
increased the slope b modestly, but analogous increases were not seen in empirical examples when 278 
confounding changes in time-series marginal distributions were controlled. Our analytic results generalize 279 
a theorem of Cohen and Xu (15). We provided a simple method of decomposing b into its contributions 280 
due to synchrony, bsync, and due to time-series marginal distributions, bmarg. 281 
 Ballantyne and Kerkhoff (14) and Eisler, Bartos and Kertesz (7) (their section 3) described 282 
interesting links between small-spatial-scale synchrony and temporal TL. To explain the basic idea, we 283 
construct an idealized example using aphids monitored by suction traps. Suppose trap i for i = 1, …, n has 284 
Ai agricultural fields that can produce aphids within its sampling range. Suppose traps are placed so that 285 
no fields contribute to more than one trap. Suppose field ij (i = 1, …, n, j = 1, …, Ai) contributes a random 286 
variable Vij(t) to trap i in year t, and suppose all the Vij(t) are identically distributed with mean μ and 287 
variance σ2. Then if, for fixed i, Vij(t) are perfectly correlated so that all fields near i produce the same 288 
number of sampled aphids per year (this is very strong small-spatial-scale synchrony, the spatial scale 289 
being smaller than the spatial resolution of sampling), the mean of the number of aphids ∑ 𝑉𝑖𝑗(𝑡)𝑗  290 

sampled by trap i in year t is μi = Ai × μ, and the variance is σi
2 = Ai

2 × σ2. Assuming random variables for 291 
different times t are independent, the mean and variance across time of numbers of aphids sampled by 292 
trap i will converge almost surely, in the limit of long time series, to these same values (strong law of 293 
large numbers). Log transforming and doing basic algebra gives ln(σi

2) = 2 × ln(μi) + C1 for a constant C1; 294 
this is a temporal TL with slope 2. If, for fixed i, Vij(t) are independent, then the mean of ∑ 𝑉𝑖𝑗(𝑡)𝑗  is 295 

again μi = Ai × μ, but the variance is now σi
2 = Ai × σ2. Log transforming and doing basic algebra gives 296 

temporal TL with slope 1. (This example shows, incidentally, that observing TL with slope 1 need not be 297 
evidence that the aphids or other organisms are Poisson-distributed, even though Poisson-distributed 298 
aphids or other organisms lead to TL with slope 1.) 299 
 The above example differs in at least two important ways from our results. First, it concerns 300 
temporal TL, whereas we studied spatial TL. Second, the above example concerns synchrony at a 301 
different spatial scale from our study. Although dependence between numbers of aphids sampled at 302 
different traps seems likely to imply dependence between numbers contributed by fields within the range 303 
of individual traps, the reverse need not be true. 304 
 It seems worthwhile, in future research, to examine the possibly complex relationships between 305 
the above example (7, 14) and our study. While Eisler, Bartos and Kertesz (7) focus on temporal TL, they 306 
state without proof or details that many of their results also apply to TL more generally. Relationships 307 
between spatial and temporal TL have recently been examined (20) and may help connect the TL in the 308 
above example to the spatial TL of our study. Perhaps all these versions of TL could be formally related 309 
to each other and to synchrony. 310 
 Engen, Lande and Saether (25) produced a general model for analyzing a version of TL in which 311 
each group of measurements of population density comes from plots of the same size, but different groups 312 
use different plot sizes (distinct from spatial and temporal TL). On p. 2620 they remind the reader that 313 
increasing population migration leads to increasing synchrony, which causes “the slope [of this version of 314 
TL] … to increase from 1 to 2 … as the migration increases.” Engen, Lande and Saether (25) seem to 315 
indicate in the final sentences of their paper that their model could be extended to address spatial TL, 316 
possibly helping to illuminate connections among spatial, temporal, and their versions of TL and 317 
synchrony. 318 
 Cohen and Saitoh (20) examined relationships among synchrony and spatial and temporal TL in 319 
voles. Their example is consistent with our work and illustrates the value of our general results for 320 
understanding TL in specific systems. Using 31 years of population density data for the grey-sided vole, 321 
Myodes rufocanus, at 85 locations in Hokkaido, Japan, Cohen and Saitoh (20) verified that spatial and 322 
temporal TL held for the data, as well as for simulations of a previously validated Gompertz model of the 323 
dynamics of these populations. However, simulated time series had spatial and temporal TL slopes 324 
substantially steeper than those from data. Cohen and Saitoh (20) observed that most pairs of vole 325 
populations were significantly temporally correlated, and modified the Gompertz model accordingly. 326 
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When density-independent perturbations in model dynamics were synchronized, inducing synchrony in 327 
simulated population time series, and when simulated populations with higher mean density had a 328 
reduced variance of density-independent perturbations, the modeled slopes of spatial and temporal TL 329 
were reduced to values similar to those of the data. Our results here account qualitatively for the effect on 330 
TL slopes of the first of these two modifications of the Gompertz model, i.e., the introduction of 331 
synchrony. 332 
 Our theoretical models and our randomizations kept the marginal distributions of time series 333 
fixed as synchrony changed, to exclude confounding factors. In our empirical analyses, we separated the 334 
contribution of synchrony, bsync, to the empirical TL slope b. In reality, synchrony may change jointly 335 
with marginal distributions across species, or depths, or some other axis of variation, as in some of our 336 
empirical data (fig. 2). Covariation between changes in bsync and bmarg should be context dependent, may 337 
be biologically revealing, and is worth examining when multiple values of b are computed. 338 
 Increasing evidence shows that Moran effects, possibly due to climate change, modify synchrony 339 
(19, 21, 26-28). The present work indicates that changed synchrony will modify the slope and possibly 340 
the validity of TL, with ramifications for applications of TL in many areas including resource 341 
management (3), conservation (11), human demography (6), tornado outbreaks (8), and agriculture (2, 12, 342 
13). Given the ubiquity of synchrony in nature (22), it seems highly likely that synchrony often affects 343 
values of TL slopes in real populations, as Hokkaido voles showed. It is important to understand better 344 
how TL is affected by synchrony and other factors. 345 

Methods 346 

Analytic and numeric methods 347 
Full details of analytic results are in SI Appendix S1-S2, and full details of numeric simulations are in SI 348 
Appendix S3-S6.  349 

Data. 350 
Rothamsted Insect Survey (RIS) runs a network of suction traps that sample flying aphids. Daily aphid 351 
counts are collected throughout the flight season for many species at multiple locations. Data were 352 
processed to produce annual total counts for 20 species (SI Appendix table S1) at 11 locations (SI 353 
Appendix table S2) for the years 1976 through 2010, forming 20 spatiotemporal population datasets. 354 
 The Continuous Plankton Recorder (CPR) survey, now operated by the Sir Alister Hardy 355 
Foundation for Ocean Science (SAHFOS), has sampled the seas around the UK for plankton abundances 356 
since before World War II, using a sampling device towed behind commercial ships. Data were processed 357 
to produce annual abundance time series for 22 phytoplankton and zooplankton taxa (SI Appendix table 358 
S1) for 26 2○ × 2○ areas around the UK for the years 1958 through 2013, forming 22 spatiotemporal 359 
population datasets.  360 
 The California Cooperative Oceanic Fisheries Investigations (CalCOFI) has surveyed the 361 
California Current System since 1949 measuring chlorophyll-a regularly since 1984. Time series of 362 
spring chlorophyll-a were based on measurements at 55 sites which were divided into four groups based 363 
on distance from shore, with group 1 near to shore (average 87.7 km) and group 4 far from shore (average 364 
539.3 km). For each site and sampling occasion, annual chlorophyll abundances were calculated for 0, 10, 365 
20, 30, 50, 75, 100, 125, 150, and 200 m depths, forming 10 spatiotemporal datasets for each group. 366 
 Further data details are in SI Appendix S7. 367 

Randomizations and the decomposition of b 368 
Given an T × n matrix with each column containing a time series of population size or density from one 369 
location (so T is the length of time series and n is the number of sampling locations), synchrony was 370 
reduced without affecting time series marginal distributions for the sampling locations by selecting k rows 371 
randomly, and then randomly replacing the entries in those rows with randomly chosen (with 372 
replacement) values from the same column; this replacement was done independently within each 373 
column. Larger values of k destroy a larger fraction of any synchrony that was originally present in the 374 
time series. Setting k = T completely eliminates synchrony by randomizing each complete time series 375 
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independently. To increase the synchrony, starting from the original time series, k rows were again 376 
selected randomly. Within each column of this k × n submatrix separately, entries were sorted into 377 
increasing order. For each value of k, k rows were selected randomly in 100 ways, with values of b and Ω 378 
averaged for fig. 3. The value bmarg was computed by randomizing time series with k = T as described 379 
above, to destroy synchrony, and then computing b = bmarg for the randomized dataset. 380 
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Figure Legends 454 

Figure 1. Effects of spatial synchrony on spatial Taylor’s law (TL) for a model with populations 455 
identically distributed in different sampling locations and identically distributed and independent (iid) 456 
through time at each location. Examples use Poisson (a; λ=5) and gamma (b; shape α=8, rate β=2) 457 
distributions (see SI Appendix S3 for parameterization of the gamma distribution). Top panels: m is 458 
spatial sample mean and v is spatial sample variance. Confirming TL visually, approximately linear 459 
log10(v)-versus-log10(m) relationships held with selected values of ρ. Slopes were shallower for greater 460 
synchrony. Middle panels: TL had a shallower slope for greater synchrony. Black lines show the average 461 
(across the 50 simulations) TL slope plotted against average synchrony (error bars are standard 462 
deviations), and average root mean squared deviations of log10(v) values from log10(v)-versus-log10(m) 463 
linear regressions; red lines (b) are analytic approximations (Eq. 2, theorem 5 of SI Appendix S2.3), 464 
computable with readily available software for continuous distributions (SI Appendix S3), with + and × 465 
symbols respectively indicating points for which approximations were deemed adequate via two different 466 
methods, both symbols plotted when both methods indicate an adequate approximation. Each simulation 467 
consisted of 25 populations sampled 100 times each. Bottom panels: fractions of m and v values which 468 
were 0 and therefore ignored; and fractions of 50 simulations for which statistical tests rejected linearity 469 
or homoskedasticity of the log10(v)-versus-log10(m) relationship with 95% confidence. See SI Appendix 470 
figs. S1-S32 for other parameters and distributions, which often showed similar patterns. See SI Appendix 471 
S3 and S6 for additional details. 472 
 473 
Figure 2. Plots of TL slope b against synchrony Ω for 20 species of aphid in the UK (a), 22 plankton 474 
groups in the seas around the UK (d), and chlorophyll-a density time series measured at 10 depths in 475 
groups 1-4 (g, j, m, p; Methods), which are distance categories from shore. Panels are paired with 476 
contributions to the slope, b, of marginal-distribution structure (bmarg; b,e,h,k,n,q) and synchrony (bsync; 477 
c,f,i,l,o,r; Methods). Associations between synchrony and TL slope b (left panels) can be due to 478 
associations between synchrony and bmarg or bsync or both, since b = bmarg + bsync. SI Appendix fig. S99 479 
shows another version of the figure that labels individual species/groups/depths. 480 
 481 
Figure 3. The dependence of the spatial TL slope b on synchrony Ω, where synchrony was manipulated 482 
through randomizations or sorting of time series (Methods), for aphid species (a), plankton groups (b), 483 
and a chlorophyll-a density index measured at 10 depths (c-f). Panel c is for the 19 group-1 locations, 484 
panel f is for the 12 group-4 locations, and panels d and e are for 12 locations in each of two intermediate 485 
distance categories (groups 2, 3; Methods). Red points on plotted lines correspond to individual, 486 
unrandomized aphid species (a), plankton groups (b), and sampling depths (c-f), detailed in SI Appendix 487 
table S1. Grey points are averages over randomizations or sortings (Methods). Values for individual 488 
randomizations are shown in SI Appendix fig. S100. 489 


