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ABSTRACT 19 

Aim  20 

Highly dynamic ocean environments can experience dramatic changes over 21 

relatively short timeframes, affecting the spatial distribution of resources and 22 

therefore the presence or absence of highly mobile species. We use simulation 23 

studies to investigate how different temporal resolutions might affect the results of 24 

species distribution models for highly mobile species (e.g. cetaceans) in marine 25 

environments. 26 

Location 27 

Azores archipelago, Portugal 28 

Methods 29 

We developed 3 virtual species with different habitat preferences influenced by 30 

(i) only static (topographic), (ii) only dynamic (oceanographic), and (iii) both 31 

dynamic and static variables. Assuming that species would reposition themselves 32 

daily according to these preferences (as has been observed for large marine 33 

foragers such as cetaceans), we used two different approaches (generalized linear 34 

model and generalized boosted model) to test the effect of using daily, weekly and 35 

monthly environmental datasets to model distributions. 36 

Results 37 
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The results showed that the selection of different temporal scales has a very 38 

important effect on model predictions. When dynamic variables are important 39 

components of habitat preference, models based on daily or weekly timeframes 40 

performed best at reconstructing the known niche. 41 

Main conclusion 42 

It is important that we consider temporal resolution when applying species 43 

distribution models. Several factors (e.g. species ecology and oceanographic 44 

characteristics of the ecosystem) should be taken into consideration when 45 

selecting an adequate temporal scale for niche modelling. For fine scale 46 

applications (e.g. dynamic ocean management), highly dynamic ecosystems, and 47 

highly mobile species, our results suggest exploring temporal resolution of 7-8 48 

days rather than coarser temporal scales. For some applications annual, seasonal 49 

or even monthly averages may produce inferior or inaccurate models. 50 

Author contributions: M.F. conceived the ideas; M.F., P.M. and C.Y. provided and 51 

analysed data; all authors contributed to the writing and revision processes.  52 
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1. INTRODUCTION 57 

It is important to understand the factors that influence species distributions 58 

within the application of environmental niche models (Fryxel et al., 2014). Species 59 

distribution models (SDMs) are useful tools and can have many applications 60 

including informing management and conservation decisions (Hirzel et al., 2001; 61 

Peterson et al., 2011). Their widespread use has led to useful discussions regarding 62 

their utility and accuracy (Brotons et al., 2004; Lawson et al., 2014). One important 63 

factor in the construction of SDMs is the resolution of environmental variables. 64 

Typically, the temporal and spatial resolutions of analyses are determined by the 65 

availability of environmental data, rather than by a considered assessment of 66 

species' characteristics (Barry & Elith, 2006; Jetz et al., 2012). Some studies have 67 

investigated how different spatial resolutions affect modelling results (Guisan et 68 

al., 2007; Svensson et al., 2013). However, the temporal resolution of 69 

environmental variables has received far less attention (e.g. Araújo et al., 2005) 70 

and in some cases those studies have focused on scales of centuries to millennia. 71 

Many variables used for SDM show significant variation over a variety of 72 

timescales. In the natural world, we see potentially significant temperature 73 

variations over years, seasons, months, weeks and even days, and these may be 74 

important for determining or limiting species distribution.  It is common practice 75 

for SDM studies to incorporate seasonal variations (e.g. bioclimatical 76 

Bioclim/WorldClim variables), but less common to examine variability over larger 77 

(multi-year) or shorter (monthly/weekly) periods.  78 
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When working with very dynamic environments (e.g. small-scale oceanic frontal 79 

areas) and/or with species with high mobility (e.g. cetaceans or sharks), short 80 

term temporal variation could be an important issue, as ephemeral environmental 81 

conditions may determine distribution over short time- frames. When working 82 

with top predators, the oceanographic dynamic variables will not affect the species 83 

distributions directly, but could be used as distal variables (Austin 2002), e.g. a 84 

proxy of prey density. For example biophysical coupling at frontal areas can lead to 85 

the formation of pelagic foraging hotspots (Scales et al. 2014), creating 86 

aggregations zones for zooplankton advected from surrounding water masses 87 

driving bottom-up processes across multiple trophic levels up to apex predators 88 

(Bakun 2006). 89 

Typically, incorporating temporal dynamics of the environment does not extend 90 

beyond the inclusion of seasonal or monthly climatological variables, e.g. data from 91 

Bioclim (Busby 1991) for terrestrial studies or from MARSPEC (Sbrocco & Barber 92 

2013) for marine studies. Some SDM studies based in the marine environment 93 

have used annual or seasonal averages (Cañadas & Hammond 2008; Praca & 94 

Gannier 2007), while others have employed monthly averages (MacLeod et al., 95 

2007, Moura et al., 2012, Panigada et al., 2008), and a notable few have considered 96 

weekly means (Becker et al., 2010; Becker et al., 2016; Howell et al., 2008; 97 

Mannocci et al., 2014; Roberts et al., 2016). Few studies have investigated the 98 

adequacy of temporal resolution of environmental data, such as Forney et al. 99 

(2012) and Scales et al. (2017). 100 
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Mannocci et al. (2014), grouping species at broad scales, found improved 101 

model results when using seasonal oceanographic data, leading the authors to 102 

suggest that there was no apparent short-term reaction of top predators towards 103 

oceanographic variability. Conversely, Scales et al. (2017) found that models fitted 104 

using seasonal or climatological data fields can introduce bias in presence-105 

availability models. Biologically relevant time scales can vary from thousands of 106 

years to minutes, depending on oceanographic processes (Mann & Lazier, 2013). 107 

Therefore, it is important we gain a better understanding of how different 108 

temporal scales might affect SDMs in the marine realm.  109 

The aim of this study is to investigate the effect of using different temporal 110 

resolutions in developing SDMs for highly mobile species in dynamic 111 

environments.  112 

2. MATERIALS AND METHODS 113 

2.1. Study area 114 

The study area is located in the Azores archipelago, a group of North Atlantic 115 

oceanic islands located approximately 1,800 km west of Lisbon. The region is 116 

strongly influenced by the Gulf Stream and all the branches of this current. Its 117 

large-scale oceanic circulation is dominated by the Azores Current, which 118 

generates considerable mesoscale variability (Santos et al. 1995). 119 

2.2. Environmental data 120 
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A set of real marine environmental variables was selected to represent the 121 

variability and dynamism of an oceanic system. Variables were chosen based on 122 

their reported influence on cetacean distributions (see Appendix S1). These were 123 

divided into two thematic groups: static (little or no short term variation – i.e. 124 

topographic variables) and dynamic (rapidly changing variable, such as 125 

temperature) (Table 1).  126 

Four static variables were derived from the digital elevation model (DEM) of the 127 

EMODnet Bathymetry portal: depth (the DEM); slope and curvature, calculated 128 

using DEM Surface Tools for ArcGIS 10.2; distance to the nearest 200 m 129 

bathymetric line, calculated using QGis 2.12. Curvature was used as a proxy of sea 130 

bottom roughness, providing an estimate of sea floor relief, which can influence 131 

some cetacean species (Lindsay et al., 2016).  All static variables were calculated at 132 

a spatial resolution of 0.5 x 0.5 km. 133 

Daily dynamic variables were derived from NASA’s Multi-scale Ultra-high 134 

Resolution (MUR) Sea Surface Temperature (SST) dataset, which merges many 135 

infrared and passive microwave datasets, gathered from satellites, into global daily 136 

maps at 1 km resolution. Thermal ocean fronts were detected from each MUR SST 137 

daily map (Miller, 2009) and used to generate daily ocean front metrics. Front 138 

distance (Fdist) quantifies the distance to the closest major front (Miller et al., 139 

2015).   140 

We calculated weekly and (approximately) monthly layers using the mean 141 

values of daily layers. All pairs of variables were tested for pairwise correlation; 142 
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the final set of selected variables all showed Pearson correlation under 0.75. All 143 

layers were rescaled to a 2x2 km grid using bilinear interpolation (Fig. 1).  144 

2.3. Virtual species 145 

Three virtual species were created, with different habitat preferences, based on 146 

varying responses to static and dynamic variables (Table 2; for full details of 147 

construction see Appendix S1). The 'Dynamic' species reacted only to dynamic 148 

variables. The 'Static' species was influenced solely by topographic parameters. 149 

The 'Pseudoreal' virtual species was influenced by both dynamic and static 150 

variables, with dynamic variables having twice the weight of static ones, so that 151 

only when dynamic characteristics were suitable (e.g. temperature) would the 152 

species prefer a specific static environment (e.g. depth). 153 

Ecological niches were simulated in a multidimensional space following Hirzel 154 

et al. (2001). We defined the ecological niche of each virtual species as the 155 

weighted sum of its hypothetical response curves to three different sets of 156 

environmental variables. The ecological niche suitability can be expressed as 157 

𝐻𝑖 ×𝑊𝑖 , where 𝐻𝑖 represented the virtual species’ niche suitability index for an ith 158 

space and the 𝑊𝑖 the weight of this suitability (Duan et al., 2014). Therefore the 159 

final suitability, H, was calculated as: 160 

Eq. 1 161 

 162 
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For each virtual species a suitability index (H) was calculated for all the areas 163 

sampled each day, using a threshold approach (H≥0.6) to select the suitable area 164 

for presences (for more details see Appendix S2).  165 

The virtual species' responses to environmental variables were either linear or 166 

unimodal. The final species distribution was based on a weighted combination of 167 

responses to each variable (Figs. S1.1 to S1.3, see Appendix S1 for full details). 168 

Suitable areas for each species were projected onto a 2x2 km map of the study area 169 

(Figs. S2.1 to S2.3).  170 

2.4. Sampling survey design  171 

Environmental and effort data for the virtual species mirrored the timeframe of 172 

a simulated cetacean detection survey for the Azores archipelago. Surveys were 173 

restricted to the Central and Eastern island groups, covering 20,415 km2. We 174 

modified Faustino et al (2010) tracks (Fig. 2; for more details of construction see 175 

Appendix S3) to last two months (8 weeks) per year, with 4 days of sampling per 176 

week over two years (July-August 2013 and 2014). Survey transects were mapped 177 

onto the 2 km grid that matched the environmental data. 178 

As a complementary analysis a second survey was used to test for potential 179 

effects of survey design on the results. A non-linear survey design was used; see 180 

Appendix S3 for more details.  181 

We simulated detections of the target species to infer presence (and absence) data 182 

in our models. We randomly selected 300 detection points (150 for training and 183 

150 for testing) from the sampled suitable area over the entire sampling period. 184 
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This generated two datasets, each with 150 presences (or detections) with the 185 

other grids cells, noted as absences (details in Appendix S2). This mimics a real 186 

world encounter rate of c. 1.22 groups/100 km (Silva et al. 2014). We allowed the 187 

encounter rate to change through time; therefore it was related to the amount of 188 

suitable habitat per kilometre. With this design, for the species influenced by 189 

dynamic variables (Dynamic and Pseudoreal), the daily encounter rate will start 190 

low and steadily increase over the course of the season (as suitability areas are 191 

more available), with some days with rates much higher than 1.22 groups/100km. 192 

Consequently we assumed that these species were some sort of large-ranging 193 

seasonal migrant, not present at the beginning of the season and then disperses to 194 

the area. To simplify the analysis we assumed a perfect presence/absence 195 

detection scenario (all the groups encountered during the sampling were 196 

detected), although this is unusual for marine species (Katsanevakis et al., 2012). 197 

This random selection was repeated 1,000 times for each species. Data were 198 

grouped according to three temporal aggregations. Niche estimates were 199 

calculated using two modelling approaches. 200 

2.5. Temporal aggregations 201 

Three temporal aggregations were created: daily, weekly (7-days) and monthly 202 

(4 weeks). For daily data, we constructed a data frame containing the 203 

environmental data, the sampling effort and the presence or absence of species for 204 

all the grid squares sampled each day. Using this approach a given location can be 205 

regarded as a presence one sampling day and an absence the next. For the weekly 206 
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aggregation, data were grouped by 7-day periods, calculating mean values for each 207 

environmental variable and aggregating the sightings, recording a single presence 208 

on each grid square with a species observation, regardless of the number of times a 209 

species was recorded over the 7-day period. The monthly dataset involved the 210 

calculation of the average values of the environmental variables corresponding to 211 

the four months virtually sampled (with 16 days sampled per month).  Presence 212 

grids were computed for each period, as in the weekly data.  213 

There was almost no reduction of the number of presences with the coarsening 214 

of temporal resolution, due to the virtual sampling design. No reduction was found 215 

between the daily and the weekly approach, and a very small amount (less than 5 216 

over 150 sightings) was found, for the monthly approach.  217 

2.6. Modelling approaches 218 

There are many SDM methods with variable accuracy and applicability, and 219 

notably performance may depend upon the characteristics of the target species 220 

(Quiao et al., 2015). Therefore, two modelling approaches with different 221 

theoretical bases were used: generalized linear models and boosted regression 222 

trees. The analyses were performed using the ‘MASS’, dismo, SDMTools, ecodist 223 

and gbm (Ridgeway et al., 2015) packages for R 3.2.2 (R Core Team ,2015).  224 

Binomial generalized linear models (GLM) are used widely for predicting 225 

species distributions, and perform well when applied to the detection of the most 226 

influential environmental variables (Peterson et al., 2011). Models used both linear 227 

and quadratic terms for all explanatory variables to allow greater flexibility in 228 
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fitting. Model selection utilised a stepwise (forward and backward) Akaike 229 

information criterion (AIC) procedure, obtaining the best explanatory variables for 230 

each case (James et al., 2013).  231 

Boosted regression trees (BRT) or generalized boosted regression models 232 

(GBM) are a combination of classical statistics approach (regression trees) and a 233 

machine learning (ML) technique (boosting). The inclusion of ML adds 234 

considerable advantages compared to conventional methods, including the 235 

improvement of model selection (Elith et al., 2008). This approach examines a 236 

large number of trees and uses a boosting approach to select a linear combination 237 

of many trees (usually from hundreds to thousands). Fitted values in the final 238 

model are computed as the sum of all trees weighted by an estimate of the 239 

contribution of each tree to the growing model. A relatively slow learning rate 240 

(0.001) with a higher tree complexity (5), was selected to aim for more than 1,000 241 

trees in the final model, avoiding a potential overfitting (Elith et al. 2008).  242 

2.7. Model evaluation 243 

SDM performance was evaluated using two metrics: (i) a variable contribution 244 

index; (ii) the area under the curve (AUC) of the receiver operator curve (ROC) for 245 

the training and test dataset. The analyses were performed using the SDMTools, 246 

ecodist, pROC and PMCMR packages for R.  247 

GLM variable contributions were based on a tally of their inclusion in each 248 

stepwise selection procedure. Variable contribution for GBMs was estimated using 249 

the relative importance selection tool in the gbm R package. 250 
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Test AUCs were evaluated using daily environmental data. For each model the 251 

training AUC and test AUC were calculated (test dataset = 150 randomly selected 252 

presences from the sampled suitable area different from the training data).   253 

To support the results, explanation suitability maps were produced for an 254 

extended area for randomly chosen dates for the three virtual species (Dynamic, 255 

Static and Pseudoreal) using the GLM approach.  All analysis and figures were 256 

produced using R.  257 

3. RESULTS 258 

We built 6,000 ecological niche models (three temporal aggregations and two 259 

modelling algorithms) for each of the three virtual species, making a total of 260 

18,000 models. For the two species influenced by dynamic variables, there were 261 

important differences in the evaluation metrics between the three temporal 262 

aggregations. In general, results improved when using the daily or weekly 263 

environmental layers. For species influenced solely by static variables, differences 264 

in accuracy between temporal aggregations were smaller. 265 

3.1. Variable contributions 266 

There were some differences among variable contributions by modelling 267 

method (Fig. 3), detailed below.  268 

3.1.1. GLM 269 

Temporal scale affected the models for the dynamic species; models based on 270 

daily and weekly aggregations successfully detected the two most important 271 
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variables (SST and Fdist), but the monthly-based models were unable to detect the 272 

influence of Fdist. 273 

For the Pseudoreal species, influenced by two dynamic (SST, Fdist) and one 274 

static variable (slope), models based on daily and weekly environmental data 275 

recovered all influencing variables. The greater relative importance of the dynamic 276 

variables was reflected by the contribution measures. Models based on monthly 277 

data performed poorly in selecting the influence of the Fdist variable for the niche 278 

of the Pseudoreal species.  279 

The GLM analysis for the Static species showed smaller differences in variable 280 

selection between temporal aggregations. The two most important variables (SST 281 

and slope) were selected in more than 80% of iterations for all temporal 282 

groupings.  283 

3.1.2. GBM 284 

The GBM models performed well for the dynamic and the Pseudoreal species. 285 

For the Dynamic species, the ‘daily’ model was able to successfully detect all 286 

influencing variables, although the contribution of the main variable (SST) was 287 

smaller than its theoretical weight. The ‘weekly’ models detected the two main 288 

variables (SST and Fdist). However, for the ‘monthly’ models, only the influence of 289 

SST was detected. 290 

For the Pseudoreal species, the daily approach identified the effects of SST and 291 

slope. However a relative upweighting of Fdist was found. The weekly analysis 292 

showed an almost perfect correlation between the variable contributions and their 293 
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theoretical weight. Models using monthly data had Fdist contributions lower than 294 

expected, while the curvature contribution was overestimated. In general, models 295 

from this scenario showed the poorest accuracy regarding variable selection.  296 

For the Static species, the three temporal aggregations produced similar 297 

results, with depth as the main contributing variable, as expected. However, some 298 

noise can be observed in the model for the monthly scenario, which exhibited a 299 

larger variation of contribution values. 300 

3.2. Train and test AUC results 301 

Ignoring the influence of mobility, we would expect that coarsening temporal 302 

resolution would decrease model performance for the Dynamic species, but would 303 

have little impact on the Static species, with the Pseudoreal species (influenced by 304 

both static and dynamic variables) showing an intermediate position. The AUC 305 

train and test results from the GBM and GLM approach confirm this hypothesis 306 

(Fig. 4). However when looking at the Static species, the monthly models 307 

performed slightly worse for the GLM modelling approach in the AUC test and for 308 

the GBM approach in the AUC train.  309 

Results of the AUC test for the non-linear survey design (transects not 310 

following a pre-designed line and with unequal effort distribution) showed the 311 

same patterns (Fig. S3.2): finer temporal resolutions produced better AUC values 312 

for the Dynamic and the Pseudoreal species. 313 

3.3. Suitability map projections 314 
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The visualized predictions (Fig. 5), showed the same pattern as previous 315 

evaluations. For the Dynamic and Pseudoreal differences are visible as temporal 316 

resolution coarsens. The Static species were less influenced by the temporal 317 

resolution of environmental variables, with no difference between temporal grain 318 

selections. 319 

4. DISCUSSION 320 

Selection of temporal resolution can be important for SDMs. When working in 321 

highly dynamic areas like the marine environment, and with species responding to 322 

daily environmental changes, the selection of temporal resolution can play an 323 

important role for environmental niche modelling procedures. In particular, the 324 

use of models based on an environmental dataset with finer temporal resolution 325 

can improve predictions of distribution. 326 

The results obtained suggest these findings are not related to survey design, 327 

although further analysis with other designs and applying detectability indexes 328 

would be useful to discard any potential undetected effects. 329 

4.1. Dynamic cetacean movements 330 

The virtual species used in the present study were designed based on a review of 331 

previous distributional cetacean studies. A daily response to rapidly changing 332 

oceanographic patterns, as assumed for the present study, has been described or 333 

suggested for some cetacean species, such as baleen whales (Doniol-Valcroze et al. 334 

2007, Druon et al. 2012). Similarly, small delphinids seem to be strongly influenced 335 
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by dynamic oceanographic structures (Balance et al., 2006; Becker et al., 2010). 336 

Furthermore, daily environmental variation at small to medium spatial scales 337 

(approx. 5 km) can be important for other marine mobile pelagic species such as 338 

tuna (Hobday & Hartman, 2006). These responses are probably related with prey 339 

movements associated with local/regional oceanographic features. However other 340 

cetacean species appear to respond to broad-scale oceanographic patterns (Becker 341 

et al., 2010). Non-dynamic factors, such as bathymetric features (e.g. seamounts) 342 

can also play an important role for some cetacean species (e.g. bottlenose dolphins, 343 

Risso’s dolphins, or pilot whales; Azzellino et al., 2008; Cañadas et al., 2002). 344 

Therefore, for species that may be more influenced by topographic features (such 345 

as deep-diving cetaceans) or broad/medium scale oceanographic features (such as 346 

the year-round presence of blue whales in the Costa Rica Dome; Reilly & Thayer, 347 

1990), the dynamism captured by fine (temporal) scale oceanographic patterns 348 

may not be relevant. Even so, some of the results presented here suggest that a 349 

species responding to static factors could still be influenced by the temporal scale 350 

selected. Although it might be expected that dynamic variables would have no 351 

impact on models for these species, implicit relationships between static and 352 

dynamic variables can result in some explanatory power for dynamic variables. 353 

4.2. Temporal resolution of dynamic variables  354 

Generally, modelling with weekly environmental data produced the best results. 355 

Using monthly aggregations produced inconsistent results, with SST patterns more 356 

routinely detected than frontal distance. This might be a consequence of two 357 

factors: the variable dynamism and the species relation with the predictors. The 358 
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level of variable dynamism could have a clear effect: SST is typically slower to 359 

change, while the location of thermal fronts can move rapidly. Consequently, a 360 

finer temporal resolution might be needed to detect the effects of highly dynamic 361 

variables (Fdist in this case). Moreover, the species ecology and their relation with 362 

the environment could be also essential. Response curves for SST in the present 363 

study were always based on a linear function, while those for distance to fronts 364 

were created using a unimodal function, leading to a more restricted range of 365 

suitable values for distances to frontal areas than for SST. Therefore the species 366 

modelled will be more sensitive to changes on thermal front locations than to SST 367 

changes. Likewise, the use of a finer temporal grain might be important when 368 

species are strongly related to specific ranges of one or more dynamic variables. 369 

However, for species with a more generalist relation with dynamic predictors, a 370 

coarser resolution could be suitable.  371 

Scales et al. 2017 found that models using broader temporal scales can 372 

introduce bias in presence-availability for simulated blue whale movements for the 373 

California upwelling system. However, Mannocci et al. (2014) concluded that 374 

modelling using a climatological temporal scale (corresponding to seasonal 375 

oceanographic conditions averaged over 7 years) performed better than using 376 

weekly data. These authors examined a tropical system, which are typically more 377 

constant, with stable oceanographic phenomena that can be used by top predators 378 

in a predictable fashion. In contrast, the (temperate) Azores region has been 379 

described as an area with high mesoscale activity strongly influenced by the Gulf 380 

Stream and associated currents (Santos et al., 1995). In order to produce accurate 381 
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models it is essential to have a good understanding of the oceanographic 382 

characteristics of the study area. When producing distribution estimates for areas 383 

with higher dynamism (such as temperate oceanic islands or coastal upwelling 384 

systems) the use of fine temporal resolution may be important.  385 

We found little evidence that modelling with daily (rather than weekly) 386 

environmental data could lead to significant improvement in model performance. 387 

Weekly environmental aggregations may prove a fairly consistent representation 388 

of average daily conditions, as has been suggested for SST products in relatively 389 

dynamic environments, such as the California current (Becker et al., 2010).   390 

It is important to consider the quality of the environmental data being 391 

analysed, particularly the characteristics of gap-free remote sensing products. 392 

Remote sensing datasets can have cloud-masked missing data which may reduce 393 

the predictive ability of the models (Scales et al. 2017). Some products include 394 

large areas of interpolation in order to cover cloud gaps. For example the MUR SST 395 

dataset used in this study performs spatio-temporal interpolation to fill gaps, but 396 

does this at multiple resolutions in order to preserve small-scale features 397 

(Vazquez-Cuervo et al., 2013). There is a trade-off to be made in deciding between 398 

daily and weekly aggregates. Our study indicates that weekly means may be the 399 

best choice at present.  400 

4.3. Relationship between spatial and temporal scales 401 

In the present study we found differences in model predictions between the 402 

different temporal grain sizes, although we did not test the combined effects of 403 
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spatial and temporal scales. The temporality of oceanographic and biological 404 

processes can be dependent on spatial scale, consequently temporal variability 405 

tends to be higher at finer spatial scales (Haury et al., 1978; Hunt & Schneider 406 

1978). Both Redfern et al. 2006 and Balance et al. 2006 reinforced the importance 407 

of using adequate resolutions to the scale of the data collected, matching spatial 408 

and temporal grain size to the specific research question. However, Becker et al. 409 

(2010) suggested that effects of the use of different spatial grain sizes are 410 

relatively small, finding similar functional relationships between SST response 411 

variables across different spatial resolution. Additionally, Scales et al. (2017) found 412 

that spatial effects at small temporal grain sizes (daily-monthly) are relatively 413 

small compared to climatological scales. Other studies of modelling applications 414 

suggest similar effects of spatial resolution for different areas and taxonomic 415 

groups (Guisan et al., 2007; Redfern et al., 2008, Becker et al., 2010). Therefore, the 416 

results obtained in the present study might be useful for different spatial scales 417 

when working at relatively small temporal scales.  418 

Nonetheless, the detectability of the influence of particular environmental 419 

factors can be dependent on the spatial resolution. Guinet et al. (2001) found that 420 

different spatial scales resulted in different variable influences on fur seal niche 421 

models. The relative importance of oceanic features will change with geographical 422 

scale, from oceanic gyres down to random turbulence (Parsons et al., 2013). For 423 

example, a weekly dataset might fail to detect an ocean gyre. Thus, coarsening 424 

temporal resolution might have a similar effect as coarsening the spatial 425 

resolution. The use of a fine temporal grain may negatively impact the detection of 426 
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some large-scale oceanographic features that can influence cetacean distributions, 427 

such as island-generated eddies or domes (e.g. Ballance et al., 2006), adding a 428 

temporal dimension to the Redfern et al. (2008) hypothesis of the relationship 429 

between signal-to-noise ratio and spatial scale.  430 

It is possible that for studies focusing on mesoscale/global distributions, a 431 

coarser temporal and spatial resolution may be more appropriate (e.g. Kaschner et 432 

al., 2006; Mannocci et al., 2014), while studies focused on species distribution 433 

modelling on regional and local scales may be improved by examining finer 434 

temporal resolutions (e.g. Becker et al., 2016). Yet, this might limit model 435 

applicability. Models built using seasonal environmental data won’t be able to 436 

predict distributions at finer grain sizes, and models using a weekly resolution 437 

might fail when projected into a global scale (Redfern et al. 2006). In contrast, 438 

Scales et al. 2017 found that even when working with large spatial scales (111 km) 439 

the use of seasonal and climatological fields increased the model error 440 

substantially but admit that this observation may not be valid in all biogeographic 441 

provinces. Our simulation results support the suggestion that care is needed when 442 

matching different scales (Scales et al., 2017). In fact we found that, in some cases, 443 

even if working at small spatial scales the use of a monthly resolution can produce 444 

unrealistic predictions. 445 

Redfern et al. (2006) suggest the simultaneous modelling of cetacean 446 

distributions at different scales as a way to overcome this problem. Further 447 

research is needed to understand better the relationship between temporal and 448 

spatial scales. 449 
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4.4. Further considerations  450 

It could be argued that temporal dynamics are not an issue for mobile species 451 

with high residency, or for those species that are mainly dependent on more stable 452 

environmental conditions. In these cases, animals would tend not to move from 453 

their preference areas, within reasonable environmental boundaries. Migratory 454 

species traveling long distances can have strong site fidelity between migrations 455 

(Rasmussen et al. 2007). However it is important to keep in mind that species can 456 

interact with the environment at multiple scales (e.g. hourly feeding, daily foraging, 457 

seasonal migration). This behaviour-dependent habitat utilisation may be 458 

detectable at different scales, for instance in baleen whale migrations (Corkeron & 459 

Connor, 1999; Rasmussen et al., 2007).  460 

Given that a species' niche is not usually well understood prior to modelling, it 461 

would be a good practice to include dynamic, static, and climatological variables in 462 

the model fitting process to test for influences at multiple spatial and temporal 463 

scales. However, high quality environmental data for many oceanographic 464 

variables rarely exists at daily temporal resolutions in most parts of the ocean and 465 

fine-scale prey distribution is non-existent on most temporal scales. As these data 466 

become available it would be worth testing their influence. Meanwhile the 467 

inclusion of variability measures (e.g. minimum daily temperature in a given 468 

month) when using coarser grains can provide a way of adding some finer 469 

temporal resolution data, improving model predictions.  470 

Approaches using a finer grain (both on biological, spatial and temporal scales) 471 

may be more suitable for effective conservation measures (Stelzenmüller et al., 472 
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2013). In fact, recent studies (e.g. Maxwell et al., 2016) highlighted the importance 473 

of management that changes in space and time in response to changes in the ocean 474 

and its users. Dynamic management techniques are appealing for areas with 475 

substantial temporal and spatial variability (e.g. seasonal tourism, Becker et al., 476 

2016). However other approaches might be useful: for species with low or 477 

moderate sighting rates the use of models using broader temporal resolutions 478 

might be justified (Roberts et al., 2016). For example if the goal of the study is to 479 

produce distribution maps of beaked whales, which are rarely sighted, the use of a 480 

fine temporal scale might be an unrealistic choice. There are several factors to take 481 

into consideration before choosing a specific temporal resolution, such as the 482 

ecology of the target species, the dynamism of the environment, the species 483 

detectability, the spatial scale to be used, the main objectives of the analysis or 484 

even the data availability.  485 

4.5. Final remarks 486 

The combination of mobility and habitat dynamism is a key issue when 487 

selecting the best temporal resolution to model a species' ecological niche. In this 488 

study we used theoretical species responding to daily changes of environmental 489 

variables to test these effects, and we found important differences between 490 

temporal resolutions. Even if theoretical species can differ from real world 491 

examples, it is important to emphasize the potential impact of these dynamic 492 

factors. Assuming that low-frequency environmental data will sufficiently 493 

reproduce high-frequency variation in species distributions might lead to 494 

inaccurate distribution models. 495 
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It is essential to have some knowledge of the species ecology and variable 496 

dynamism to select the best predictors and resolutions. For fine scale applications 497 

(e.g. dynamic ocean management), when using variables with high temporal 498 

dynamism (e.g. distance to frontal areas), and highly mobile species (or for species 499 

strongly related to dynamic environmental predictors), our results suggest 500 

exploring weekly temporal resolution. Coarser resolutions might be useful when 501 

working with variables with low dynamism or for species less dependent on 502 

dynamic variables (e.g. some deep diving cetaceans). However one must take into 503 

consideration that averaging environmental variables over larger time periods 504 

may mask the underlying dynamic patterns and produce a less realistic niche 505 

model, which may be misleading and even detrimental for conservation purposes.   506 
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Table 1. Environmental variables used to construct the virtual species suitability indexes. 732 

Variables Definition Source 

Oceanographic (dynamic)  

SST Sea surface 

temperature (°C) 

NASA’s Multi-scale Ultra-high Resolution (MUR) Sea Surface 

Temperature (SST) - http://mur.jpl.nasa.gov/. Downloaded 

with spatial resolution of 1kmx1km on a daily basis.  

Fdist Distance from major 

thermal front (km) 

Processed from NASA’s Multi-scale Ultra-high Resolution 

(MUR) Sea Surface Temperature (SST) following Miller (2009) 

methodology. 

Physiographic  (static) 

depth Depth (m) Bathymetric metadata and Digital Terrain Model data products 

derived from the EMODnet Bathymetry portal - 

http://www.emodnet-bathymetry.eu. Downloaded with a 

spatial resolution of: 0.125x0.125 minutes.  

slope Slope (degrees) Processed from EMODnet Bathymetry using DEM Surface 

Tools for ArcGIS 10.2 

d200 Distance from 200 m 

bathymetric line (km) 

Processed from EMODnet Bathymetry using QGIS 2.1.2 

curv Bottom general 

curvature 

Processed from EMODnet Bathymetry using DEM Surface 

Tools for ArcGIS 10.2 

 

http://mur.jpl.nasa.gov/
http://www.emodnet-bathymetry.eu/
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Table 2. Formulas used to build the suitability values for each virtual species according to 733 

the environmental variables.   734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

Species Suitability index 

Dynamic  𝐻𝐷 =
1

(2 + 1.5)
(2𝑆𝑆𝑇 + 1.5𝐹𝑑𝑖𝑠𝑡) 

Static 𝐻𝑆 =
1

(2 + 1.5 + 1)
(2𝐷𝑒𝑝𝑡ℎ + 1.5𝐷200 + 𝑆𝑙𝑜𝑝𝑒) 

Pseudoreal 𝐻𝑃𝑅 =
1

(2 + 1.5 + 1)
(2𝑆𝑆𝑇 + 1.5𝑆𝑙𝑜𝑝𝑒 + 𝐹𝑑𝑖𝑠𝑡) 
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Figure 1: Example of environmental variables for the 20th of August 2013. 746 

Variables are categorized as dynamic/oceanographic (SST (a) and Fdist(b)) or 747 

static/geographic (Depth(c), Slope(d), Dcoast(e) and Curvature(f)). 748 

Figure 2: Study area map (Eastern Group and Central Group, Azores Archipelago) 749 

with the virtual transects (with the nine substratum divisions) used for the niche 750 

modelling calculations. 751 

Figure 3: Results of variable selection for the three temporal aggregations (daily, 752 

weekly and monthly – in rows), two models algorithms (GLM and GBM), and 3 753 

virtual species (Dynamic, Static and Pseudoreal – in columns).  Results of the GBM 754 

models are expressed as mean variable contribution over the 1000 iterations 755 

according to variable relative importance. Results of the GLM are expressed as the 756 

number of times a specific variable was selected for the model after the AIC 757 

stepwise selection procedure. 758 

Figure 4: Results for the training and testing AUC using sampling data for the GBM 759 

and GLM model algorithms (rows), and the three temporal grain selections (daily, 760 

weekly and monthly) and three virtual species (dynamic, static and pseudoreal), 761 

(columns).  AUC ranges from 0 to 1. 762 

Figure 5: Suitability maps for randomly chosen dates. Projections were made for 763 

the three virtual species (Dynamic, Static and Pseudoreal) using the GLM approach. 764 

Columns represent the different temporal resolutions and the theoretical 765 

suitability (noted as Theoretical in the figure) for each species. The worm-like 766 
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pattern observed in the Dynamic species it is related to the preference for a given 767 

distance to the thermal front.  768 
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