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Abstract 

Diel vertical migration (DVM) is a widespread behaviour among many pelagic species, from 

zooplankton to sharks, and has been widely studied in both marine and freshwater environments. 

Usually, DVM comprises repeated daily vertical movements through the water column, from 

shallower at night to deeper during the day. Consequently DVM is perhaps unexpected in benthic 

predators, nonetheless, DVM has been observed in benthic sharks and freshwater teleosts, where it 

comprises inshore-offshore migrations over the substrate. However there is no clear evidence of this 

behaviour in large temperate benthic predators, such as skates.  

Here we present new observations of DVM in 4 species of skate (Raja brachyura, R. clavata, R. 

microocellata and R. montagui) that identify it as a general behaviour in this clade. Analysis of 89 

depth recording archival tags yielded 674 clear DVM events where skate left daytime deeper waters 

for shallower night time areas before returning to within 2.5 m of starting depths. Interestingly, 

these events closely resemble those of central place foragers, where shallow areas are foraging and 

deeper areas are refuging locations.  

Behaviour such as this has not been previously recorded in marine benthic predators and the 

findings suggest DVM might occur in many other benthic species. A broader understanding of DVM 

in benthic animals will be important in the design of effective boundaries for marine protected 
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areas. These findings also have implications for trophic coupling between deep and shallow benthic 

zones. Further characteristics of this unexpected behaviour are presented and hypotheses for its 

occurrence are discussed. 
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Introduction 

The diel vertical migration (DVM) of aquatic organisms, both marine and freshwater, is a commonly 

observed behaviour among diverse pelagic animals from copepods to sharks (Matern et al. 2000, 

Hays 2003, Sims et al. 2005, Andrews et al. 2009) and has been reported as the largest daily 

movement of animals on the planet (Hays 2003).  Typically the movement is from shallow water 

during the night to deeper water during the day and for smaller prey animals (copepods, krill) is 

hypothesised to represent a predator avoidance strategy, whereby planktonic organisms find a 

refuge from visual predators in darker depths during daytime (Lampert 1989, Hays 2003). The 

advent of electronic tagging has allowed DVM to be well studied in large pelagic vertebrates such as 

billfish (Goodyear et al. 2008, Evans et al. 2014), tuna (Schaefer and Fuller 2002, Walli et al. 2009, 

Humphries et al. 2016a) and sharks (Sims et al. 2005, Shepard et al. 2006, Queiroz et al. 2012). The 

principal hypothesis to explain DVM behaviour in these larger predators is foraging, with predators 

following vertically migrating prey (Hays 2003, Sims et al. 2005, Queiroz et al. 2010). While the 

adaptive significance is generally agreed to be predator avoidance or prey following, the ultimate 

driver of the movement is considered to be changing light levels (Lampert 1989, Mehner et al. 2007, 

Mehner 2012). In the case of bigeye tuna Thunnus obesus the behaviour has been likened to central 

place foraging, where the tuna forage in deep water below the thermocline during the day and 

return to the surface at night when light levels fall too low at depth for these obligate visual 

predators to hunt (Schaefer and Fuller 2010, Humphries et al. 2016a). While movement from 

shallow water at night to deep water during the day is that most commonly observed, and in 

consequence is termed normal DVM (nDVM), reverse DVM (rDVM, deep at night, shallow during the 

day) has also been observed in zooplankton, sharks and ocean sunfish Mola mola (Irigoien et al. 

2004, Sims et al. 2005, Pade et al. 2009, Queiroz et al. 2012). In basking sharks Ceteorhinus maximus 

rDVM has been attributed to a response to rDVM exhibited by the copepod prey Calanus 

helgolandicus (Sims et al. 2005) which in turn were responding to the presence of chaetognath 
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(arrow worm) predators in surface waters. Thus, DVM represents an often complex and flexible 

response to the movements of either predator or prey, most likely triggered by changing light levels. 

The conventional view of DVM being restricted to pelagic animals has been extended recently to 

include benthic organisms, through both tagging and sampling studies. These reveal a more complex 

pattern of vertical migration, with some benthic animals moving into the water column (Aguzzi et al. 

2015) as well as some pelagic organisms moving towards the benthos (Zouhiri and Dauvin 1996), 

resulting in interplay and vertical coupling between traditionally separate vertical realms (Sutton 

2013, Aguzzi et al. 2015). While these studies have shown diversity and flexibility in DVM behaviour, 

DVM in obligate benthic predators, such as skates, is unexpected since it not obvious why animals so 

clearly evolved for living on the bottom should perform daily excursions into the water column. 

Nonetheless, DVM has previously been observed in several benthic animals, such as decapod 

crustaceans (Aguzzi and Company 2010), catsharks, Scyliorhinus canicula (Sims et al. 2006) and, in 

freshwater lakes, burbot Lota lota (Harrison et al. 2013, Cott et al. 2015). In these examples the 

movement does not represent a vertical displacement into the water column (i.e. from benthic to 

pelagic) but rather an inshore-offshore (nektobenthic displacement) movement along the sea (or 

lake) bed (Aguzzi and Company 2010). To differentiate between benthic and pelagic diel migrations 

some authors (e.g. Cott et al. 2015) have used the term diel bank migration (DBM), however this 

seems less appropriate for marine studies. Instead, to clearly distinguish the movements studied 

here from the more familiar pelagic DVM we will adopt the term nektobenthic DVM throughout 

(Aguzzi and Company 2010). 

In male S. canicula, these nektobenthic DVM events have been attributed to behavioural 

thermoregulation, to improve bioenergetic efficiency (Sims et al. 2006) where the animals hunt in 

shallow warmer water and rest and digest in deeper cooler water. It is known from previous studies, 

however, that the skates studied here do not perform behavioural thermoregulation (Humphries et 

al. 2016b). 

Skates (Raja spp.) are widespread around the UK coast and are strongly adapted benthic 

mesopredators with dorso-ventrally flattened bodies, negative buoyancy, ventrally located mouths 

and dorsally located gill openings (spiracles) that allow the animals to respire whilst buried in sandy 

or gravelly sediments. Skates, as all elasmobranchs, have electrosensitive receptors (ampullae of 

Lorenzini) that are used to locate cryptic benthic prey, such as sand eels (Ammodytes spp.) or 

crustaceans (Collin 2012, Wueringer et al. 2012, Kimber et al. 2013). Dietary studies further confirm 

the strong benthic association, with the majority of prey items being benthic invertebrates; where 

teleosts are found in stomach contents they are again principally benthic or demersal species, 
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confirming skates to be benthophagous (Steven 1932, Ajayi 1982, Ellis et al. 1996, Farias et al. 2006, 

Šantić et al. 2012, Kadri et al. 2014, Pinnegar 2014). Pelagic teleosts are found in less than 2% of 

stomachs (Farias et al. 2006, Pinnegar 2014) and are more likely to have been scavenged, being 

typically very abundant species such as mackerel (Scomber scombrus) or sprat (Sprattus sprattus) 

which occur in fishery discards. Given these benthic specialisations it seems perhaps unlikely that 

DVM would be observed in skates. However, little is known regarding the fine scale movements and 

activity patterns in these animals, because of the difficulties of making sustained, detailed 

observations at depth in the turbid coastal waters which they typically inhabit. Currently all the 

species studied here, other than R. montagui, are listed as near threatened by the International 

Union for the Conservation of Nature (IUCN) Red List and consequently an understanding of 

population abundances, movements and preferred habitats is of increasing importance given 

documented declines in many skate populations (Genner et al. 2010, Simpson et al. 2011). Vertical 

movements possibly linked to DVM have previously been reported in electronically tagged common 

skate, Dipturus batis, and although only identified in half the individuals tracked and not investigated 

in detail (Wearmouth and Sims 2009), it is possible that nektobenthic DVM, similar to that in S. 

canicula or L. lota, also occur in skates. To investigate this possibility, depth time series data from 89 

electronic-tagged individuals of 4 species of skate were analysed in detail to identify the presence 

and nature of possible DVM events and to determine possible drivers. Of particular interest was the 

possibility of events that suggested central place foraging, a behaviour not previously reported in 

temperate skates. In a pelagic setting, as with tuna, central place foraging is linked only to depth. 

However, the sea bed comprises a complex mosaic of habitats and if skates are returning to a 

preferred depth, then it is possible that this represents some favoured foraging or refuging habitat. 

Consequently, this paper presents new observations of DVM behaviour in four sympatric species of 

skates, Raja brachyura (blonde ray; LaFont, 1871), R. clavata (thornback ray; Linnaeus, 1758), R. 

microocellata (small-eyed ray; Montagu, 1818) and R. montagui (spotted ray; Fowler, 1910) and 

tests possible hypotheses to explain its occurrence. In particular this study investigates whether the 

observed DVM movements represent benthic rather than pelagic movements, and analyses the 

purpose and nature of the events in the context of central place foraging. 

Methods 

Tags and tagging  

Fish were captured during routine research survey trawls in inshore waters of the Western English 

Channel (WEC) between Whitsand Bay (50.34 N, 4.28 W) and Bigbury Bay (50.26 N, 3.89 W) and 
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between July 2008 and May 2013. Fish were tagged using either of two types of CTL G5 

(www.cefastechnology.co.uk, UK), or Star Oddi (star-oddi.com; Star-Oddi, Iceland) data storage tags 

(DSTs). Standard G5 DSTs were 31 mm long by 8 mm diameter and weighed 1 g in water, whereas 

long-life DSTs measured 35.5 mm long x 11.5 mm diameter and weighed 2.1 g in water. Star Oddi 

DSTs were 39.4 mm by 13 mm and weighed 5 g in water. DSTs monitor temperature from 2 to 34 °C 

(accuracy 0.1 °C, resolution 0.03 °C) and pressure to a depth of 100 m or 200 m (accuracy 1%, 

resolution 0.04%). DSTs were programmed to record depth every 20 s, 30 s or 1 min intervals. All 

tags also recorded temperature every 10 min. DSTs were attached to skates via Peterson disc tagging 

using the methods described by Wearmouth & Sims (2009). Briefly, tags were mounted in a stainless 

steel wire cradle with a long, pointed stainless steel wire attachment. This wire was passed through 

a Peterson disc and then passed dorso-ventrally through the pectoral fin, taking care to avoid the 

abdominal cavity. A second Peterson disc was then placed onto the length of wire on the opposite 

(ventral) side of the animal before securing the attachment by turning a series of rounds into the 

length of wire remaining. Tagging was typically accomplished in less than 2 min, including the 

measurement of total length and body (disc) width. Animals were immediately transferred to 

aquaria with fresh running sea water for observation prior to release. DSTs were returned through 

the commercial net and trawl fisheries operating in the WEC with a reward of £50 given for return of 

the DST and the fish, or for information about the size of the fish and where it was captured.   

Ethics statement 

All tagging procedures were approved by the Marine Biological Association Animal Welfare and 

Ethical Review Body (AWERB) and licensed by the UK Home Office under the Animals (Scientific 

Procedures) Act 1986.  

Data analysis 

Firstly, to improve the accuracy of the depth measurements the tidal signal was attenuated by 

applying a correction factor to the time-series derived from the Plymouth tide gauge data recorded 

at Devonport (50.3684°N, 4.1852°W). At the outset the general nature of the DVM events was 

unknown, having been recognised in R. clavata through the serendipitous observation of 

movements such as those shown in Figure 1a. Unlike the regular and predictable DVM of pelagic 

predators, the events identified in skates were found to represent infrequent bouts of activity and 

were therefore not considered to be suitable for time-series analysis methods such as waveform 

analysis or hidden Markov analysis (e.g. Pinto and Spezia 2016). To confirm this assertion a spectral 

analysis was performed to investigate any correlation between the amplitude of the 1 cycle/day 

signal (indicative of DVM behaviour) and the number of events identified in each track; no significant 
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correlation was found (r2 = 0.127, Supplementary Table S2 and Figure S4). The activity does not 

therefore have a clear rhythmic component. Additionally, we performed a continuous wavelet 

analysis on a sample track and determined that while the analysis might indicate times when DVM 

activity occurred, it was largely descriptive and did not provide the detailed quantitative data 

required here (Supplement, Figures S6 and S7). Further, in the hidden Markov analysis performed on 

flapper skate (Dipturus intermedia) by Pinto & Spezia (2016) the analysis successfully identifies the 

occurrence of two behavioural modes and associates environmental covariates with these. However, 

here by contrast, we are interested in a detailed investigation into the nature of individual DVM 

events. Consequently an automated approach to their identification within the depth time series 

data, which would require a priori parameterisation or assumptions was not desirable (e.g. Adachi et 

al. 2016). Automatic identification of individual events would also have been hampered by the 

complex nature of the vertical displacements occurring during the events which make the 

identification of behavioural changes, such as from ascent to plateau for example, more challenging. 

Instead, software was developed to allow manual identification of events by using mouse clicks to 

mark four defining times for each event (event start time, plateau start time, plateau end time and 

event end time) on a display of the time series, as shown in Figure 1b. The intervals between 

selected times define phases referred to herein as ascent, plateau and descent and, overall as an 

event, with the inter event phase termed deep. To enable events to be viewed and marked more 

easily the time-series were first under-sampled to 1 in 10 by selecting every 10th data point; doing so 

provided a clearer view of the longer events than if the data were displayed at the original 20 s 

resolution, simplifying  the marking of the defining times. Once the end time of an event was marked 

the defining times of the event were written to a Microsoft Access™ database (DB). Once all events 

had been identified in a given track the software used stored event times were used to perform a 

detailed, post-hoc recalculation of the events using tidally corrected but non-under-sampled time 

series data, to more accurately compute a range of metrics with which to describe the events: 

ascent/descent deltas (overall vertical displacements), speeds and durations; plateau delta, duration 

and activity (sum of and mean vertical displacements) and pre-event activity (activity in the hour 

prior to the event start). In addition a straightness index (SI) for each phase was calculated using 

L0/L1 where L0 is the delta and L1 is the sum of step lengths. The SI therefore gives a value in the 

range 0-1, where 1 represents a straight movement with low tortuosity and lower values represent 

reduced straightness, or increased tortuosity.  
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Figure 1: Example DVM plots 
Depth time-series plots from a thornback ray (tag B0342) showing examples of typical DVM 
behaviour and other movements not studied here. a) Three events showing movement from 
deeper water (blue dashed line, 26 m, note the clear tidal signal) to a shallower depth (green 
dashed line, 10 m); b) A single DVM event from (a) with the tidal signal removed, showing the 
defining event times (red circles); c) an event representing a longer term movement from 
deep (blue line) to shallower water (green line); d) a reverse event, with movement from 
shallow to deeper water and back again; e) a complex movement pattern resulting in a 
transition to deeper waters. Events such as those shown in c-e, while interesting, are not 
classed as central place foraging events and are not further analysed in this paper. 

During the manual identification step all vertical migration events that could be clearly identified and 

which lasted less than 24 hours were marked. This initial exploration of the data identified 2354 

events with a range of characteristics as described later; however, the events of particular interest in 

this study were those that most resembled Figure 1a, which appear to represent clear, repeated, diel 

excursions from deep to shallower water and, importantly, to suggest activity similar to central place 

foraging, where the ‘refuging’ depth remains relatively constant, as does the ‘foraging’ depth, as 

would be expected with travel to and from preferred depths or habitats. These possible ‘central 

place foraging’ events were therefore identified and selected from the DB for further analysis using 

the following parameters: ascent delta > 5 m, overall event delta < 2.5 m and event duration 

between 1 and 18 hours. These parameters therefore select events where the animal moves into 
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waters at least 5 m shallower, remains for between 1 and 18 hours and then returns to a depth 

within 2.5 m of the starting depth. Supplementary Figure S2 shows the range of values observed for 

the 2354 event deltas (the difference in depth between the start and end of the event) and the 

ascent deltas and indicates the cut off values for the events selected for further analysis. 

Average temperatures for the deep phase were calculated using the tag-recorded temperatures at 

the event start and end times. The average temperature of the plateau phase was calculated from all 

data points between the plateau start and end points. Activity rates, determined as average vertical 

displacements (step lengths), were determined from all data points from up to 1 hour prior to the 

start of the event (pre-event activity) and for all points between the plateau start and end points 

(plateau activity). Average vertical displacements are either simply the vertical component of a 3-

dimensional movement, or are the result of the interplay between horizontal movements and the 

complexity of the sea bed. This measure is not therefore a true measure of activity but is a 

reasonable proxy given that, in general, increased activity will result in increased vertical 

displacements. Where an event was preceded by an event within less than an hour, all available 

points from the end of the prior event to the start of the current were used for the pre-event activity 

calculation.  

It is possible that a higher occurrence of events is associated with environmental factors or certain 

geographic locations. While the actual locations of the animals throughout the tracking period are 

unknown precisely off Plymouth, the depth is known accurately and can be used as a proxy for 

geographic location, as deeper depths are generally associated with locations further offshore in the 

study area. To identify peaks in the frequency of occurrence in relation to the start depth, 

histograms were prepared to show the count of event start depths in 10m depth bins (0-80m) by 

species and sex. 

To investigate seasonal fluctuations in event frequency, expected seasonal counts of events by 

species and sex were calculated using the total number of events for the year in each category and 

the proportion of individuals tracked in each season. The expected counts therefore assumed an 

even distribution of events throughout the year, allowing for differences in the number of 

individuals tracked in each time frame. To provide more robust statistical analysis, counts were 

pooled into winter (December, January and February), spring (March to May), summer (June to 

August) and autumn (September to November). These months were selected using tag recorded 

temperatures such that winter represented the coldest three months, spring the warming months, 

summer the warmest and autumn the three cooling months. Using tag recorded temperatures 

ensures that we are using temperatures experienced by the animals to determine the warmest and 
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coldest months. The statistical significance of differences between the observed and expected 

counts was determined using X2. 

All statistical tests were performed using SigmaPlot 12.5 (Systat Software, San Jose, CA) or MiniTab 

15.1 (State College, PA: Minitab, Inc., www.minitab.com). Because in most cases data were found 

not to be normally distributed, the statistical tests employed to determine significant differences in, 

for example, metrics such as ascent delta, were non-parametric tests such as Mann-Whitney rank 

sum, or Kruskal-Wallis One Way Analysis of Variance on Ranks.  

Results 

Summary 

Of the 179 tags deployed, 92 (51.4 %) were returned with 89 having useable data with a total of 35 x 

106 data points totalling 12,585 days. A summary of the datasets available is given in Supplementary 

Table S1. A total of 2354 events were identified from which 674 were selected for further analysis 

based on the parameters described above, chosen specifically to investigate possible central place 

foraging events (full event details are given in the Supplementary Data spreadsheet). A summary of 

the number of selected events by species is shown in Table 1. The number of events recorded for 

each individual was found to be highly variable in all species (Figure 2a). Although R. brachyura and 

R. montagui have fewer individuals, fewer events and fewer days tracked, the average number of 

DVM events per day are very similar to the other two species, with no significant differences found 

(Kruskal-Wallis One Way Analysis of Variance on Ranks, p=0.334), suggesting an adequate sample of 

events had been recorded. Consequently, there is an unsurprising correlation between the number 

of days tracked and the number of events recorded (linear regression: R. brachyura R2=0.123, 

p=0.29; R. clavata R2=0.313, p=0.002; R. microocellata R2=0.474, p<0.001; R. montagui R2=0.248, 

p=0.173; Figure 2b-e). The correlations were strongest and significant in the two species with the 

most individuals and the most days tracked. Notably, the 20 tracks for which no central place events 

were selected (Supplementary Table S2) were generally very short, with an average length of 49 

days (range 2-154), compared to an average length of 166 days (range 14-418) for those with events. 

Differences in the number of events for each sex, when adjusted to account for the number of days 

tracked were significant only in R. brachyura and R. clavata, where in both cases more events were 

recorded for males than females (statistical results in Table 2).  No significant correlation was found 

between the length of the individuals and the number of events (Supplementary Figure S1). 

http://www.minitab.com/
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Table 1: Frequency of DVM events per day tracked by species 

 Individuals 
No with  

DVM 
No of  

events 
Days  

tracked 
DVM per day  

tracked 

R. brachyura 12 11 62 1215 0.051 
R. clavata 43 28 294 5037 0.058 
R. microocellata 24 21 240 3474 0.069 
R. montagui 10 9 78 1795 0.043 

Totals 89 69 674 11521  
 

 

Figure 2: Frequency of events per individual 
a) The histogram shows a count of the selected events recorded for each of the 69 individuals. 
It is clear that this behaviour is not performed consistently by all individuals. For R. brachyura 
and R. montagui in particular the behaviour is frequent in only a few individuals. 

Table 2: Χ 2 results from the frequency by sex analysis 

Species Χ 2 N df P 

R. brachyura 12.33 62 1 <0.001 
R. clavata              31.41 294 1 <0.001 
R. microocellata   2.5 240 1 0.114 
R. montagui               2.77 78 1 0.096 

 

Movement analysis 

To gain a better understanding of how the animals were moving during these events the ascent, 

plateau and descent phase movements were analysed for each species; the results are shown in 

Figure 3 and Table 3. Ascent speeds (Figure 3a) ranged from 0.53 to 3.3 cm/s; descent speeds ranged 

from 0.13 to 5.5 cm/s. No significant differences were found between the ascent and descent rates 

(see summarised statistical results in Table 3).  

The results of the straightness index (SI) analysis are shown in Figure 3b. No significant differences 

were found between species in the ascent SI values (Kruskal-Wallis One Way Analysis of Variance on 
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Ranks, p=0.224). A significant difference was found between the descent SI values between R. 

clavata and R. microocellata (Kruskal-Wallis One Way Analysis of Variance on Ranks, p=0.012), 

however, no significant differences were found between the intra-species ascent and descent 

values, except for R. microocellata (Table 3). In all cases the SI values suggest a tortuous rather than 

a direct movement. Other than R. montagui the SI index for the plateau phase was significantly 

lower than for the ascent or descent phases. For R. montagui although the median value of the 

plateau phase SI was comparable with the other species, there was a much greater range of values, 

suggesting greater individual variability. The descent phase SI for R. montagui also had a greater 

range of values and some that were much lower than the other species.  

Table 3: Summarised statistical results 
A summary of the statistical tests, showing the test performed for each analysis and the 
associated p values. LR: Linear regression; MWRS: Mann-Whitney Rank Sum. Significant p-
values are highlighted. 

  Species 
Measure Test brachyura clavata microocellata montagui 

Events per day tracked  LR 
R2=0.123 

p=0.29 

R2=0.313 

p=0.002 

R2=0.474 

p<0.001 

R2=0.24 

 p=0.173 

Ascent vs descent rates  MWRS p=0.743 p=0.915 p=0.669 p=0.427 

Ascent vs descent SI MWRS p=0.162 p=0.138 p=0.049 p=0.222 

Plateau vs deep activity MWRS p<0.001 p=0.001 p<0.001 p=0.005 

Plateau vs commuting time MWRS p=0.158 p<0.001 p<0.001 p=0.659 

Deep vs shallow temp.  MWRS p=0.793 p=0.652 p=0.841 p=0.959 

 

A comparison of the activity rates, computed as the average step length, for the plateau and deep 

phases shows significantly more vertical movement occurred during plateau phases than in deep 

phases (Figure 3c, Table 3). This supports the contention that the plateau phase represents active 

foraging in shallower water while the deep, inter-event phase represents resting or refuging. 

The time spent during the plateau phase and that spent moving to and from the plateau depth were 

also compared (Figure 3d). In all cases more time was spent in the plateau phase than the combined 

ascent and descent phases, which ranged from 43% of the plateau phase (R. microocellata) to 73% 

(R. brachyura). Differences were significant however only for R. clavata and R. microocellata (Table 

3). Average time spent in the plateau phase ranged from 4.07 to 4.89 hours which represents 

between 58 and 70% of the total event duration. 
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Figure 3: Event movement analysis 
a) Average ascent/descent speeds. No significant differences were found between the ascent 
and descent speeds of any species; b) Ascent, plateau and descent straightness indices. While 
there are no significant differences between the ascent and descent straightness indices, 
differences between the ascent/descent and plateau indices are significant in all species 
except for R. montagui; c) Plateau vs deep. Activity during the plateau phase is, in all cases, 
significantly greater than in the deep phase; d) Plateau vs travel time. The plot shows the time 
spent in the plateau phase compared to the total time spent travelling between the deep and 
plateau depths. In all cases, except R. montagui, more time is clearly spent in the plateau 
phase than in the combined ascent and descent phases. 

Temperature as a possible driver 

Given that temperature was found to be a driver for the diel migrations of small spotted catsharks, 

Scyliorhinus canicula (Sims et al. 2006) the average deep and plateau temperatures were analysed to 

determine whether the skates were migrating to deeper colder waters for energetic advantages 

(Figure 4a). However, no significant temperature differences were found in any case (Table 3). 

Interestingly, R. clavata experienced significantly warmer temperatures during both the plateau and 

deep phases (Kruskal-Wallis One Way Analysis of Variance on Ranks, p=0.009). 

Depth ranges 

The average depths of the deep and plateau phases were analysed in order to identify species 

differences in the putative refuge and foraging areas (Figure 4b). Significant differences were found 
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in the deep phase across species (Kruskal-Wallis One Way Analysis of Variance on Ranks, p<0.001). A 

pairwise multiple comparison (Dunn’s method) indicated significant differences (p<0.05) between 

the two pairs R. brachyura / R. montagui and R. clavata / R. microocellata. However, differences in 

the shallower, plateau depth, although significant (Kruskal-Wallis One Way Analysis of Variance on 

Ranks, p=0.04) were less pronounced, with pairwise comparisons only being significant between R. 

montagui and R. clavata / R. microocellata. There was therefore more overlap in plateau depths 

between R. brachyura and R. clavata / R. microocellata, with R. montagui occupying deeper depths 

during the plateau phase. 

 

Figure 4: Plateau vs deep temperatures and depths 
a) Plateau temperature vs deep temperatures. No significant differences were found except 
for R. clavata where both temperatures were significantly higher than the other species; b) 
Differences in the deeper depths are as expected from Humphries et al. (2016b). Differences 
in the shallower, plateau depths are less pronounced, suggesting a greater overlap in putative 
foraging depths than expected. 

The analysis of event frequency and start depth showed no clear overall pattern (Figure 5). However, 

significant differences were found between male and female start depths in both R. montagui and R. 

clavata (p=<0.001 in both cases, Kruskal-Wallis One Way Analysis of Variance on Ranks). In R. 

montagui, females started events from deeper depths than males, while R. clavata females started 

events shallower than males. In R. brachyura and R. clavata the peak in events coincides with the 

preferred depth, as identified by Humphries et al. (2016b), however with R. microocellata and R. 

montagui the peak in event frequency occurs in shallower waters.  These plots also show a 

significantly greater propensity for DVM in male R. brachyura and R. montagui (N=674,   df=1,  

Χ2=26.47, p < 0.001). 
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Figure 5: Frequency of events by start depth for species and sex. 
The vertical dashed line indicates the preferred mean depth for each species (from Humphries 
et al. 2016b).  

Timing of events 

To determine whether light was a possible driver for the movements the event start and end times 

were analysed to give counts of event starts and ends per hour. The results (Figure 6) were plotted 

together with the local times of sunrise and sunset. A clear correlation was observed between the 

time of sunset and the start of the events, with event start times being in most cases just after 

sunset. Event end times were correlated with dawn and occurred predominantly shortly after 

sunrise.   
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Figure 6: Timing of events in relation to sunrise and sunset times 
Throughout most of the year events can be seen to start (green circles) just after sunset and 
to end (blue circles) just after sunrise. Bubble size indicates the number of events recorded, 
single events have been omitted for clarity. 

Seasonality of events 

The seasonal event frequency differed significantly from the expectation of randomness in all but 

three cases (female R. brachyura and R. microocellata and male R. montagui); statistical results are 

given in Table 4. The plot in Figure 7 shows the differences between observed and expected event 

frequencies by species, sex and season. Peaks in event frequency occur throughout the year for 

different species and sexes; in particular in spring for R. brachyura males, summer for R. clavata 

(male and female) and R. microocellata males and autumn for R. montagui females. It is interesting 

that peaks do not occur in winter in any case and that lows occur in spring for R. microocellata 

females and R. montagui males. Female R. brachyura and R. montagui and male R. microocellata 

exhibit the most consistent event frequency throughout the year. 
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Figure 7: Observed – Expected event counts by species, sex and season 
The plot highlights the differences between the observed and expected seasonal frequency of 
events, where bars above the line indicate higher, and below the line lower, frequencies than 
expected if there was no seasonal pattern. The expected counts are those determined by the 
Χ 2 analyses. 

Table 4: Χ 2 results from the seasonal analysis, significant results highlighted 
The results confirm that in most cases the event frequency has seasonal highs and lows that 
differ significantly from the expectation of randomness. 

Species Sex Χ 2 N df P 

R. brachyura Female 4.3667 25 3 0.224 
R. brachyura                     Male 42.0378 37 3 <0.001 
R. clavata              Female 21.2486 120 3 <0.001 
R. clavata                  Male 80.8832 174 3 <0.001 
R. microocellata   Female 34.9508 156 3 <0.001 
R. microocellata      Male 0.8225 84 3 0.844 
R. montagui          Female 2.2066 24 3 0.531 
R. montagui               Male 21.5625 54 3 <0.001 

Discussion 

While exploratory movements, including longer term shifts in depth to areas further inshore or 

offshore, are expected in active benthic predators such as skates as part of seasonal migrations 

(Hunter et al. 2005a, Hunter et al. 2005b), regular diel vertical migrations (DVM) from deep resting 
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or refuging areas to shallow foraging areas are unexpected. Nonetheless it is clear that all the 

species in this study do so with a similar propensity and in a similar fashion. This analysis of the 89 

depth time-series datasets identified 2354 events that represented diel inshore-offshore movements 

of which 674 were selected as being those most similar in character to the DVM of pelagic predators. 

In pelagic predators, such as bigeye tuna (Thunnus obesus) DVM represents a form of commuting, or 

central place foraging, where either the animals are only able to forage efficiently in the colder 

deeper waters during daylight and consequently return to the warmer surface water during the 

night, or alternatively, follow vertically migrating prey (Vaske et al. 2012). The ecological and 

physiological drivers for this behaviour are well understood in predators such as T. obesus (Schaefer 

and Fuller 2010, Fuller et al. 2015, Humphries et al. 2016a). Consequently, the purpose of the work 

presented here was to investigate the occurrence of the DVM events that most closely suggest 

central place foraging, to test the hypotheses that the movements are benthic rather than pelagic, 

that the purpose of the events is foraging and to explore possible drivers and motivations for a 

behaviour that must incur a metabolic cost of transport, yet reduces foraging time. 

Benthic rather than pelagic movement 

Both the specialised morphology and the benthophagous diet indicate that skates are strongly 

adapted to a benthic lifestyle. While foraging, skates have been observed using their crura to ‘walk’ 

along the sea bed and manoeuvre with precision to search for buried prey using their 

electroreceptive sense and only to resort to swimming as an escape response when alarmed 

(Lucifora and Vassallo 2002, Koester and Spirito 2003). At high swimming speeds (around 2 body 

lengths/s) the energetic costs increase significantly (Di Santo et al. 2017) and consequently sustained 

high speed swimming, as might be required for pelagic hunting, is unlikely. The lower energetic cost 

of ‘walking’, in comparison to even slower (1 BL/s) swimming explains why most observed 

movements along the bottom involve walking using crura rather than swimming using undulations 

of the pectoral fins (Macesic and Kajiura 2010, Di Santo et al. 2017). Additionally, as walking involves 

fewer muscles, it therefore provides a quieter electrical environment while foraging (Macesic and 

Kajiura 2010, Di Santo et al. 2017).  

The speed of the ascent and descent phases also suggests that the inward and outward migrations 

are likely the result of skates traversing the sea bed at ‘walking pace’. Firstly, the speeds, in terms of 

vertical displacements, are in all cases very low, with median ascent and descent speeds being < 1 

cm/s (Figure 3a). Median ‘walking’ speeds have been shown to be around 14.5 cm/s, or about one 

third body length per second (Koester and Spirito 2003). If the skates studied here are moving over 

the sea bed it is expected that the maximum rate of vertical displacement would be significantly less 
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than the rate of horizontal displacement. The low measured speeds are therefore expected, 

however at more than an order of magnitude less than ‘walking’ speed the results do suggest that 

the skate’s horizontal speeds are also slow, suggesting not only that the migrations are benthic but 

also that they may be meandering rather than directed. Further evidence in support of the low 

speed of movement can be drawn from a comparison with the free fall rate of descent, measured at 

~13.6 cm/s, which is again an order of magnitude greater than the ascent and descent speeds 

measured here. 

The analysis of tortuosity (SI index) of the ascent and descent phases again suggests that the skates 

are not frequently making directed movements typical of the DVM of pelagic predators (Shepard et 

al. 2006, Schaefer and Fuller 2010, Humphries et al. 2016a). Instead, the high tortuosity suggests 

benthic movement over a complex sea bed topology, possibly searching and foraging 

opportunistically en route. In this respect the movements differ from the DVM of pelagic predators 

and clearly resemble those of other benthic predators such as burbot Lota lota or catsharks 

Scyliorhinus canicula (Sims et al. 2006, Gorman et al. 2012, Harrison et al. 2013, Cott et al. 2015). 

Finally, it is worth noting that the average duration of a DVM event is 7.3 hours, which would 

represent a considerable expenditure of energy if the entire event was pelagic rather than benthic. 

Consequently, the majority of movements, in the form of vertical displacements, recorded by the 

tags are most likely induced by the interaction between horizontal benthic movements and the 

complex topology of the sea floor and therefore it is reasonable to refer to the events subsequently 

as nektobenthic DVM.  

Nektobenthic DVM as possible central place foraging 

Central place foraging is typically observed when animals have conflicting requirements for foraging 

and other activities. A common example is nesting sea birds, such as northern gannets, Morus 

bassanus or black browed albatross, Diomedes melanophrys, where provisioning birds need safe 

terrestrial locations for nesting, yet often forage in open seas at long distances from the colony 

(Weimerskirch et al. 1997, Patrick et al. 2014). In other cases, foraging areas can only be visited 

temporarily, as is the case with air breathing marine predators such as seals (Burns et al. 2008) or 

penguins (Wilson et al. 1993) or in ectothermic predators such as bigeye tuna, Thunnus obesus, 

diving into cold waters below the thermocline (Fuller et al. 2015, Humphries et al. 2016a). For many 

animals, for example Cape fur seals, Arctocephalus pusillus pusillus (De Vos et al. 2015) it is 

predation risk that affects foraging behaviour. In all such cases animals are driven to forage in areas 

in which they cannot permanently reside and therefore must bear the often significant cost of 

movement between these areas or the risk of predation. The skates studied in this work are 
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temperate benthic mesopredators that are unlikely, as adults, to be subject to significant predation 

pressure in the area studied (Scharf et al. 2000) and it was therefore expected that the depths or 

habitats occupied would be those that offer the best feeding opportunities (Krebs and Davies 1997). 

While considerable movement resulting from exploration was expected, and observed, it was not 

expected that skates would vacate productive foraging areas and return to apparent refuge areas in 

the way frequently observed with known central place foragers (e.g. Lawton 1987).  

Given the similarity between the subset of events selected and the DVM of pelagic predators the 

principal hypothesis explored here is that these movements represent a form of central place 

foraging and several lines of evidence support this contention. For example, the difference in activity 

between the deep and plateau phases suggests that during the deep phase skates exhibited limited 

or no movement and were resting, while during the plateau phase they were more actively exploring 

the sea bed. Although only vertical movements were recorded by the tags in this study, the greater 

vertical displacements observed in depth time-series from the shallower plateau phase  were 

consistent with skates moving much more actively across the sea bed, with differences in sea bed 

topography generating more vertical movements, in addition to any active swimming above the 

substrate the animals might perform. Further support for central place foraging is provided by the 

presence of a clear tidal signal observed in the deep phase of many of the tracks but which is rarely 

evident in the plateau phase. A clear tidal signal indicates that the animal is remaining at a relatively 

constant depth on or close to the sea bed. Some teleosts, such as cod, Gadus morhua, can effectively 

remain neutrally buoyant at the same distance above the sea bed, allowing a tidal signal to be 

detected by tags attached to individual fish (Pedersen et al. 2008). Skates however lack swim 

bladders, are negatively buoyant and therefore cannot maintain a depth above the seabed without 

active swimming. During the deeper phase the skates are therefore most likely resting on the sea 

bed and, if they are moving, it is with considerably less activity then during the shallow plateau 

phase. Given a skate’s propensity to bury itself in the bottom substratum  (Kotwicki and Weinberg 

2005), resting on the sea bed would seem to be the most likely behaviour to be occurring during the 

low activity deep phase observed between nektobenthic DVM events. Consequently it seems 

reasonable to conclude that the deep phase represents resting or refuging behaviour, while the 

plateau phase represents foraging.  

Potential drivers of nektobenthic DVM 

There are several hypotheses that could be considered as possible drivers of the nektobenthic DVM 

behaviour, for example, behavioural thermoregulation, predator avoidance, prey tracking or simply 

the avoidance of light. A potential driver for the nektobenthic DVM behaviour observed in skate 
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appears to be threshold levels of natural light, with the majority of events beginning just after sunset 

and ending shortly after sunrise (as shown in Figure 6). There is little direct evidence in the literature 

for nocturnal activity patterns in skates, except for Hove and Moss (1997), Auster (1995) and some 

trawling studies (e.g. Appa Rao and Krishnamoorthi 1982, Casey and Myers 1998) where catches of 

skates were greater at night. Given the difficulties of observing the detailed movements of free-

ranging skates the lack of detailed studies is not surprising. However, it is clear from this study that 

the nektobenthic DVM events, and the higher rates of activity associated with them, occur 

predominantly during night time hours. Casey and Myers (1998) suggest that the increased 

catchability of skates at night is possibly due to them being unable to visually detect the oncoming 

trawl net. However, skate eyes are well adapted for low light and nocturnal activity (Murphy and 

Howland 1990) and therefore it is perhaps more likely that day time catches are lower as skates are 

buried in substrata while during the night they are actively moving across the sea bed and 

consequently more vulnerable to capture in a bottom trawl net. Further evidence for this is provided 

by observations of the behaviour of skates during trawling, where a frequent response to the 

presence of a trawl is to attempt to bury in the substrate (Queirolo et al. 2012). A further possibility, 

suggested by this study, is that skates performing nektobenthic DVM are moving to areas for 

daytime resting where trawling is not undertaken. Indeed, diel differences in distribution have been 

previously recorded by video transect survey in the little skate Raja erinacea, with microhabitat 

association being observed during the day but with more random and dispersed distributions being 

seen during the night, consistent with resting or refuging during daylight and active foraging and 

searching during the night (Auster et al. 1995). 

It is interesting that the regularity of the nektobenthic DVM events observed here is quite unlike that 

frequently observed for pelagic marine predators, such as swordfish (e.g. Xiphius gladius) or bigeye 

tuna (Thunnus obesus) where it is usual for DVM to be performed by every animal every day 

(Schaefer and Fuller 2010, Evans et al. 2014). By contrast, the skates studied here performed 

nektobenthic DVM for only a part of the time they were tracked. As an example a daily minimum-

maximum depth plot is shown for R. clavata B0334 (Figure 8). The selected ‘central place foraging’ 

nektobenthic DVM events occur for a relatively short period of time, during which the animal is 

residing in deep water during the day yet moving to much shallower water during the night. At the 

beginning of August the skate then relocates into shallower water but can be seen to still be moving 

over a range of depths each day. Following the relocation in August the deeper resting depth is 

around 12-13 m and the shallower, foraging, depth is around 9-10 m. Observations such as this 

illustrate the complex nature and apparent flexibility of the behaviour of these predators. In this 
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case it seems possible that the animal moved to a geographic area where preferred foraging and 

resting habitats were in closer proximity, making any diel differences less marked. 

 

Figure 8: Min-max depth plot for thornback ray B0334 
Red line shows daily minimum depth, blue line shows daily maximum depth, grey vertical lines 
indicate the occurrence of nektobenthic DVM events.  

From the sporadic nature of the events it would appear that while light is a trigger for the onset or 

end of the movements, it may not be the causal driver (Ringelberg and Van Gool 2003). In other 

words, while changing light levels might trigger the start or end of an event, the causal factor (or 

underlying motivation) is more likely to be the need to find more suitable foraging habitat (at the 

start of event) or refuging habitat (at the end). The skates may therefore be responding to changing 

needs for environmental conditions (prey availability, substrate type) or internal states (hunger, 

satiation, exhaustion) on an ad-hoc basis, with the timing of the response triggered by a light level 

threshold.  There must therefore be a mismatch, at times, between the area in which the animals 

prefer to forage and areas they prefer when resting, with this mismatch providing the motivation to 

move. One possibility is that the animals prefer a particular substrate (sand, mud or gravel) when 

resting, one in which they are able to partially bury themselves but which offers few opportunities 

for foraging. However, little is known regarding preferred substrates, as skates are reported as being 

found in a range of habitat types from mud and sand through to coarse gravel (Wheeler 1969, Fock 

2014). Precisely which habitats are preferred for specific activities remains unknown. Further 

research into identifying habitat preferences is currently hampered by a lack of horizontal fine-scale 

movement data, with this study being typical in having detailed depth records, but no precise 

geographical locations. The complex heterogeneity of the sea floor in the study area (see 

Supplementary Information) means that depth alone is a very poor indicator of likely substrate. 
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Indeed, for example, even though it is well known that R. clavata frequently makes use of estuarine 

habitats (Hunter et al. 2005a, Hunter et al. 2005b) it is not yet possible to determine such 

movements from the depth records of the skates in this study.    

While no common seasonal driver for the onset of nektobenthic DVM behaviour was identified, 

there is less activity in winter for all species and increased activity for R. clavata, R. microocellata and 

R. montagui in the warmer months of summer and autumn. Indeed for R. clavata nektobenthic DVM 

is principally observed in summer months which most likely explains the higher overall temperatures 

recorded for the events in this species (Figure 4a). With the exception of R. brachyura, where the 

peak in activity is in spring, it is possible that the observed increase in nektobenthic DVM is a result 

of the animals being more active overall in warmer water. Warmer water temperature will increase 

metabolic rate of ectothermic skates and consequently increase the requirement for food if growth 

rates are to be maintained, possibly driving increased foraging activity. However, it is not clear why 

large predators such as skates should choose not to remain in favourable foraging grounds, but 

instead return each day to deeper waters. 

One possible explanation for the spatial separation between foraging and resting phases could be 

energy conservation through behavioural thermoregulation. In the catshark Scyliorhinus canicula 

behavioural thermoregulation was proposed to account for the observed nektobenthic DVM 

behaviour (Sims et al. 2006). It was found that catsharks hunted in warmer, shallow waters at night, 

but returned to deep, cooler waters at night to rest and digest, with an estimated energetic saving of 

around 4% by adopting nektobenthic DVM compared to isothermal, non-migratory behaviour (Sims 

et al. 2006). In contrast, blacktip reef sharks, Carcharhinus melanoptris, inhabiting warmer tropical 

areas than S. canicula, have been found to move into shallower water during daytime low tides in 

order to warm and possibly increase rates of digestion, but hunt during early evening having cooled, 

but while still warmer than their prey (Papastamatiou et al. 2015). Temperatures recorded for the 

skates studied here however showed no significant differences between the deep and shallow areas 

occupied (Figure 4a). The reason for a lack of a relation between temperature and depth is most 

likely the strong tidal mixing that occurs in these coastal waters, making them quite different from 

stratified pelagic waters (Pingree and Griffiths 1978). Therefore, behavioural thermoregulation is 

unlikely to be a driver for the activity observed here. 

The return to deeper, darker waters during daylight hours could be motivated by predator 

avoidance, as is the case with many pelagic fish (e.g. Sutton and Hopkins 1996). Typically, pelagic 

prey with visual predators, avoid day time predation by diving to deeper depths where the lower 

light levels afford some protection. However, the four skates studied here are considerably larger 
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than any other benthic predators in this coastal assemblage (Ellis et al. 2005b) and are unlikely to be 

subject to significant, if any, predation in the area studied. Consequently they are less likely to 

choose protection from predators over foraging. Over the last 100 years populations of other 

elasmobranchs, including possible predators of skates (such as the common skate, Dipturus spp.) 

have declined precipitously (Dulvy et al. 2000, Ellis et al. 2005a) so although predator avoidance 

seems unlikely it is possible that the observed nektobenthic DVM represents an historic behavioural 

trait evolved to anticipate the risk of predation (Mehner et al. 2007).  However, as discussed by 

Mehner (2007), such behaviour would be expected to produce a more stable and consistent pattern 

of movement than is observed here, being generated by an intrinsic driver rather than representing 

an ad hoc response to changing environmental variables.   

Given that the skates are essentially apex predators in this coastal, demersal ecosystem, a further 

possibility is that the migrations are being performed in order to track migrating prey. Skates are 

generalist predators with a broad dietary niche comprising principally fish and crustaceans (Ellis et 

al. 1996, Farias et al. 2006, Šantić et al. 2012, Pinnegar 2014) with typical prey of the skates studied 

here being crabs (e.g. Liocarcinus, Carcinus spp.) or sand eels (e.g. Ammodytes marinus). Sand eels 

are generally nocturnal and spend the autumn and winter buried in sediments (Greenstreet et al. 

2010) where they might make easy prey for skates that can use their electroreception to detect 

them (Wueringer 2012). Interestingly, it is the two species with a greater preference for fish in their 

diets (Pinnegar 2014, Wearmouth et al. 2014) that perform more nektobenthic DVM in autumn (R. 

microocellata and R. montagui). In the North Sea, there is evidence of sand eels performing DVM, 

whereby they occupy pelagic habitats during the day and return at night to shallower waters where 

suitable habitats exist in which to burrow (van der Kooij et al. 2008). If sand eels perform similar 

migrations, and are a preferred prey of skates in the area studied here then this might represent a 

possible driver for the observed events. However, sand eel movements have not been well 

documented around the south west coast of England so this potential explanation remains 

speculative. Similarly, crabs (e.g. Liocarcinus depurator) have been shown to have diel activity 

rhythms, burying in substrate during the day and emerging and becoming active at night (Aguzzi et 

al. 2009, Aguzzi et al. 2015), along with other endobenthic and nektobenthic animals (Aguzzi and 

Company 2010). These prey items, being in the open and mobile are probably more easily located by 

skates during the night and the availability of such prey might be a driver of either inshore 

migrations or a trigger for increased activity in the skates. However, at present there remains no 

clear reason why the skates would then return to deeper water after each foraging bout.  

Rajidae are oviparous, laying eggs which are commonly found in high density in nursery beds often 

located in shallower depths than the preferred depths in these species (Ellis et al. 2005b). However,  
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while in some species the peak in egg laying frequency coincides with the peak in event frequency 

(Holden 1975, Ellis and Shackley 1995, Koop 2005) egg-laying can be discounted as a possible driver 

for DVM as the events are observed more frequently in males, and while males could be following 

egg laying females to gain access to mating opportunities, the coincidence between nektobenthic 

DVM and egg laying peaks is not sufficiently consistent.   Light level, possibly coupled with intrinsic 

behavioural rhythms, therefore remains the only clear trigger for the behaviour with the majority of 

events beginning just after sunset and ending shortly after dawn where the skates appear to avoid 

the increasing light levels by moving to deeper, darker waters. This hypothesis is also confounded, 

however, by skates frequently spending extended periods of time in shallow water, e.g. Figure 8. 

This particular skate is not unusual in performing a migration to shallower water and remaining 

there, despite the increased light levels during August and September and having previously 

performed regular nektobenthic DVM. 

Conclusions 

The difficulties in obtaining sustained observations or in geo-locating active highly mobile benthic 

animals, such as skates, present a significant obstacle in our understanding of the movement 

ecology of these important predators. Through a detailed analysis of high resolution depth time-

series data this study has identified previously unknown diel inshore-offshore migrations that likely 

result in the animals having a wider dispersal and larger area of occupancy than might otherwise 

have been considered over short timescales. The limitations of the depth time-series data hamper 

attempts to determine the factors that motivate the animals to perform these migrations; although 

some potential drivers, such as behavioural thermoregulation, are not supported in this study and 

can be discounted. From the patterns of activity observed here, and the comparisons with 

nektobenthic DVM in other marine predators, it seems most likely that the movements represent 

foraging excursions. A principal finding in this paper was that the nektobenthic DVM observed 

provides evidence for possible central place foraging by the skate species we studied, a behaviour 

that has not, to our knowledge, been identified by previous investigations.  This study cannot 

provide any clear motivation for central place foraging in skates, however, and therefore in future 

studies efforts should be made to determine in more detail what activities the animals are 

performing in each phase. To this end, tagging studies using accelerometers (Brownscombe et al. 

2014) might provide important new evidence. Additionally, in the coastal regions inhabited by these 

skates, video tags or transects could provide more detailed habitat maps (Kendall et al. 2005) which 

might provide further evidence as to why skates perform these inshore-offshore migrations.      
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The observations presented here suggest that skates are highly mobile at finer scales than were 

previously expected, making the effectiveness of spatial protected areas or fishing controls more 

difficult to accurately define. The diel mobility patterns of skates suggest that protected areas should 

be large enough to encompass these movements and that fishing controls should consider the 

nature of the nocturnal activity which likely makes the skates more susceptible to capture during the 

night in either trawls or set nets. Finally, the common occurrence of nektobenthic DVM in the skates 

studied here suggests that nektobenthic DVM might be a common behaviour in many other benthic 

organisms, unobserved and unreported as yet because of the difficulties in determining the fine 

scale movements of temperate benthic animals.  
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