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a b s t r a c t

Seagrass ecosystems are highly sensitive to environmental change. They are also in global decline and
under threat from a variety of anthropogenic factors. There is now an urgency to establish robust
monitoring methodologies so that changes in seagrass abundance and distribution in these sensitive
coastal environments can be understood. Typical monitoring approaches have included remote sensing
from satellites and airborne platforms, ground based ecological surveys and snorkel/scuba surveys. These
techniques can suffer from temporal and spatial inconsistency, or are very localised making it hard to
assess seagrass meadows in a structured manner. Here we present a novel technique using a lightweight
(sub 7 kg) drone and consumer grade cameras to produce very high spatial resolution (~4 mm pixel�1)
mosaics of two intertidal sites in Wales, UK. We present a full data collection methodology followed by a
selection of classification techniques to produce coverage estimates at each site. We trialled three
classification approaches of varying complexity to investigate and illustrate the differing performance
and capabilities of each. Our results show that unsupervised classifications perform better than object-
based methods in classifying seagrass cover. We also found that the more sparsely vegetated of the two
meadows studied was more accurately classified - it had lower root mean squared deviation (RMSD)
between observed and classified coverage (9e9.5%) compared to a more densely vegetated meadow
(RMSD 16e22%). Furthermore, we examine the potential to detect other biotic features, finding that
lugworm mounds can be detected visually at coarser resolutions such as 43 mm pixel�1, whereas smaller
features such as cockle shells within seagrass require finer grained data (<17 mm pixel�1).
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Seagrass ecosystems have a global distribution, and they play an
integral role in delivering multiple ecosystem services to coastal
regions (Barbier et al., 2011; Orth et al., 2006), including the pro-
vision of nursery ground for commercial fish species (Beaumont
et al., 2008; Bertelli and Unsworth, 2014), sediment stabilization
(McGlathery et al., 2012), pathogen reduction in coastal waters
(Lamb et al., 2017) and carbon sequestration (Fourqurean et al.,
2012; Macreadie et al., 2014). Despite their evident ecological
importance, seagrass ecosystems have been in decline for three
decades (Waycott et al., 2009), with one in five seagrass-habitat
. Duffy).

Ltd. This is an open access article
associated species at some risk of extinction according to Interna-
tional Union for the Conservation of Nature (IUCN) categorisation
(Short et al., 2011). With threats such as human disturbance (e.g.
mechanical damage and release of toxic compounds (Short and
Wyllie-Echeverria, 1996)), changes in water quality (Duarte,
2002) and warming of seas (Marb�a and Duarte, 2010) likely
causing such declines, there is a clear need to develop methods to
monitor the extent and health of seagrass meadows.

Monitoring efforts to date have been conducted using a range of
in situ approaches, including scuba/snorkelling surveys (Gotceitas
et al., 1997), ground-based sampling (Moore et al., 2000), and
hovercraft-based mapping (Mckenzie, 2003). Active and passive
remote sensing approaches are also used frequently to estimate the
coverage and quality of seagrass habitats. Using active acoustic
remote sensing methods such as side scan sonar, it has been shown
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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to be possible to quantify the coverage of seagrass meadows
(Barrell et al., 2015; Hossain et al., 2014), whilst passive spectral
sensors on-board platforms such as satellites or light aircraft have
proven useful for quantifying seagrass meadow dynamics (e.g.
Baumstark et al., 2016; Cunha et al., 2005). For example, using
freely available multi-spectral Landsat data (with a spatial resolu-
tion of ~30 m per pixel), changes in seagrass meadow extent have
been charted (Knudby et al., 2010), and so have fluctuations in
biomass (Misbari and Hashim, 2016). Finer spatial resolution opti-
cal and infra-red satellite data from systems such as IKONOS and
Quickbird (with a spatial resolution finer than 4 m) have also
generated useful biomass estimates for multiple seagrass species
(Lyons et al., 2015; Roelfsema et al., 2014). Beyond the commonly
used four-band spectral approach (blue, green, red, infra-red),
multi-spectral data with 16 spectral bands have been captured
from airborne sensors and used to estimate seagrass coverage,
biomass and species composition (Phinn et al., 2008). The limit of
many such remote sensing techniques is the spatial resolution,
which restricts the focus of studies to identification andmapping of
seagrass areal extent only: even in fine spatial resolution satellite
data, individual seagrass plants or shoots cannot be resolved.
Additionally, the ability to detect features such as seagrass from
satellite observations is frequently affected by cloud cover and
variable tide states (Stekoll et al., 2006), limiting the utility and
applicability of such data for time-series investigations. Further-
more, the inability of satellite measurements to capture the fine
spatial patterns in the distribution of plants and biomass within
seagrass meadows, particularly in sparsely vegetated areas (Valle
et al., 2015), means that current scientific understanding of sea-
sonal growth patterns and the causes of meadow decline is highly
uncertain.

The recent rapid growth in deployment of lightweight low-cost
drone technology has been mooted as a revolutionary addition to
the toolkit of ecological and environmental researchers (Anderson
and Gaston, 2013). Drones offer a low-flying platform from which
fine-grained (sub-decimetre spatial resolution) remote sensing
observations can be captured, and such approaches are already
being used widely in fields such as hydrology (DeBell et al., 2015),
forestry science (Inoue et al., 2014), polar studies (Ryan et al., 2015)
and wildlife monitoring (Chabot et al., 2015; Hodgson et al., 2013).
The flexibility of the lightweight drone platform, both in deploy-
ment capabilities and customization (i.e. payload options) has led
to their utilisation in coastal environments including studies
monitoring beach and dune topography (Gonçalves and Henriques,
2015), classifying habitats used as nurseries for fish (including
seagrass) (Ventura et al., 2016) and mapping coral reefs (Chirayath
and Earle, 2016). Additionally, the self-service nature of data
collection and the ability to replicate data collection with the aid of
GPS navigation, make drones very useful tools for monitoring dy-
namic environments such as the intertidal zone. In environments
such as this, other remote sensing technologies, such as low spatial
resolution satellite sensors, find retrievals challenging. Reasons for
this may include a large temporal gap between image acquisitions,
fixed orbit patterns causing data capture at different tidal states and
therefore differing effects from the water column, presence of sun
glint (Kay et al., 2009), mixed pixels (Suominen and Tolvanen, 2016)
and land-sea adjacency issues (Sterckx et al., 2011).

Given the extensive loss of seagrass in the British Isles in recent
years (Jones and Unsworth, 2016), developing new and scale-
appropriate methods for quantifying and monitoring changes in
these ecosystems should improve the way that drivers of change
are understood, and allow for improved management. The work
presented herein uses a lightweight drone fitted with consumer
grade cameras to capture aerial data of intertidal seagrass (Zostera
noltii) meadows at low tide. We explicitly sought to address the
following research questions:

i) Can a consumer grade camera and lightweight drone be used
to collect proximal remote observations of intertidal seagrass
meadows?

ii) How effective are different image classification techniques
for mapping the distribution of intertidal Zostera noltii
meadows?

iii) How accurate are Zostera noltii coverage estimates derived
from drone-based photographic data?

iv) Are other biotic features (e.g. gastropod shells and lugworm
mounds) detectable in the image data?

The study utilised two intertidal seagrass meadow sites with
differing plant density to test a further question:
v) To what extent can the drone-based methodology capture

differences in plant density using a standardised survey
protocol?

In this manuscript, we demonstrate a full workflow including
data capture, processing and some example classification schemes,
and combine this information to obtain meadow coverage esti-
mates at two intertidal seagrass meadow sites in Wales, UK.

2. Methods

2.1. Study species: Zostera noltii

Zostera noltii (commonly known as dwarf eelgrass) has an
extensive distribution, and it is found throughout the British Isles,
parts of Scandinavia, the western Mediterranean, parts of west and
north Africa and in the Black Sea (Pergent-Martini et al., 2015).
Although assigned a status of ‘Least Concern’ on the IUCN red list,
the overall population status is assumed to be declining (Short
et al., 2010). Furthermore, apart from reports of meadow expan-
sion in Wales (Bertelli et al., 2017), local declines in Europe have
been observed in recent decades, e.g. in France (Bernard et al.,
2007), the Wadden Sea (Philippart and Dijkema, 1995), Spain
(Hernandez et al., 1997) and Portugal (Martins et al., 2005).

Like many seagrass species, Z. noltii grows in an ecological niche,
requiring specific environmental conditions (e.g. substrate slope
and grain size Valle et al., 2011) to successfully grow and survive. It
is easily disrupted by changes inwater quality and light attenuation
in the water column. Multiple studies have found that sediment
input into Zostera noltii habitat has detrimental effects on shoot
density and ultimately survival, both in situ (Han et al., 2012) and in
a laboratory setting (Cabaço et al., 2007).

2.2. Study sites

The research was focused on two sites in Pembrokeshire in
Wales, the United Kingdom (Fig. 1) both of which have Zostera noltii
meadows. One of the meadows is located in Angle Bay
(51�40050.4200N; 5�02035.1000W) and the other at Garron Pill
(51�44005.8000N; 4�52055.3900W). Angle Bay is an extensive inter-
tidal habitat covering approximately 2 km2 at low tide. Zostera noltii
grows in the majority of this area and was particularly dense at the
time of data collection (mean percentage cover of quadrats was 54%
in July 2016). The sediment at the site is relatively firm and
therefore accessible (although not easily so) on foot at low tide.
Garron Pill is a more sheltered site located further upstream along
the Pembroke River. It is one of several tidal inlets in the area, and
when drained at low tide reveals an intertidal habitat of approxi-
mately 0.5 km2. Seagrass was less dense at this site (mean per-
centage cover of quadrats was 17.6%) There is also a mixture of
macroalgae-dominated, and salt marsh habitats at this site. The



Fig. 1. The location of the study sites within the context of the west Wales, UK A) and Pembrokeshire B). Flight paths are shown with dashed lines for Angle Bay C) and Garron Pill
D).
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sediment is much less stable than at Angle Bay, and therefore only
small sections of the site were accessible on foot. One plot (of
approximately 50 m2 in size) was surveyed at each site (Angle Bay
and Garron Pill).

2.3. Drone & sensor equipment

A 3D Robotics Solo (https://3dr.com/) multi-rotor drone was
used with a custom designed vibration-dampened 3D-printed
sensor mount (by the author JPD) (http://www.thingiverse.com/
thing:1964056). The mount allowed for the attachment of a
nadir-viewing Ricoh GR II compact digital camera that captures
images with 16.2 effective megapixels and encompasses a com-
plementary metal-oxide semiconductor (CMOS) sensor and prime
lens with a fixed focal length of 28 mm. It can capture images in
both uncompressed (RAW) and lossy (JPEG) formats, and also in-
cludes a built-in intervalometer. This allows the shutter to capture
images at given time intervals, which is useful for data capture from
autonomous vehicles such as lightweight drones. Camera specifi-
cations can be found in Table S1. In combination with flight plan-
ning software, ideal intervals can be calculated based on the
sensors field of view, altitude and flight speed, allowing optimal
image overlap to be determined, thus permitting production of
good quality orthomosaics and digital terrain models (Dandois
et al., 2015).

Arducopter firmware (APM:Copter solo-2.0.20) running on the
Pixhawk 2 autopilot system located inside the drone allows for
waypoint-guided flights. Control over position (in all three di-
mensions) and speed of the vehicle allow for structured surveying
with user-dictated overlaps in the image data given the altitude of
the drone and the field of view of the sensor. Flight missions (i.e.
way point guided flight paths) were designed in Mission Planner
(Oborne, 2016) and in the field, flights were conducted using the
Android application Tower (Huya-Kouadio, 2016).

At both sites, two flights were conducted at 15 m altitude and a
speed of 2 ms-1 (Fig. 1C and D). This altitude gave a ground sam-
pling distance of ~4 mm when using the Ricoh GR II sensor (see
Table S1). The speed and altitude combinations provided sufficient
overlap (~70% frontlap and ~70% sidelap) between each image so
that image matching and mosaicking was optimised. Further de-
tails of the mosaicking process can be found in section 2.5: Pro-
cessing and Analysis. At Angle Bay, the data collection flight was
undertaken at 16:30 GMT on 21/07/2016. Weather conditions were
dry, with windspeeds averaging 4.5 ms-1, light cloud cover and
intermittent sunshine. At Garron Pill, the flight was conducted at
14:00 GMT on 23/07/2016. Weather conditions were dry with
windspeeds averaging 7.5 ms-1, and it was generally overcast. An
additional two flights at 50 m altitude were undertaken at Garron
Pill with an AgroCam RGB sensor (ground sampling distance of
~14 mm; Table S1), with the aim of capturing data to identify
meadow boundaries. More details about these flights can be found
in the supplementary information (section 1.1).

2.4. Ground based surveys

Quadrat sampling was used to collect in situ information about
the seagrass meadows so that drone-based observations could be
validated (Fig. 2). Twenty-seven 500 mm � 500 mm quadrats were
randomly placed in each of the two ~50 m2 plots. The following
observations were recorded for each quadrat by the author (LP)
trained in conducting the standard Seagrass-Watch protocols
(Mckenzie et al., 2003): estimated percentage cover, shoot lengths

https://3dr.com/
http://www.thingiverse.com/thing:1964056
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Fig. 2. Data collection, processing and analysis workflow.
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and densities, estimated number of gastropods and algal/epiphytic
cover. We acknowledge that these estimations have their own
inherent uncertainties, but for the purpose of this study assume
they are truth in order to evaluate the image classification pro-
cedures presented.

Given the very high spatial resolution data capture capabilities
of the camera payload on board the drone, high precision ground-
truth data were required so as to georectify resulting orthomosaics
and accurately locate quadrat sampling areas and features of in-
terest within the study sites (Cunliffe et al., 2016). The position of all
four quadrat corners were recorded with approximately 10 mm
accuracy in x,y,z dimensions using a differential Global Navigation
Satellite System (D-GNSS) Leica GS-08 plus survey system
(comprising a base and rover). To assist with the mosaicking pro-
cess, chequered targets (300 � 300 mm in size) were used as
ground control points, placed at ~25 m intervals around the
perimeter of the ~50 m2 study areas (Fig. 3C). To secure them in the
soft substrate, two metal pegs were used on opposite corners. A
laminated A4 sheet with a unique letter of the alphabet was pegged
next to each target to assist in identification within the aerial
photographs. Due to the shape of the plots at each site, 8 ground
control points were used at Angle Bay, and 10 at Garron Pill. The
central points of these black andwhite targets were recorded as the
exact ground control points using the Leica GS-08 plus survey
system.
2.5. Processing & analysis

Photogrammetric workflows have emerged as the most popular
way to collate and stitch aerial photographic image data into
georectified orthomosaics (Gross and Heumann, 2016; Smith et al.,
2015). For this study, Agisoft Photoscan (v 1.2.5) (Agisoft LLC, 2016)
was used to generate orthomosaic models from the aerial data
collected, using the positions of the ground control markers to
optimize camera positions during the point cloud formation stage.
They were also used to orientate and georeference the data.

The very fine spatial resolution and spectral complexity of the
data makes classification challenging, because of the “H resolution”
problem as defined by Strahler et al. (1986). Coupled with the
multitude of techniques developed for analysing and classifying



Fig. 3. Mosaicked RGB imagery of Zostera noltii habitat in Angle Bay. The 50 � 50 m
plot is show in A), with two finer spatial scale examples shown in B) and C). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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cover types using optical remote sensing data, an aim of this paper
was to explore three methods with differing complexity for image-
based classification. In turn, we demonstrate the potential use and
application of these drone-based optical imaging data for seagrass
meadow assessment.

The varying complexities in the three techniques used in this
study give an overview of approaches commonly used in remote
sensing analyses. First, we explored the use of a basic unsupervised
optical classification, which is the simplest of approaches. Using
only the red, green and blue spectral bands from the camera, we
show what can be achieved with minimal processing of the data
once it has been stitched via photogrammetry workflow. Building
on this, we explored the effect of adding optical texture layers to the
unsupervised classification workflow. This process shows that
more information can be derived (than just the red, green and blue
bands) from data captured with consumer grade cameras, that can
in turn potentially help discriminate seagrass from its surrounding
environment. Third, object-based techniques are increasingly
applied to segment and classify very fine spatial resolution data.
This is because objects of interest are constructed of multiple pixels
as opposed to the representation of multiple objects within a single
pixel (Myint et al., 2011), as is the case with coarser spatial reso-
lution data. Given the fine spatial resolution of our data, we applied
object based image analysis (OBIA) as a third classification
approach (containing a ‘supervised’ stage) to determine whether
this could be used to meaningfully improve the quality of the
seagrass mapping products. We purposefully did not try to use a
pixel-based supervised classifier to produce the mapping products
because this would rely on the identification of individual ‘pure’
pixels containing either seagrass or bare substrate. Due to the data
having a spatial resolution of less than 1 cm per pixel, we consid-
ered it a more robust approach to test a supervised classification
that first used a segmentation algorithm to automate the identifi-
cation of clusters of pixels that had similar spectral properties. A
schematic describing data collection, processing and analysis is
shown in Fig. 2. The classifications used are described in the
following sections.

2.5.1. Unsupervised classification with optical bands
The first type of classification performed incorporated the red,

green and blue (RGB) spectral bands. An unsupervised approach
using K-means (Hartigan-Wong algorithm; Hartigan and Wong,
1979) clustering was performed using the 'unsuperClass' function
in the 'RStoolbox' (Leutner and Horning, 2016) package in R 3.3.1 (R
Core Team, 2016). Maps with two, three, four and five discreet
classes were produced for each site. These classes represented
seagrass and non-seagrass cover types (e.g. substrate and macro-
algae). Where more than two classes were used, they were com-
bined to create a binary result. Next, the areas coinciding with
quadrat placement were extracted, and pixel counts recorded.
Every possible combination of the discreet classes was tested, and
that with the lowest RMSD score when comparing classified and
observed seagrass coverage was then chosen as the best candidate
classifier for each site.

2.5.2. Unsupervised classification with optical bands and texture
Further to the spectral data alone, textural bands were also

added to the classification process. Image texture can be used to
describe patterns in images that are naturally identified and
interpreted by humans but more difficult for computers to under-
stand. Given that the dominant colour of seagrass is green, texture
layers were calculated for this band only. Textural layers were
calculated using moving windows on spectral data (Haralick et al.,
1973). Grey level co-occurrence matrices were calculated for each
orthomosaic using the 'glcm' (Zvoleff, 2016) package in R 3.3.1 (R
Core Team, 2016) with a window size of 3 � 3 pixels. From these
matrices, eight different measures were calculated (mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment and
correlation). Next, every possible combination of these layers were
combined with the RGB layers, and two, three, four and five class
unsupervised classifications (as described in section 2.5.1) were
performed. The same selection procedure to find the combination
with the lowest RMSD was followed as was performed with optical
bands.

2.5.3. Segmentation & support vector machine classification
The third classification approach used the method of OBIA. This

technique has seen increasing usage in the analysis of remote
sensing data (Blaschke, 2010). A typical OBIA workflow involves
firstly image segmentation and secondly classification of the
segmented data (Myint et al., 2011). In order to keep the analysis of
these data as open-source and replicable as possible, the 'i.seg-
ment.uspo', 'i.segment' and 'i.segment.stats' and ‘v.class.mlR’
functions were used in the Geographic Resources Analysis Support
System (GRASS) 7.0 (GRASS Development Team, 2015) software
package. Both the optical and optimum texture layers identified in
the unsupervised approaches were used in these classifications.
Each orthomosaic was segmented and classified with supervised
training data (subset from the segmented data). Given the knowl-
edge obtained from visual inspection of the mosaics, a two-class
classification (seagrass and substrate) was applied to data from
Angle Bay and five-class (seagrass, substrate, macroalgae species 1,
macroalgae species 2, rock) classification for Garron Pill.

More detailed information on the OBIA procedures used can be
found in the supplementary information (section 1.2).
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2.5.4. Analysis of classified maps
All analysis of classified maps and graphing of data took place in

the statistical package R 3.3.1 (R Core Team, 2016). Data manipu-
lation and analysis were conducted using the dplyr (Wickham and
Francois, 2016), raster (Hijmans, 2015) and tidyr (Wickham, 2017)
packages. Graphs were created using ggplot2 (Wickham, 2009) and
gridExtra (Auguie, 2016).

Coverage within each quadrat was estimated by cropping the
mosaic to the area defined by the D-GNSS system for each quadrat.
The pixels in the cropped image were then counted and a coverage
estimate derived by dividing the number of pixels classed as sea-
grass by the total number of pixels. This was repeated for each
quadrat.

Bootstrapping was used to explore the variation between esti-
mated and observed coverage within quadrats at both sites. This
enabled the investigation of classification performance by
describing over- or under-estimation of seagrass coverage. Firstly,
the difference between estimated and observed percent coverage
was calculated for each of the 27 quadrats. Then, a random selec-
tion (n ¼ 27) of these differences was selected (with replacement
enabled, meaning quadrats could be chosenmore than once in each
iteration) and the mean and standard deviation calculated from the
selection. These statistics were stored and the process was then
repeated for 1000 iterations, resulting in a selection of 1000 sets of
mean, standard deviation and iteration standard error (equal to
standard deviation divided by √27) per site. From these, three
overall statistics were calculated: the mean and standard deviation
of the 27 measured differences, and the overall standard error as
the standard deviation of iteration means. The combined uncer-
tainty was then calculated both for each iteration and in total with
the following equation:

uncertainty ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s2 þ se2

p

where m is the mean, s is the standard deviation and se is the
standard error.

2.6. Feature detection

To test the effect of the spatial resolution of the data on the
ability to resolve biotic features other than seagrass in intertidal
meadows, samples from the mosaics were rescaled to different
spatial resolutions. This was performed using the gdalUtils package
(Greenberg and Mattiuzzi, 2015) in R 3.3.1 (R Core Team, 2016). The
‘gdalwarp’ functionwas used to output at resolutions 2,4,6,8 and 10
times coarser than the native resolution of 4.36 mm pixel�1. The
output pixel values were calculated as the mean of the corre-
sponding input pixels.

2.7. Quadrat sampling bias

A further analysis exploring the potential biases in quadrat
sampling using photos taken at the time of data collection was also
conducted. The methods and results of this procedure are pre-
sented in the supplementary information (sections 1.3 & 2.1).

3. Results

Data collection at Angle Bay yielded 220 useable images during
a flight that lasted 10057’’. At Garron Pill, 191 useable images were
collected during a flight 0804300 in length. Upon visual inspection
that stitching had worked, the mosaics were then cropped so that
ground control targets and associated tape measures were not
included in the imagery, reducing complications during the clas-
sification phase (Figs. 3 and 4). Mosaics for both sites had a ground
resolution of 4.31mm pixel�1 with a re-projection error (calculated
by the software) of 0.32 pixels at both sites. Please see the
supplementary information for full processing reports produced by
Agisoft Photoscan.

For the RGB classifications optimum classifications were as fol-
lows: Angle Bay opticale four classes, two of which were combined
for the seagrass class, Garron Pill opticale five classes, one assigned
as seagrass. Contrast, dissimilarity and variance were combined
with optical data for Angle Bay, and classified with five discreet
classes. Three of these were labelled as seagrass. For Garron Pill,
contrast, homogeneity and second moment were the optimum
texture layers alongwith the RGB data. Two of the five classes in the
optimum classificationwere combined tomake a seagrass class. For
the OBIA analysis the combined RGB and texture layers described
here were used. Thematic maps showing these classifications can
be found in the supplementary information (section 2.2).

The RMSD values calculated from classifications on the data
from Garron Pill were all lower than their corresponding results for
Angle Bay (Table 1). For Angle Bay, the addition of texture layers
increased the RMSD by 5.7 with units of % coverage and SD by 4.3%
(i.e. the fit was poorer), whereas for Garron Pill, RMSD was reduced
by 0.2% and SD by 0.5%. Object based image analysis did not
improve on either of the RGB or RGB & Texture classifications at
either site with RMSD and SD values generally much higher. For
both of the unsupervised classifications, both under- and over-
estimations were seen across the 27 quadrats (Fig. 5A and B),
whereas for OBIA, it appears the majority of quadrats were over-
estimated by the classifier (Fig. 5C). Additionally, quadrat sampling
bias was explored, and a mean difference of 15% between observed
and classified ground-based photos was found (Fig. S1).

The bootstrapped overall uncertainty values show relatively
little variation in the unsupervised classifications with and without
texture for Garron Pill (Fig. 6). Angle Bay, the more densely vege-
tated of the two meadows had over double the mean overall un-
certainty when compared to Garron Pill for the RGB & texture
classification (Table 1). Along with the high RMSD and SD values,
the OBIA classifications also showed both high mean overall un-
certainty, (the highest being 33% for Angle Bay).

3.1. Areal coverage and perimeter estimates

Combining the known ground sampling distances (4.36 mm) in
the orthomosaics with counts of pixels in each classified raster
allowed for seagrass areal coverage estimates to bemade. For Angle
Bay, estimates ranged from 1110 m2 (47% of the surveyed areas)
produced by the RGB & texture classification to 1967 m2 (83%)
calculated from the OBIA classification (Table 1). Overall, Garron Pill
had smaller estimations with the lowest at 555 m2 (22%) and
highest at 904 m2 (36%) produced with data from the OBIA classi-
fier. OBIA classifications at both sites resulted in greater numbers of
pixels being labelled as seagrass, which in turn has driven the
higher areal coverage estimates. The two flights at 50 m altitude
used to collect data from the river channel area yielded total of 258
useable images. These flights were 110 4500 and 120 0100 in duration.
No ground control points were deployed or used here due to the
inaccessibility of the river channel by foot. The images collected
were then stitched with the same procedure mentioned earlier in
this manuscript, but without the inclusion of GCPs, so therefore
relying on GNSS information from the flight log (tagged to images)
to produce a georeferenced orthomosaic (Fig. 7). The resulting
image demonstrates the capability of this form of data collection to
visualise the boundaries of seagrass meadows in terrain that is not
accessible by foot (e.g. soft muddy intertidal river beds). Other
broad category vegetation features such as macroalgae are also
detectable in these data (Fig. 7C).



Fig. 4. Mosaicked RGB imagery of Zostera noltii habitat at Garron Pill. The ~25 � 100 m plot is shown in A), with three finer spatial scale examples shown in B), C) and D). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Accuracy assessment of unsupervised classifications including both RGB and RGB and Texture, and OBIA classifications. Root mean squared deviation (RMSD) and standard
deviation (SD) and bias calculated on the percentage difference between observed and classified seagrass cover in quadrats. Bootstrapped SE was calculated in the boot-
strapping process. Overall uncertainty calculated from bias, SD and bootstrapped SE using the equation described in section 2.5.4. Coverage estimates calculated by totalling the
number of pixels classed as seagrass at each site.

Site Layers No.
Classes

RMSD (%) SD Bias (%) Bootstrapped SE Overall Uncertainty Estimated
Coverage (m2)

Estimated
Coverage (%)

Angle Bay RGB 4 16.12 16.33 �1.78 0.5 16.71 1224.07 51.93
RGB & Texture 5 21.85 20.65 �8.19 0.63 22.54 1110.33 47.10
RGB & Texture (OBIA) 2 32.74 20.53 25.81 0.63 33.2 1967.14 83.45

Garron Pill RGB 5 9.45 9.62 �0.4 0.29 9.8 554.92 21.86
RGB & Texture 5 9.22 9.06 2.44 0.28 9.54 661.77 26.07
RGB & Texture (OBIA) 5 26.42 20.95 16.59 0.65 27.01 904.35 35.62

Fig. 5. The relationship between observed and classified seagrass coverage observed within quadrats. Unsupervised classifications with red, green and blue bands shown in A), with
added texture layers in B) and supervised object-based image analysis results are shown in C).
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3.2. Feature detection

Within intertidal seagrass meadows, some features can be
detected with optical remote sensing data indicating the presence
of biotic features other than seagrass that co-habit these environ-
ments. At both sites cockles (Cerastoderma edule) and Lugworm
(Arenicola sp.) mounds were found on the sediment surface in high
abundance. Fig. 8 displays three example features both at native
and multiple resampled resolutions. Lugworm mounds are gener-
ally round features approximately 50e100 mm in diameter. They
were clearly visible at the native resolution in the data and
remained detectable even at 43 mm pixel�1 ( � 10) spatial reso-
lution. Cockles on sediment appeared more detectable than those
within seagrass (Fig. 8). The shells remained detectable in the



Fig. 6. Box and whisker plots showing the distribution of bootstrapped overall un-
certainty calculations (n ¼ 1000), calculated from the differences between observed
and classified seagrass cover in quadrats. Lower and upper hinges refer to 25% and 75%
percentiles respectively. Central lines represent the median, whiskers represent 5% and
95% quantiles and points represent outliers.
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absence of seagrass when viewed at 43 mm pixel�1 spatial reso-
lution, but when found within Zostera noltii shoots they become
Fig. 7. Orthomosaic of Zostera noltii meadow boundary at Garron Pill. Images captured at 50
nature of the river channel. (For interpretation of the references to colour in this figure leg
undetectable at 17.2 mm pixel�1 ( � 4) spatial resolution (Fig. 8).
4. Discussion

This study describes for the first time an approach to intertidal
seagrass mapping using a lightweight drone to obtain very fine
spatial resolution data. We found wide variation between classifi-
cations when measuring the differences between classified and
observed cover within the quadrat samples collected (Table 1).
Given that the addition of texture layers has improved classification
accuracy in the past in similar habitats such as salt marsh (Kim
et al., 2011), we expected to see reduced RMSD scores in this
study. It may be that the classification of the very fine spatial res-
olution data shown in this study can only be improved by the
addition of more spectral (e.g. near infra-red) rather than textural
layers. The spectral complexity found in hyperspectral optical
remote sensing studies on Zostera noltii leaves (Bargain et al., 2013)
suggests that the addition of further spectral bands may produce a
better discrimination between seagrass shoots and background
sediment. Different texture measures were selected during the
layer selection phase for each site. This highlights the importance of
treating each mosaic individually when selecting layers to input to
a classification scheme. Variables such as the spatial resolution of
the images, and the meteorological conditions (e.g. cloud cover)
m altitude. No ground control targets were deployed at this site due to the inaccessible
end, the reader is referred to the web version of this article.)



Fig. 8. Three examples of ecological features found in Zostera noltii meadows. A) Shows two Lugworm (Arenicola sp.) mounds, B) Cockle (Cerastoderma edule) shells surrounded by
seagrass shoots and C) on non-vegetated substrate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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during data collection can strongly influence the type of data
collected, and in turn which texture measures may highlight dif-
ferences between seagrass and non-seagrass features.

OBIA has been increasingly employed to analyse fine grained
data such as that collected from sensors on board drones (e.g.
Husson et al., 2016; Ventura et al., 2016). In this case, the unsu-
pervised classifications performed better than the support vector
machine algorithms used on the segmented data. Despite the very
high spatial resolution of the data, Zostera noltii shoots still appear
as very fine and complex features within the input bands. The
segmentation process applied struggled to properly define the
edges between seagrass and non-seagrass features, and therefore
non-vegetated areas were also captured within the objects labelled
as seagrass. This over-estimation is reflected in the comparisons
with quadrat data at both sites (Fig. 5). Furthermore, OBIA is
notoriously subjective and its poor performance in this scenario
may have been caused by the choice of ‘training’ segments during
pre-classification. New segmentation algorithms (e.g. SLIC super
pixels; Csillik, 2017), are emerging and in future as these mature,
there may be promise to further test these on fine spatial resolution
intertidal orthomosaics.
4.1. Coverage estimates & assessment of quadrat sampling

The variation in coverage estimates produced from the classified
data in this study is caused by uncertainty in the classifications
themselves. Working at such fine spatial scales allows for the
consideration of within-meadow variation and in turn more
representative predictions of overall coverage. However, working at
such fine spatial scales brings new challenges for data interpreta-
tion. Underestimation, seen more commonly for quadrats at Angle
Bay (Fig. 5) could be due to the high density of seagrass in parts of
this site and the differences between what a sensor captures and
what a human observer interprets. This could be caused by a
saturation effect also seen in optical remote sensing studies of other
vegetated ecosystems (Mutanga et al., 2012). Positive bias, seen in
some quadrats at both sites, could potentially be explained by an
observer effect. Estimations of coverage by a human observer could
take into consideration the fact that seagrasses stand vertically
when suspended in water, whereas a sensor, in this case on board a
lightweight drone, simply counts the proportion of pixels covered
by seagrass. The hypothesis that observer bias was present during
ground-based sampling was investigated by examining photo-
graphs of the quadrats (see supplementary information; Fig. S1).
Observer bias and variability of cover estimations, regardless of
experience, has been raised as an issue with quadrat sampling in
terrestrial systems (Sykes et al., 1983). It may be the case that in this
study similar issues were causing underestimation, combined with
the knowledge that a given number of seagrass shoots change their
coverage of a quadrat when suspended in water compared to laid
flat at low tide. Although ground based photographs were taken in
this study, their quality was variable, and therefore we recommend
a standardised approach (i.e. using a fixed height (Luscier et al.,
2006) in future investigations).

4.2. Meadow boundary detection

Meadow boundaries were clearly visible in the mosaic created
with images captured at 50 m altitude. Information of this type
provides a cost-effective approach to Zostera noltii meadow map-
ping, especially in tidal channels were the logistics of boat or
hovercraft surveying are non-trivial. The distinction between sea-
grass and macroalgae was clearly visible in the resulting ortho-
mosaic (Fig. 7C), which from a management point of view provides
a useful tool to quantify the invasion of other species such as
macroalgae in seagrass-dominated habitats (Thomsen et al., 2012).

4.3. Feature detection

The very fine spatial resolution data produced in this study
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(4.36 mm pixel�1) allowed for the identification of meadow fea-
tures such as lugworm (Arenicola sp.) mounds and cockle shells
(Cerastoderma edule). The ability to capture this information within
images containing seagrass shoots could allow questions regarding
lugworm presence/density effects on Zostera noltii density to be
revisited (Philippart and Dijkema, 1995). The presence of bivalve
shells is also a crude but useful indicator of the health and diversity
of the below-surface intertidal environment (Lohrer et al., 2016).
With regards to the spatial resolution of the data captured in this
study, these features were all identifiable at coarser resolutions
than the native data. This indicates that a higher-altitude flight
could be conducted resulting in a coarser ground sampling dis-
tance, therefore allowing for data collection from a larger area
without compromising the ability to capture fine scale biotic
features.

In future work, other users should consider monitoring condi-
tions. In this study, conditions were generally overcast and there-
fore favourable when collecting imagery at Garron Pill, but for
Angle Bay, the meteorological conditions were mixed with inter-
mittent sunshine amongst the cloud. As the drone flew with a
variable heading, the sensors viewing angle changed in relation to
the sun's position on alternate legs of the drone's way-pointed path
(Fig. 1C&D). As a result, the attitude of the drone and therefore the
attached sensor, manipulated the presence of glint and shadow in
the imagery. Due to the gridded pattern of flight, artefacts have
developed at overlapping areas between images during the image
stitching process. We recommend in future, to conduct flights with
a constant heading, to ensure the sensors view angle remains fixed
in relation to sun angle. We would also encourage other users to
consider image calibration if time-series monitoring is being
undertaken.

4.4. Ecosystem dynamics and blue carbon

The potential of coastal ecosystems and more specifically the
plants that live within them to capture and sequester carbon
(known as blue carbon) has been a growing field of scientific
research (Fourqurean et al., 2012; Macreadie et al., 2014). The
coverage estimates that we present here can be complementary to
allometric data such as above- and below-ground biomass calcu-
lations to ultimately produce more accurate estimations. This has
been demonstrated in terrestrial systems with drone-based data
(Cunliffe et al., 2016). This can then be combined with information
about carbon capture in a particular species such as Zostera noltii,
quantifying the amount of carbon stored in a given meadow and
allowing its monetary value to be estimated. Monetary valuation
such as this is likely to give great value to policy decision making
(Turner et al., 2003). Aside frommonetary valuation, fine-scale data
such as these can potentially improve the performance of predic-
tive habitat modelling approaches which have been applied to
understand seagrass distribution (Grech and Coles, 2010).

For another species of seagrass, seasonality has been shown to
create changes of up to 35% in coverage estimates of seagrass
meadows on the coast of Reunion Island (Cuvillier et al., 2016).
Zostera noltii is a perennial species that grows in spring and sum-
mer, flowers, and then dies back to approximately half its peak
density in autumn and winter (Auby and Labourg, 1996). While this
variation in above-ground biomass is an issue with ground-based
surveying (Mckenzie et al., 2003), employing drones with user-
dictated data collection, allows for repeatable surveys at the same
stage of the annual phenological cycle of a seagrass species such as
this. The case for repeat studies at the same time of year is also
strengthened by the discovery of a seasonal variation in pigment
concentration in Zostera noltii leaves, which in turn can influence
measurements derived from remote sensing products (Bargain
et al., 2013).

5. Conclusions

In this study we have demonstrated the potential of low-cost,
flexible, drone-based data collection techniques for monitoring
intertidal seagrass meadows. Working on foot in an intertidal
environment can be challenging and one clear advantage of drone
technology is the flexibility in deployment and the utility of data, as
we have demonstrated here. Time-series monitoring is critical to
understand the dynamics of seagrass meadows, especially when it
comes to disentangling the natural variation from changes that are
human-induced (Cunha et al., 2005).

The understanding of within-meadow seagrass heterogeneity is
a complementary approach to more traditional boundary mapping
which has often been conducted using satellite and airborne im-
agery (e.g. Phinn et al., 2008). Drones bring the ability to capture
data useful for within environment variation analysis, which has
also been demonstrated in wetlands (Zweig et al., 2015). With
threats such as reduced water quality and wasting disease, the
decline in meadow quality may be more nuanced than a simple
shrinking in overall extent, highlighting the need to understand the
more complex matrix of plants and sediment in the intertidal
environment. It is therefore crucial to investigate the fragmentation
within meadows, which can inform researchers and managers
whether a meadow is potentially degrading or recovering. The
combination of this previously unobtainable data and the cost-
effective, self-service nature of drone based remote sensing gives
great promise to the application of drones for seagrass conservation
efforts.

Moving forward, we feel that the rapidly developing field of
lightweight drones and miniaturisation of sensors for optical
remote sensing will soon allow for more detailed measurements of
meadow quality such as plant health and presence of wasting
disease based on the spectral signatures obtained from seagrass
shoots.
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Appendix A. Supplementary data

The data supporting this publication can be accessed by con-
tacting author JPD. Example code can be found at https://github.
com/everydayduffy/Wales_Seagrass_Example_Code. Supplemen-
tary data related to this article can be found at https://doi.org/10.
1016/j.ecss.2017.11.001.

References

Agisoft LLC, 2016. Photoscan Professional (1.2.5).
Anderson, K., Gaston, K.J., 2013. Lightweight unmanned aerial vehicles will revo-

lutionize spatial ecology. Front. Ecol. Environ. 11, 138e146. https://doi.org/
10.1890/120150.

Auby, I., Labourg, P., 1996. Seasonal dynamics of Zostera noltii hornem. In the Bay of
arcachon (France). J. Sea Res. 35, 269e277. https://doi.org/10.1016/S1385-
1101(96)90754-6.

Auguie, B., 2016. gridExtra: Miscellaneous Functions for “Grid” Graphics.
Barbier, E.B., Hacker, S.D., Kennedy, C.J., Koch, E.W., Stier, A.C., Silliman, B.R., 2011.

The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81,
169e193. https://doi.org/10.1890/10-1510.1.

Bargain, A., Robin, M., M�el�eder, V., Rosa, P., Menn, E.L., Harin, N., Barill�e, L., 2013.
Seasonal spectral variation of Zostera noltii and its influence on pigment-based

https://github.com/everydayduffy/Wales_Seagrass_Example_Code
https://github.com/everydayduffy/Wales_Seagrass_Example_Code
https://doi.org/10.1016/j.ecss.2017.11.001
https://doi.org/10.1016/j.ecss.2017.11.001
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref1
https://doi.org/10.1890/120150
https://doi.org/10.1890/120150
https://doi.org/10.1016/S1385-1101(96)90754-6
https://doi.org/10.1016/S1385-1101(96)90754-6
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref4
https://doi.org/10.1890/10-1510.1


J.P. Duffy et al. / Estuarine, Coastal and Shelf Science 200 (2018) 169e180 179
Vegetation Indices. J. Exp. Mar. Bio. Ecol. 446, 86e94. https://doi.org/10.1016/
j.jembe.2013.04.012.

Barrell, J., Grant, J., Hanson, A., Mahoney, M., 2015. Evaluating the complementarity
of acoustic and satellite remote sensing for seagrass landscape mapping. Int. J.
Remote Sens. 36, 4069e4094. https://doi.org/10.1080/01431161.2015.1076208.

Baumstark, R., Duffey, R., Pu, R., 2016. Mapping seagrass and colonized hard bottom
in Springs Coast, Florida using WorldView-2 satellite imagery. Estuar. Coast.
Shelf Sci. 181, 83e92. https://doi.org/10.1016/j.ecss.2016.08.019.

Beaumont, N.J., Austen, M.C., Mangi, S.C., Townsend, M., 2008. Economic Valuation
for the Conservation of Marine Biodiversity, vol. 56, pp. 386e396. https://
doi.org/10.1016/j.marpolbul.2007.11.013.

Bernard, G., Boudouresque, C.F., Picon, P., 2007. Long term changes in Zostera
meadows in the berre lagoon (provence, mediterranean sea). Estuar. Coast.
Shelf Sci. 73, 617e629. https://doi.org/10.1016/j.ecss.2007.03.003.

Bertelli, C.M., Robinson, M.T., Mendzil, A.F., Pratt, L.R., Unsworth, R.K.F., 2017.
Finding some seagrass optimism in Wales, the case of Zostera noltii. Mar. Pollut.
Bull. https://doi.org/10.1016/j.marpolbul.2017.08.018.

Bertelli, C.M., Unsworth, R.K.F., 2014. Protecting the hand that feeds us: seagrass
(Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83,
425e429. https://doi.org/10.1016/j.marpolbul.2013.08.011.

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photo-
gramm. Remote Sens. 65, 2e16. https://doi.org/10.1016/j.isprsjprs.2009.06.004.

Cabaço, S., Cabaço, S., Santos, R., 2007. Effects of burial and erosion on the seagrass
Zostera noltii. J. Exp. Mar. Bio. Ecol. 340, 204e212. https://doi.org/10.1016/
j.jembe.2006.09.003.

Chabot, D., Craik, S.R., Bird, D.M., 2015. Population census of a large common tern
colony with a small unmanned aircraft. PLoS One 10, e0122588. https://doi.org/
10.1371/journal.pone.0122588.

Chirayath, V., Earle, S.A., 2016. Drones that see through waves e preliminary results
from airborne fluid lensing for centimetre-scale aquatic conservation. Aquat.
Conserv. 26, 237e250. https://doi.org/10.1002/aqc.2654.

Csillik, O., 2017. Fast segmentation and classification of very high resolution remote
sensing data using SLIC superpixels. Remote Sens. 9, 243. https://doi.org/
10.3390/rs9030243.

Cunha, A.H., Santos, R.P., Gaspar, A.P., Bairros, M.F., 2005. Seagrass landscape-scale
changes in response to disturbance created by the dynamics of barrier-
islands: a case study from Ria Formosa (Southern Portugal). Estuar. Coast.
Shelf Sci. 64, 636e644. https://doi.org/10.1016/j.ecss.2005.03.018.

Cunliffe, A.M., Brazier, R.E., Anderson, K., 2016. Ultra-fine grain landscape-scale
quantification of dryland vegetation structure with drone-acquired structure-
from-motion photogrammetry. Remote Sens. Environ. 183, 129e143. https://
doi.org/10.1016/j.rse.2016.05.019.

Cuvillier, A., Villeneuve, N., Cordier, E., Kolasinski, J., Maurel, L., Farnier, N., Frouin, P.,
2016. Causes of seasonal and decadal variability in a tropical seagrass seascape
(Reunion Island, South Western Indian Ocean). Estuar. Coast. Shelf Sci. 184,
90e101. https://doi.org/10.1016/j.ecss.2016.10.046.

Dandois, J., Olano, M., Ellis, E., 2015. Optimal altitude, overlap, and weather con-
ditions for computer vision UAV estimates of forest structure. Remote Sens. 7,
13895e13920. https://doi.org/10.3390/rs71013895.

DeBell, L., Anderson, K., Brazier, R.E., King, N., Jones, L., 2015. Water resource
management at catchment scales using lightweight UAVs: current capabilities
and future perspectives. J. Unmanned Veh. Syst. 30, 7e30.

Duarte, C.M., 2002. The future of seagrass meadows. Environ. Conserv. 29, 192e206.
https://doi.org/10.1017/S0376892902000127.

Fourqurean, J.W., Duarte, C.M., Kennedy, H., Marb�a, N., Holmer, M., Mateo, M.A.,
Apostolaki, E.T., Kendrick, G.A., Krause-Jensen, D., McGlathery, K.J., Serrano, O.,
2012. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5,
505e509. https://doi.org/10.1038/ngeo1477.

Gonçalves, J.A., Henriques, R., 2015. UAV photogrammetry for topographic moni-
toring of coastal areas. ISPRS J. Photogramm. Remote Sens. 104, 101e111. https://
doi.org/10.1016/j.isprsjprs.2015.02.009.

Gotceitas, V., Fraser, S., Brown, J.A., 1997. Use of eelgrass beds (Zostera marina) by
juvenile Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 54, 1306e1319.
https://doi.org/10.1139/f97-033.

GRASS Development Team, 2015. Geographic Resources Analysis Support System
(GRASS) 7.0.

Grech, A., Coles, R.G., 2010. An ecosystem-scale predictive model of coastal seagrass
distribution. Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 437e444. https://doi.org/
10.1002/aqc.1107.

Greenberg, J.A., Mattiuzzi, M., 2015. gdalUtils: Wrappers for the Geospatial Data
Abstraction Library (GDAL) Utilities.

Gross, J.W., Heumann, B.W., 2016. A statistical examination of image stitching
software packages for use with unmanned aerial systems. Photogramm. Eng.
Remote Sens. 82, 419e425. https://doi.org/10.14358/PERS.82.6.419.

Han, Q., Bouma, T.J., Brun, F.G., Suykerbuyk, W., Van Katwijk, M.M., 2012. Resilience
of Zostera noltii to burial or erosion disturbances. Mar. Ecol. Prog. Ser. 449,
133e143. https://doi.org/10.3354/meps09532.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image clas-
sification. IEEE Trans. Syst. Man. Cybern. 3, 610e621. https://doi.org/10.1109/
TSMC.1973.4309314.

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A K-means clustering algorithm.
J. R. Stat. Soc. Ser. C Appl. Stat. 28, 100e108. https://doi.org/10.2307/2346101.

Hernandez, I., Peralta, G., Perez-Llorens, J.L., Vergara, J.J., 1997. Biomass and dy-
namics of growth of Ulva species in Palmones River Estuary. J. Phycol. 33,
764e772. https://doi.org/10.1111/j.0022-3646.1997.00764.x.
Hijmans, R.J., 2015. Raster: Geographic Data Analysis and Modeling. R Package
Version 2.5-2.

Hodgson, A., Kelly, N., Peel, D., 2013. Unmanned aerial vehicles (UAVs) for surveying
Marine Fauna: A dugong case study. PLoS One 8, e79556. https://doi.org/
10.1371/journal.pone.0079556.

Hossain, M.S., Bujang, J.S., Zakaria, M.H., Hashim, M., 2014. The application of
remote sensing to seagrass ecosystems: an overview and future research
prospects. Int. J. Remote Sens. 36, 61e114. https://doi.org/10.1080/
01431161.2014.990649.

Husson, E., Ecke, F., Reese, H., 2016. Comparison of Manual Mapping and Automated
Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-
High-Resolution UAS Images. Remote Sens. 8, 724. https://doi.org/10.3390/
rs8090724.

Huya-Kouadio, F., 2016. Tower.
Inoue, T., Nagai, S., Yamashita, S., Fadaei, H., Ishii, R., Okabe, K., Taki, H., Honda, Y.,

Kajiwara, K., Suzuki, R., 2014. Unmanned aerial survey of fallen trees in a de-
ciduous broadleaved forest in Eastern Japan. PLoS One 9, e109881. https://
doi.org/10.1371/journal.pone.0109881.

Jones, B.L., Unsworth, R.K.F., 2016. The perilous state of seagrass in the British Isles.
R. Soc. Open Sci. 3, 1e14. https://doi.org/10.1098/rsos.150596.

Kay, S., Hedley, J.D., Lavender, S., 2009. Sun glint correction of high and low spatial
resolution images of aquatic scenes: a review of methods for visible and near-
infrared wavelengths. Remote Sens. 1, 697e730. https://doi.org/10.3390/
rs1040697.

Kim, M., Warner, T.A., Madden, M., Atkinson, D.S., Kim, M., Warner, T.A., Madden, M.,
Atkinson, D.S., Kim, M., Warner, T.A., Madden, M., Atkinson, D.S., 2011. Multi-
scale GEOBIA with very high spatial resolution digital aerial imagery: scale,
texture and image objects. Int. J. Remote Sens. 32, 2825e2850. https://doi.org/
10.1080/01431161003745608.

Knudby, A., Newman, C., Shaghude, Y., Muhando, C., 2010. Simple and effective
monitoring of historic changes in nearshore environments using the free
archive of Landsat imagery. Int. J. Appl. Earth Obs. Geoinf 12, 116e122. https://
doi.org/10.1016/j.jag.2009.09.002.

Lamb, J.B., Van De Water, J.A.J.M., Bourne, D.G., Altier, C., Hein, M.Y., Fiorenza, E.A.,
Abu, N., Jompa, J., Harvell, C.D., 2017. Seagrass ecosystems reduce exposure to
bacterial pathogens of humans, fishes, and invertebrates. Science 355 (80),
731e733.

Leutner, B., Horning, N., 2016. RStoolbox: Tools for Remote Sensing Data Analysis. R
package version 0.1.4.9000.

Lohrer, A.M., Townsend, M., Hailes, S.F., Rodil, I.F., Cartner, K., Pratt, D.R., Hewitt, J.E.,
2016. Influence of New Zealand cockles (Austrovenus stutchburyi) on primary
productivity in sandflat-seagrass (Zostera muelleri) ecotones. Estuar. Coast.
Shelf Sci. 181, 238e248. https://doi.org/10.1016/j.ecss.2016.08.045.

Luscier, J.D., Thompson, W.L., Wilson, J.M., Gorham, B.E., Dragut, L.D., 2006. Using
digital photographs and object-based image analysis to estimate percent
ground cover in vegetation plots. Front. Ecol. Environ. 4, 408e413. https://
doi.org/10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2.

Lyons, M., Roelfsema, C., Kovacs, E., Samper-Villarreal, J., Saunders, M., Maxwell, P.,
Phinn, S., 2015. Rapid monitoring of seagrass biomass using a simple linear
modelling approach, in the field and from space. Mar. Ecol. Prog. Ser. 530, 1e14.
https://doi.org/10.3354/meps11321.

Macreadie, P.I., Baird, M.E., Trevathan-Tackett, S.M., Larkum, A.W.D., Ralph, P.J., 2014.
Quantifying and modelling the carbon sequestration capacity of seagrass
meadows e A critical assessment. Mar. Pollut. Bull. 83, 430e439. https://
doi.org/10.1016/j.marpolbul.2013.07.038.

Marb�a, N., Duarte, C.M., 2010. Mediterranean warming triggers seagrass (Posidonia
oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366e2375. https://doi.org/
10.1111/j.1365-2486.2009.02130.x.

Martins, I., Neto, J.M., Fontes, M.G., Marques, J.C., Pardal, M.A., 2005. Seasonal
variation in short-term survival of Zostera noltii transplants in a declining
meadow in Portugal. Aquat. Bot. 82, 132e142. https://doi.org/10.1016/
j.aquabot.2005.03.006.

McGlathery, K.J., Reynolds, L.K., Cole, L.W., Orth, R.J., Marion, S.R., Schwarzschild, A.,
2012. Recovery trajectories during state change from bare sediment to eelgrass
dominance. Mar. Ecol. Prog. Ser. 448, 209e221. https://doi.org/10.3354/
meps09574.

Mckenzie, L.J., 2003. Guidelines for the Rapid Assessment of Seagrass Habitats in
the Western Pacific.

Mckenzie, L.J., Campbell, S.J., Roder, C.A., 2003. Seagrass-watch: Manual for Map-
ping & Monitoring Seagrass Resources by Community (Citizen) Volunteers.

Misbari, S., Hashim, M., 2016. Change Detection of Submerged Seagrass Biomass in
Shallow Coastal Water. Remote Sens. 8, 200. https://doi.org/10.3390/rs8030200.

Moore, K.A., Wilcox, D.J., Orth, R.J., 2000. Analysis of the abundance of submersed
aquatic vegetation communities in the Chesapeake Bay. Estuaries 23, 115e127.
https://doi.org/10.2307/1353229.

Mutanga, O., Adam, E., Azong, M., 2012. High density biomass estimation for
wetland vegetation using WorldView-2 imagery and random forest regression
algorithm. Int. J. Appl. Earth Obs. Geoinf 18, 399e406. https://doi.org/10.1016/
j.jag.2012.03.012.

Myint, S.W., Gober, P., Brazel, A., Grossman-clarke, S., Weng, Q., 2011. Per-pixel vs.
object-based classification of urban land cover extraction using high spatial
resolution imagery. Remote Sens. Environ. 115, 1145e1161. https://doi.org/
10.1016/j.rse.2010.12.017.

Oborne, M., 2016. Mission Planner.
Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W.,

https://doi.org/10.1016/j.jembe.2013.04.012
https://doi.org/10.1016/j.jembe.2013.04.012
https://doi.org/10.1080/01431161.2015.1076208
https://doi.org/10.1016/j.ecss.2016.08.019
https://doi.org/10.1016/j.marpolbul.2007.11.013
https://doi.org/10.1016/j.marpolbul.2007.11.013
https://doi.org/10.1016/j.ecss.2007.03.003
https://doi.org/10.1016/j.marpolbul.2017.08.018
https://doi.org/10.1016/j.marpolbul.2013.08.011
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1016/j.jembe.2006.09.003
https://doi.org/10.1016/j.jembe.2006.09.003
https://doi.org/10.1371/journal.pone.0122588
https://doi.org/10.1371/journal.pone.0122588
https://doi.org/10.1002/aqc.2654
https://doi.org/10.3390/rs9030243
https://doi.org/10.3390/rs9030243
https://doi.org/10.1016/j.ecss.2005.03.018
https://doi.org/10.1016/j.rse.2016.05.019
https://doi.org/10.1016/j.rse.2016.05.019
https://doi.org/10.1016/j.ecss.2016.10.046
https://doi.org/10.3390/rs71013895
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref22
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref22
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref22
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref22
https://doi.org/10.1017/S0376892902000127
https://doi.org/10.1038/ngeo1477
https://doi.org/10.1016/j.isprsjprs.2015.02.009
https://doi.org/10.1016/j.isprsjprs.2015.02.009
https://doi.org/10.1139/f97-033
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref27
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref27
https://doi.org/10.1002/aqc.1107
https://doi.org/10.1002/aqc.1107
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref29
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref29
https://doi.org/10.14358/PERS.82.6.419
https://doi.org/10.3354/meps09532
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.2307/2346101
https://doi.org/10.1111/j.0022-3646.1997.00764.x
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref35
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref35
https://doi.org/10.1371/journal.pone.0079556
https://doi.org/10.1371/journal.pone.0079556
https://doi.org/10.1080/01431161.2014.990649
https://doi.org/10.1080/01431161.2014.990649
https://doi.org/10.3390/rs8090724
https://doi.org/10.3390/rs8090724
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref39
https://doi.org/10.1371/journal.pone.0109881
https://doi.org/10.1371/journal.pone.0109881
https://doi.org/10.1098/rsos.150596
https://doi.org/10.3390/rs1040697
https://doi.org/10.3390/rs1040697
https://doi.org/10.1080/01431161003745608
https://doi.org/10.1080/01431161003745608
https://doi.org/10.1016/j.jag.2009.09.002
https://doi.org/10.1016/j.jag.2009.09.002
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref45
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref45
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref45
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref45
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref45
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref46
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref46
https://doi.org/10.1016/j.ecss.2016.08.045
https://doi.org/10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2
https://doi.org/10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2
https://doi.org/10.3354/meps11321
https://doi.org/10.1016/j.marpolbul.2013.07.038
https://doi.org/10.1016/j.marpolbul.2013.07.038
https://doi.org/10.1111/j.1365-2486.2009.02130.x
https://doi.org/10.1111/j.1365-2486.2009.02130.x
https://doi.org/10.1016/j.aquabot.2005.03.006
https://doi.org/10.1016/j.aquabot.2005.03.006
https://doi.org/10.3354/meps09574
https://doi.org/10.3354/meps09574
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref54
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref54
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref55
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref55
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref55
https://doi.org/10.3390/rs8030200
https://doi.org/10.2307/1353229
https://doi.org/10.1016/j.jag.2012.03.012
https://doi.org/10.1016/j.jag.2012.03.012
https://doi.org/10.1016/j.rse.2010.12.017
https://doi.org/10.1016/j.rse.2010.12.017
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref60


J.P. Duffy et al. / Estuarine, Coastal and Shelf Science 200 (2018) 169e180180
Heck, K.L., Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Olyarnik, S., Short, F.T.,
Waycott, M., Williams, S.L., 2006. A global crisis for seagrass ecosystems.
Bioscience 56, 987e996. https://doi.org/10.1641/0006-3568(2006)56[987:
AGCFSE]2.0.CO.

Pergent-Martini, C., Buia, M., Fernandez Torquemada, Y., 2015. Zostera noltii. The
IUCN Red List of Threatened Species 2015: e.T173361A17475420 [WWW
Document].

Philippart, C.J.M., Dijkema, K.S., 1995. Wax and wane of Zostera noltii Hornem. in
the Dutch wadden Sea. Aquat. Bot. 49, 255e268. https://doi.org/10.1016/0304-
3770(94)00431-K.

Phinn, S., Roelfsema, C., Dekker, A., Brando, V., Anstee, J., 2008. Mapping seagrass
species, cover and biomass in shallow waters: An assessment of satellite multi-
spectral and airborne hyper-spectral imaging systems in Moreton Bay
(Australia). Remote Sens. Environ. 112, 3413e3425. https://doi.org/10.1016/
j.rse.2007.09.017.

R Core Team, 2016. R: a Language and Environment for Statistical Computing.
Roelfsema, C.M., Lyons, M., Kovacs, E.M., Maxwell, P., Saunders, M.I., Samper-

Villarreal, J., Phinn, S.R., 2014. Multi-temporal mapping of seagrass cover, spe-
cies and biomass: A semi-automated object based image analysis approach.
Remote Sens. Environ. 150, 172e187. https://doi.org/10.1016/j.rse.2014.05.001.

Ryan, J.C., Hubbard, A.L., Box, J.E., Todd, J., Christoffersen, P., Carr, J.R., Holt, T.O.,
Snooke, N., 2015. UAV photogrammetry and structure from motion to assess
calving dynamics at Store Glacier, a large outlet draining the Greenland ice
sheet. Cryosph 9, 1e11. https://doi.org/10.5194/tc-9-1-2015.

Short, F.T., Carruthers, T.J.R., Waycott, M., Kendrick, G.A., Fourqurean, J.W.,
Callabine, A., Kenworthy, W.J., Dennison, W.C., 2010. Zostera noltii. The IUCN
Red List of Threatened Species 2010: e.T173361A6999224 [WWW Document].
IUCN Redl List Threat. Species. URL. http://www.iucnredlist.org/details/biblio/
173361/0. (Accessed 22 November 2016).

Short, F.T., Polidoro, B., Livingstone, S.R., Carpenter, K.E., Bandeira, S., Bujang, J.S.,
Calumpong, H.P., Carruthers, T.J.B., Coles, R.G., Dennison, W.C.,
Erftemeijer, P.L.A., Fortes, M.D., Freeman, A.S., Jagtap, T.G., Kamal, A.H.M.,
Kendrick, G.A., Judson Kenworthy, W., La Nafie, Y.A., Nasution, I.M., Orth, R.J.,
Prathep, A., Sanciangco, J.C., van Tussenbroek, B., Vergara, S.G., Waycott, M.,
Zieman, J.C., 2011. Extinction risk assessment of the world's seagrass species.
Biol. Conserv. 144, 1961e1971. https://doi.org/10.1016/j.biocon.2011.04.010.

Short, F.T., Wyllie-Echeverria, S., 1996. Natural and human-induced disturbance of
seagrasses. Environ. Conserv. 23, 17e27. https://doi.org/10.1017/
S0376892900038212.

Smith, M.W., Carrivick, J.L., Quincey, D.J., 2015. Structure from motion photogram-
metry in physical geography. Prog. Phys. Geogr. 40, 1e29. https://doi.org/
10.1177/0309133315615805.

Stekoll, M.S., Deysher, L.E., Hess, M., 2006. A remote sensing approach to estimating
harvestable kelp biomass. J. Appl. Phycol. 18, 323e334. https://doi.org/10.1007/
s10811-006-9029-7.

Sterckx, S., Knaeps, E., Ruddick, K., 2011. Detection and correction of adjacency
effects in hyperspectral airborne data of coastal and inland waters: the use of
the near infrared similarity spectrum. Int. J. Remote Sens. 32, 6479e6505.
https://doi.org/10.1080/01431161.2010.512930.

Strahler, A.H., Woodcock, C.E., Smith, J.A., 1986. On the Nature of Models in Remote
Sensing. Remote Sens. Environ. 20, 121e139.

Suominen, T., Tolvanen, H., 2016. Temporal analysis of remotely sensed turbidity in
a coastal archipelago. Int. J. Appl. Earth Obs. Geoinf 49, 188e199. https://doi.org/
10.1016/j.jag.2016.01.012.

Sykes, J.M., Horrill, A.D., Mountford, M.D., 1983. Use of visual cover assessments as
quantitative estimators of some british Woodland Taxa. J. Ecol. 71, 437e450.
https://doi.org/10.2307/2259726.

Thomsen, M.S., Wernberg, T., Engelen, A.H., Tuya, F., Mat, A., Holmer, M.,
Mcglathery, K.J., Arenas, F., Kotta, J., Brian, R., 2012. A meta-analysis of seaweed
impacts on seagrasses: generalities and knowledge gaps. PLoS One 7, e28595.
https://doi.org/10.1371/journal.pone.0028595.

Turner, R.K., Paavola, J., Cooper, P., Farber, S., Jessamy, V., Georgiou, S., 2003. Valuing
nature: lessons learned and future research directions. Ecol. Econ. 46, 493e510.
https://doi.org/10.1016/S0921-8009(03)00189-7.

Valle, M., Borja, �Angel, Chust, G., Galparsoro, I., Garmendia, J.M., 2011. Modelling
suitable estuarine habitats for Zostera noltii, using Ecological Niche Factor
Analysis and Bathymetric LiDAR. Estuar. Coast. Shelf Sci. 94, 144e154. https://
doi.org/10.1016/j.ecss.2011.05.031.

Valle, M., Pala, V., Lafon, V., Dehouck, A., Garmendia, J.M., A, B., Chust, G., 2015.
Mapping estuarine habitats using airborne hyperspectral imagery, with special
focus on seagrass meadows. Estuar. Coast. Shelf Sci. 164, 433e442. https://
doi.org/10.1016/j.ecss.2015.07.034.

Ventura, D., Bruno, M., Jona Lasinio, G., Belluscio, A., Ardizzone, G., 2016. A low-cost
drone based application for identifying and mapping of coastal fish nursery
grounds. Estuar. Coast. Shelf Sci. 171, 85e98. https://doi.org/10.1016/
j.ecss.2016.01.030.

Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S.,
Calladine, A., Fourqurean, J.W., Heck, K.L., Hughes, a R., Kendrick, G. a,
Kenworthy, W.J., Short, F.T., Williams, S.L., 2009. Accelerating loss of seagrasses
across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106,
12377e12381. https://doi.org/10.1073/pnas.0905620106.

Wickham, H., 2017. Tidyr: Easily Tidy Data with “spread( )” and “gather( )”
Functions.

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag,
New York.

Wickham, H., Francois, R., 2016. Dplyr: a Grammar of Data Manipulation.
Zvoleff, A., 2016. glcm: Calculate Textures from Grey-level Co-occurrence Matrices

(GLCMs).
Zweig, C.L., Burgess, M.A., Percival, H.F., Kitchens, W.M., 2015. Use of unmanned

aircraft systems to delineate fine-scale wetland vegetation communities.
Wetlands 35, 303e309. https://doi.org/10.1007/s13157-014-0612-4.

https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO
https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref62
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref62
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref62
https://doi.org/10.1016/0304-3770(94)00431-K
https://doi.org/10.1016/0304-3770(94)00431-K
https://doi.org/10.1016/j.rse.2007.09.017
https://doi.org/10.1016/j.rse.2007.09.017
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref65
https://doi.org/10.1016/j.rse.2014.05.001
https://doi.org/10.5194/tc-9-1-2015
http://www.iucnredlist.org/details/biblio/173361/0
http://www.iucnredlist.org/details/biblio/173361/0
https://doi.org/10.1016/j.biocon.2011.04.010
https://doi.org/10.1017/S0376892900038212
https://doi.org/10.1017/S0376892900038212
https://doi.org/10.1177/0309133315615805
https://doi.org/10.1177/0309133315615805
https://doi.org/10.1007/s10811-006-9029-7
https://doi.org/10.1007/s10811-006-9029-7
https://doi.org/10.1080/01431161.2010.512930
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref74
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref74
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref74
https://doi.org/10.1016/j.jag.2016.01.012
https://doi.org/10.1016/j.jag.2016.01.012
https://doi.org/10.2307/2259726
https://doi.org/10.1371/journal.pone.0028595
https://doi.org/10.1016/S0921-8009(03)00189-7
https://doi.org/10.1016/j.ecss.2011.05.031
https://doi.org/10.1016/j.ecss.2011.05.031
https://doi.org/10.1016/j.ecss.2015.07.034
https://doi.org/10.1016/j.ecss.2015.07.034
https://doi.org/10.1016/j.ecss.2016.01.030
https://doi.org/10.1016/j.ecss.2016.01.030
https://doi.org/10.1073/pnas.0905620106
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref83
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref83
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref84
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref84
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref85
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref86
http://refhub.elsevier.com/S0272-7714(17)30220-2/sref86
https://doi.org/10.1007/s13157-014-0612-4

	Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone
	1. Introduction
	2. Methods
	2.1. Study species: Zostera noltii
	2.2. Study sites
	2.3. Drone & sensor equipment
	2.4. Ground based surveys
	2.5. Processing & analysis
	2.5.1. Unsupervised classification with optical bands
	2.5.2. Unsupervised classification with optical bands and texture
	2.5.3. Segmentation & support vector machine classification
	2.5.4. Analysis of classified maps

	2.6. Feature detection
	2.7. Quadrat sampling bias

	3. Results
	3.1. Areal coverage and perimeter estimates
	3.2. Feature detection

	4. Discussion
	4.1. Coverage estimates & assessment of quadrat sampling
	4.2. Meadow boundary detection
	4.3. Feature detection
	4.4. Ecosystem dynamics and blue carbon

	5. Conclusions
	Acknowledgements
	Appendix A. Supplementary data
	References


