
Table 1. Determination of directed network (digraph) complexity or connectivity measured as 

Connectance ratio (CV - Conn %).  

 

Source 
Node* 

Edge/Link 
(interaction) 

Target 
Node* 

Biomarker for 
interaction value 

Interaction value 
(edge/link weight) 

    Control Fasted 

LF LF-AUT AUT LMS 1 1.146128 
LF LF-NL NL LMS 1 1.146128 
NL NL-AUT AUT Lipid 1 1.173186 
LOX LOX-NL NL MDA 1 1.222716 
LOX LOX-AUT AUT MDA 1 1.222716 
LOX LOX-LF RB MDA 1 1.222716 
AUT AUT-RB RB Lf 1 1.161368 
AUT AUT-AUT AUT Lf 1 1.161368 
E    8 9.456328 
||E||    8 9 
CV %    32 36 
 

Interaction attributes for the links (edges/arcs) in the directed cellular physiological network 
are based on the standardised mean biomarker values as a proportion of the control value. 
E is the sum (  of the links using the weight for each edge/arc (i.e.,  interaction values). 
Connectance % -- CV =  (||E|| / V2) x 100, where V is the number of nodes in a directed 
network or digraph, ||E||  is the nearest integer function of E (Bonachev, 2003; Davis, 1997; 
Moore, 2010). Weight values are all log10 transformed.  Mann-Whitney U-test on Control v 
Fasting  P < 0.01, n = 8. LMS  lysosomal membrane stability; Lipid  cytosolic and 
lysosomal neutral lipid (triglyceride); MDA  malondialdehyde; Lf  lipofuscin. *See Figure 2 
for node accronyms. 
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Figure Legends 1 

 2 

Fig. 1. Conceptual model for the role of reactive oxygen species (ROS) and 3 

lipofuscin in lysosomal autophagy and oxyradical-mediated cell injury. This 4 

model draws on one proposed by Brunk and Terman (2002) and adapted by 5 

Moore et al. (2006a). Fe2+ - ferrous cation; Fe3+ - ferric cation; O2   - superoxide; 6 

OH- - hydroxyl anion; OH  - hydroxyl radical; SOD  superoxide dismutase.  7 

 8 

Fig. 2. Topology of cellular physiological networks (directed - digraphs) for fed and 9 

fasted treatments, constructed using Cytoscape 2.8 (Shannon et al., 2003). LF 10 

 lysosomal function; AUT  autophagic function; NL  lysosomal and 11 

cytoplasmic lipid (triglyceride); LOX  lipid peroxidation (malondialdehyde); RB  12 

lipofuscin generation in late secondary and tertiary lysosomes. Node size 13 

indicates the attributes for the physiological process based on the relevant 14 

biomarker values (see Table 1). The networks are constructed as attribute circle 15 

networks based on degree (i.e., number of links / node). Biomarkers related to 16 

node values: LF (LMS  lysosomal membrane stability); AUT (LMS - lysosomal 17 

membrane stability used as a proxy as no direct measurement of autophagy was 18 

made); NL (Lipid  cytosolic and lysosomal neutral lipid - triglyceride); LOX 19 

(MDA  malondialdehyde); RB (Lf  lipofuscin). 20 

 21 

Fig. 3. Effects of fasting on A - lipid peroxidation (MDA), B - lysosomal stability 22 

(minutes  -glucuronidase) and  accumulation of C - 23 

lipofuscin and D - lipid (absorbance in arbitrary units) in hepatopancreatic cells. 24 

Bar graphs show the relative effects in fasting (day 7) and control (day 7) 25 

animals. Mean value ± 95% confidence limits, n = 10 (Asterisk - P < 0.01, 26 

Kruskall-Wallis test between Fed day 7 control  T7 Fed and Fasting day 7  T7 27 

Fasting treatments). 28 

 29 

Fig. 4. Micrographs of snail hepatopancreas showing a digestive tubule (DT) reacted 30 

with the Schmorl test for lysosomal lipofuscin (dark staining) in control - T7 Fed 31 

(A), and reduced reaction product for lipofuscin in fasting - T7 Fasting (B) 32 

hepatopancreatic digestive cells. Many of the secondary lysosomes are enlarged 33 

in the fasting treatment compared with the fed controls. Bold arrows - lipofuscin 34 

in late secondary lysosomes; small arrows - lipofuscin in tertiary lysosomes.  35 

Scale bar = 10 µm.  36 

Figure



 37 

Fig. 5.  Diagramtic representation of the normal autophagic turnover of old or 38 

damaged proteins and organelles (e.g., mitochondria, endoplasmic reticulum  39 

ER) which results in the gradual accumulation of lipofuscin and other 40 

aggregates. Stress-induced augmented autophagy reduces the accumulation of 41 

lipofuscin and aggregates by recycling organelles and protein more rapidly. 42 

 43 

 Fig. 6. Simplified diagram of the multiple cell signalling pathways involving mTOR 44 

(see Laplante & Sabatini, 2009, 2012, for a more extensive chart of mTOR 45 

related cell signalling). Overactivity of mTORC1 is believed to trigger 46 

inflammatory processes which can result in pathological injury and processes 47 

leading to many cancers and degenerative diseases. PI3K -phosphatidylinositol-48 

3 kinase; PIP3 - phosphatidylinositol 3,4,5 trisphosphate; Akt -  serine/threonine 49 

kinase Akt or protein kinase B (PKB); mTORC1 - mammalian target of 50 

rapamycin complex 1; NF- - nuclear factor kappa-light-chain-enhancer of 51 

activated B cells; PTEN - phosphatase and tensin homolog; AMPK - 5' 52 

adenosine monophosphate-activated protein kinase; p27 - cyclin-dependent 53 

kinase inhibitor; ROS  reactive oxygen species.  Activation ; inhibition . 54 

 55 

 56 
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Abstract 16 
The aim of this investigation was to test the hypothesis that fasting-induced 17 
augmented lysosomal autophagic turnover of cellular proteins and organelles will 18 
reduce potentially harmful lipofuscin (age-pigment) formation in cells by more 19 
effectively removing oxidatively damaged proteins. An animal model (marine snail - 20 
common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. 21 
Snails were deprived of algal food for 7 days to induce an augmented autophagic 22 
response in their hepatopancreatic digestive cells (hepatocyte analogues). This 23 
treatment resulted in a 25% reduction in the cellular content of lipofuscin in the 24 
digestive cells of the fasting animals in comparison with snails fed ad libitum on 25 
green alga (Ulva lactuca). Similar findings have previously been observed in the 26 
digestive cells of marine mussels subjected to copper-induced oxidative stress. 27 
Additional measurements showed that fasting significantly increased cellular health 28 
based on lysosomal membrane stability, and reduced lipid peroxidation and 29 
lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-30 
induced augmented autophagic turnover of cellular proteins has an anti-oxidative 31 
cytoprotective effect by more effectively removing damaged proteins, resulting in a 32 
reduction in the formation of potentially harmful proteinaceous aggregates such as 33 
lipofuscin. The inference from this study is that autophagy is important in mediating 34 
hormesis. An increase  was demonstrated in physiological complexity with fasting, 35 
using graph theory in a directed cell physiology network (digraph) model to integrate 36 
the various biomarkers. This was commensurate with increased health status, and 37 
supportive of the hormesis hypothesis. The potential role of enhanced autophagic 38 
lysosomal removal of damaged proteins in the evolutionary acquisition of stress 39 
tolerance in intertidal molluscs is discussed and parallels are drawn with the growing 40 
evidence for the involvement of autophagy in hormesis and anti-ageing processes. 41 
 42 

Key words: anti-ageing, age-pigment, autophagy, caloric-restriction, cell network 43 

model, cytoprotection, hormesis, lipid peroxidation, lipofuscin, lysosome, lysosomal 44 

membrane stability, mollusc, mTOR, protein aggregates, reactive oxygen species, 45 

stress tolerance  46 
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Introduction 50 

 51 

Normal metabolic generation of reactive oxygen species (ROS), including oxy-52 

radicals, can cause oxidative attack on the protein machinery and organelles of the 53 

cell (Livingstone, 2001; Regoli, 2000). Increased removal of damaged cellular 54 

constituents by autophagy will conserve cell function; and also reduce the amount of 55 

age-pigment (lipofuscin) produced (Cuervo, 2004; Moore et al., 2006a, b, c, 2007). 56 

Consequently, an effective capability to up-regulate the autophagic process will be 57 

advantageous to organisms exposed to environmental influences such as many 58 

environmental toxins and pollutants which can contribute to increased generation of 59 

ROS (Moore, 2008; Moore et al., 2006c). Lipofuscin accumulates in lysosomes as a 60 

result of peroxidation of autophagocytosed proteins associated with protein 61 

aggregates and oxidatively damaged organelles; and was previously considered to 62 

be just cellular junk (Fig.1; Brunk & Terman, 2002).  However, recent evidence 63 

indicates that lipofuscin binds iron, which generates ROS, probably resulting in 64 

exacerbation of oxidative damage and sequestration of proteases, thereby, inhibiting 65 

lysosomal degradation (Brunk & Terman, 2002; Grune et al., 2004). This in turn may 66 

67 

undegradable damaged organelles, proteins, phospholipids and lipids that will 68 

produce more lipofuscin (Brunk & Terman, 2002; Cuervo, 2004; Grune et al., 2004, 69 

Lüllmann-Rauch, 1979; Moore et al., 2006a, b, c, 2007).   70 

 71 

Molluscan species such as bivalve mussels and marine snails provide useful models 72 

for studying autophagic function, as autophagy can be readily induced by starvation, 73 

salinity change, hyperthermia and hypoxia in the cells of the hepatopancreas or 74 

digestive gland, which is the liver analogue in molluscs (Bayne et al., 1978; Lowe et 75 

al., 2006; Moore, 2008; Moore & Halton, 1973, 1977; Moore et al., 1986, 2007; 76 

Owen, 1970). These species have been extensively investigated, particularly with 77 

respect to the harmful effects of pollutant chemicals such as toxic metals and 78 

polycyclic aromatic hydrocarbons (Moore et al., 1985). Previous studies using bivalve 79 

molluscs have indicated that fasting-induced autophagy has a cytoprotective effect 80 

against oxidative stress (Moore, 2004; Moore et al., 2006b, 2007); and Moore and 81 

Stebbing (1976) demonstrated that autophagy was involved in hormesis induced by 82 

very low concentrations of copper, cadmium and mercury in a colonial hydroid. 83 

Hormesis is a biphasic dose response to an environmental agent characterized by 84 



low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect 85 

(Mattson, 2008). 86 

 87 

This investigation was designed to test the hypothesis that augmented autophagic 88 

turnover of oxidatively damaged proteins reduces lipofuscin (age-pigment) formation 89 

in hepatopancreatic digestive cells of the marine snail or periwinkle Littorina littorea. 90 

Snails were subjected to fasting (nutritional deprivation) for a period of seven days in 91 

order to induce autophagy (Moore & Halton, 1973; Moore et al., 1986), and the 92 

relative content of intralysosomal lipofuscin was then determined cytochemically in 93 

comparison to fed control snails. Additional parameters measured included 94 

lysosomal membrane stability, cytoplasmic and lysosomal neutral lipid (triglyceride) 95 

and lipid peroxidation. 96 

 97 

Modelling of whole biological systems from cells to organs is gaining momentum in 98 

cell biology and disease studies. This pathway is essential for the derivation of 99 

explanatory frameworks that will facilitate the development of a predictive capacity for 100 

estimating outcomes or risk associated with particular disease processes and 101 

therapeutic or stressful treatments (Moore & Noble, 2004). In this context, a parallel 102 

modelling exercise used a modified version of the generic cell network model 103 

described by Moore (2010) in order to accommodate the available biomarker data. 104 

The original generic model was developed from extensive published data in the 105 

environmental toxicology and biomedical literature, and the large-scale organisation 106 

of metabolic networks (Cuervo, 2004; Di Giulio & Hinton, 2008; Jeong et al., 2000; 107 

Klionsky & Emr, 2000; Zhang & Zhang, 2009). This cellular interaction network was 108 

constructed around the essential processes of feeding, excretion and energy 109 

metabolism (Moore, 2010).  Protein synthesis and degradation, including lysosomal 110 

autophagy, are also incorporated in the model as are the major protective systems 111 

(Cuervo, 2004; Di Giulio & Hinton, 2008; Livingstone et al., 2000; Moore, 2008). In 112 

order to determine whether complexity can be used as an indicator of health, the 113 

hypothesis that pathology involves a loss of biological complexity has been tested 114 

using the above mentioned generic physiological interaction network.   115 

 116 

System complexity and network topology was evaluated using network 117 

connectedness (connectance CV%), as well as node size, node degree, interaction 118 

weighting and network diameter.  Previous research has shown that the complexity 119 

of the whole system increases when sub-systems, such as detoxication and anti-120 

oxidant protective processes, augmented autophagy, protein degradation and 121 



induction of stress proteins, are up-regulated and start to interact significantly as part 122 

of a response to low-level stress, (i.e., biphasic or hormetic response; Moore, 2010). 123 

However, with increasing severity of stress, cell injury and higher-level functional 124 

impairment lead to physiological dysfunction and breakdown of the whole interaction 125 

network with consequent loss of complexity (Moore , 2010).  The type of network 126 

model used in this investigation (i.e., network and graph theory) will provide a 127 

mathematical formalism that can facilitate the system-level interpretation of health 128 

and dysfunction in living cells (Moore, 2010).  129 

 130 

Mathematical models provide the conceptual and mathematical formalism to 131 

integrate molecular, cellular and whole animal processes (Allen & McVeigh, 2004; 132 

Allen & Moore, 2004; Moore & Noble, 2004133 

134 

will prove invaluable for the future safeguarding of the aquatic environment and the 135 

development of legislation for integrated ecosystem management.  136 

 137 

 138 

 139 

Materials and Methods 140 

Animals and husbandry 141 

Snails (L. littorea) of shell length 20-25 mm were collected from the intertidal shore at 142 

Port Quin harbour (North Cornwall) in July 2008.   143 

 144 

The experimental animals were held in a re-circulating seawater system for 2 days at 145 

15±1 C and allowed to graze freely on sea lettuce (the green alga Ulva lactuca) also 146 

collected from Port Quin. Water quality parameters were monitored during the course 147 

of the experiment (dissolved oxygen, ammonia, nitrate, nitrite, pH and salinity (34.7 + 148 

0.5 psu). 149 

 150 

All experimental animals which climbed above the water level in their tanks were 151 

regularly detached and replaced on the bottom of the tank to try to ensure similar 152 

migratory behaviour and energy expenditure in both fed and fasting treatments. 153 

 154 

Experimental treatments 155 

After 2 days the snails were divided into two treatment groups (algal fed ad libitum on 156 

the green alga U. lactuca and fasting) with 2 replicates of 10 snails for each 157 



experimental treatment at 15±1 C and allowed to graze freely. The snails were 158 

exposed to a natural regime of daylight and darkness (July - natural daylight 159 

conditions). The treatments were maintained for a period of 7 days; and samples 160 

taken at the start of the experimental treatments (0 days and after 7 days) with equal 161 

numbers of animals (2 x 5) being sampled from both replicates. 162 

 163 

Sample preparation 164 

Sails were sacrificed by removal of the shell and excision of the visceral mass. The 165 

visceral mass containing the liver analogue or hepatopancreas was tranversely 166 

sectioned to provide a tissue sample approximately 5 x 5 x 5 mm in volume. Tissue 167 

samples for cytochemistry were subsequently frozen in liquid nitrogen onto 168 

aluminium chucks for tissue sectioning with a cryostatic microtome (Bright Ltd.) as 169 

described in Moore et al. (2004).  The remaining animals (2 x 5 from each replicate) 170 

were used for biochemical analysis of malondialdehyde (MDA). 171 

 172 

Tissue sectioning and cytochemistry 173 

174 

to clean glass microscope slides. Frozen tissue sections were reacted cytochemically 175 

for lysosomal stability (using latency of -glucuronidase), lipofuscin (Schmorl 176 

reaction), triglyceride or neutral lipid (oil red-O) (Bayliss High, 1984; Moore, 1976, 177 

1988; Moore et al., 2004, 2008).  178 

 179 

Cytochemical reaction products were measured in the tissue sections (5 fields at x 180 

400 magnification in each duplicate section) for lipofuscin and neutral lipid 181 

(triglyceride) respectively using a graded series of photomicrographs with reaction 182 

intensities previously determined by microdensitometry (Moore et al., 2006c).  183 

 184 

Lipid peroxidation  malondialdehyde (MDA) 185 

Lipid peroxidation was measured in hepatopancreatic tissue as concentration of MDA 186 

as described in Shaw et al. (2004). Whole digestive glands were washed with ice 187 

cold 0.9% NaCl and homogenised with 20 mM TRIS-HCl, pH 7.4 (1:10 w:v) at 4oC. 188 

The homogenate was centrifuged at 3,000 g at 4oC for 20 minutes. Tissue MDA 189 

levels were derivatised in a 1 ml reaction mixture containing a final concentration of 190 

6.7 mM 1-methyl-2-phenylindole, (dissolved in acetonitrile), 150 µl 37% hydrochloric 191 

acid and 200 µl sample or standard (10 mM 1,1,3,3-tetramethoxypropane, in 20 mM 192 

TRIS-HCl, pH 7.4). The tubes were vortexed and incubated at 45oC for 40 minutes. 193 



Samples were cooled on ice, centrifuged at 15,000 g for 10 minutes and read at 586 194 

nm. Results were expressed as MDA nmol/g wet weight.  195 

 196 

Network modelling of biomarker data 197 

Model description 198 

The generic cell model described by Moore (2010) has been developed from 199 

extensive published data in the environmental toxicology and biomedical literature, 200 

and the large-scale organisation of metabolic networks (Cuervo, 2004; Di Giulio & 201 

Hinton, 2008; Jeong et al., 2000; Klionsky & Emr, 2000). The generic cellular 202 

interaction network was constructed around the essential processes of feeding, 203 

excretion and energy metabolism. Protein synthesis and degradation, including 204 

lysosomal autophagy, are also incorporated in the model as are the major protective 205 

systems (Cuervo, 2004; Di Giulio & Hinton, 2008; Livingstone et al., 2000; Moore, 206 

2008). A subset of the generic model was used in this investigation in order to 207 

accommodate the available data (Fig. 2). The cellular physiological networks were 208 

constructed using Cytoscape 2.8 (Shannon et al., 2003). 209 

 210 

Analysis of cell system complexity  211 

Whole system complexity in the directed cellular physiological network was evaluated 212 

using connectedness (Bonchev, 2003). Topological complexity was measured as 213 

connectedness or connectance (Conn %) is the ratio between the number of links E 214 

in the interaction network and the number of links in the complete graph having the 215 

same number of nodes or vertices (V) (Bonchev, 2003). Connectedness relates the 216 

number of nodes (vertices) V and links or edges (arcs in a directed link) E  where the 217 

connectance ratio, CV, of a directed graph (digraph) with V nodes or vertices is then: 218 

 219 

CV =[(1 / max (CV)]||E|| x 100 220 
 221 

which reduces to:     CV =  (||E|| / V2) x 100 222 

 223 

for typical digraphs that allow every node to connect to every other node, where ||E||  224 

is the nearest integer function of E (Davis, 1997). This method uses the sum of the 225 

edge weights rather than the edge count and allows for self-loops or arcs, as with 226 

the autophagy process (Fig. 2). 227 

 228 

Biomarker data were used to attribute proportional weight values (illustrated as edge 229 

width; Fig. 2) to the interactions (edges) between cellular physiological processes 230 



(nodes) as shown in Table 1; and to the nodes, as node size (Fig. 2). The various 231 

biomarker mean values were standardised to a proportion of Control (Fed 7 days) 232 

values. These values (x) were used for biomarkers that normally decrease with 233 

pathology (e.g., lysosomal membrane stability), while biomarkers that normally 234 

increase with pathology (e.g., neutral lipid, lipid peroxidation & lipofuscin) were 235 

further transformed to (x-1). These values were normalised using log10(10.x) 236 

transformation and then inputted as the weight values for the network interactions 237 

(edges/links). The standardised biomarker values were used to set node size for 238 

comparisons of network topology (see Fig. 2). 239 

 240 

The cell physiology networks generated (Fig. 2) were also tested for generic network 241 

structure by analysing the relationship between nodes and links according to network 242 

theory (Jeong et al., 2000; Zhang & Zhang,2009). Node degree was determined from 243 

the number of edges (arcs) associted with a specific node (summation of in-arcs and 244 

out-arcs), and network diameters were calculated according to the equation:  245 

 246 

nV/lnk 247 

 248 

where D is the network diameter; V is the number of nodes; and k is the mean 249 

number of edges per node. 250 

 251 

Statistical analysis 252 

Multiple range and Kruskall-Wallis tests were applied to the treatment groups 253 

replicate data using Statgraphics Plus 5.0. The proportional edge (interaction) values 254 

in the Control and Fasting treatments were tested using the non-parametric Mann-255 

Whitney U test (2-tailed). Node size values were tested using the non-parametric Z-256 

test (2 population proportions categorical test). 257 

 258 

Results 259 

Fasting for 7 days resulted in a significant increase in lysosomal membrane stability 260 

and significant reductions in lipid peroxidation (MDA), lysosomal content of lipofuscin 261 

and cytoplasmic/lysosomal neutral lipid in the hepatopancreatic digestive cells 262 

compared with the fed animals (pooled replicates, P < 0.01, n = 10, Kruskall  Wallis 263 

test, Figs. 3 & 4).   264 

 265 



Structurally the digestive tubules of the hepatopancreas were similar in appearance 266 

in both treatments with secondary and tertiary lysosomes being present in similar 267 

numbers in the digestive cells, although there was evidence of enlargement of 268 

secondary lysosomes in the hepatopancreatic digestive cells, indicative of 269 

autophagic response, in the fasting treatment (Fig. 4).  Lipofuscin was primarily 270 

localised in late seconday lysosomes and tertiary lysosomes (residual bodies) in the 271 

digestive glands from snails in both treatment groups (Fig. 4). Snails sampled at the 272 

start of the experiment had a similar lipofuscin content in their digestive cells to those 273 

of the fed controls (92.3% ± 14.3; 95% CL as percentage of the day 7 fed control). 274 

 275 

Inputting the biomarker data into the directed cellular interaction network (digraph) 276 

model (Fig. 2) allowed the determination of the system complexity. Complexity 277 

values  as connectance ratio for the two experimental treatments are shown in Table 278 

1, with a considerable significant increase in connectivity in the fasted condition 279 

compared with the fed controls (P < 0.01, Mann-Whitney U test, n = 7, 2-tailed test).  280 

 281 

The fed and fasted network topologies differ in node size (Fig. 2; Z- test, score is -282 

2.0702, P < 0.05, n = 5, 2-tailed test), although network diameters remained the 283 

same for both treatments. The determination of node degree indicated that 284 

autophagy was the most highly connected node with 5 degrees (i.e., summation of 1 285 

out-arc, 3 in-arcs and 1 loop), making it an important physiological hub (Fig. 2). The 286 

network diameters ( nN/lnk) were small ( ), which is consistent with 287 

biological networks and remained unchanged by the fasting treatment (Zhang & 288 

Zhang, 2009).  289 

 290 

Discussion 291 

A reduction in lysosomal lipofuscin was observed following a period of experimental 292 

fasting. A similar reduction in lipofuscin has been shown in the digestive cells of 293 

fasting marine mussels exposed to ionic copper (Moore et al., 2007). The inference 294 

here is that augmented autophagy is reducing the lipofuscin content of these 295 

hepatopancreatic cells; and previous studies with these snails have shown that 296 

fasting induces autophagy (Moore et al., 1986). 297 

 298 

Concurrent reductions in lipid peroxidation (MDA) and cellular/lysosomal lipid content 299 

were also observed, along with increased lysosomal membrane stability indicating 300 

that the hepatopancreatic digestive cells were measurably healthier in the fasting 301 



snails (Moore et al., 2006a, b). Fasting animals may have had lower energy 302 

requirements, which could possibly contribute to a reduction in ROS generation, 303 

particularly in their mitochondria; although all animals had similar migratory activity 304 

imposed to minimize differences in energy expenditure (see Materials & Methods). 305 

However, in many molluscs the mitochondria are probably not a major source of 306 

ROS generation in hepatopancreatic cells: the lysosomal compartment is the main 307 

source as disccussed later (Fig. 1; Winston et al., 1991). Furthermore, the fasting 308 

animals will not be in a serious starvation situation within the time period of the 309 

experiment (7 days), since the hepatopancreatic digestive cells of gastropod 310 

molluscs are rich in reserves of glycogen and lipid (Moore and Halton, 1973, 1977). 311 

These factors considered together will hopefully have minimized this issue as an 312 

interpretational problem, however, further experimentation to determine the 313 

contribution of mitochondrial versus lysosomal generation of ROS would undoubtedly 314 

be helpful in further clarifying this. 315 

 316 

Autophagy is often considered to be primarily a survival strategy in multicellular 317 

organisms, which either is initiated by stressors (e.g., restricted nutrients, 318 

hyperthermia, hypoxia, salinity increase and toxic chemical contaminants; Cuervo, 319 

2004; Klionsky & Emr, 2000; Levine, 2005; Levine & Kroemer, 2008; Moore & Halton, 320 

1973, 1977; Moore et al., 1986, 2006a, b, c).  However, recent evidence indicates 321 

that autophagy is much more than just a survival process and is, in fact, intimately 322 

involved in cell physiology (Fig. 5; Cuervo, 2004; Eskelinen et al., 2009; Lockshin & 323 

Zakeri, 2004; Mizushima et al., 2008; Moore, 1988, 2004; Moore et al., 1980; 2006a).  324 

 325 

Cells use autophagy and the ubiquitin proteasome system as their primary protein 326 

degradation pathways (Cuervo, 2004; Klionsky et al., 2007; Kraft et al., 2010; Lamb 327 

et al., 2013). While the ubiquitin proteasome system is involved in the rapid 328 

degradation of proteins, autophagy pathways can selectively remove protein 329 

aggregates and damaged or excess organelles. Although autophagy has long been 330 

viewed as a relatively random cytoplasmic degradation system, the involvement of 331 

ubiquitin as a specificity factor for selective autophagy is rapidly emerging (Kraft et 332 

al., 2010). Indeed, recent evidence also suggests strong interactions (crosstalk) 333 

between proteasome-mediated degradation and selective autophagy (Kraft et al., 334 

2010).  335 

 336 

Consequently, the autophagic processes have been increasingly shown to have 337 

cytoprotective functions against ageing and many diseases including cancers, 338 



neurodegenerative diseases (Cuervo, 2004; Ferrari et al., 2011; Hippert et al., 2006; 339 

Mizushima et al., 2008; Ohsumi, 2014; Rubinsztein et al., 2011; Salminen & 340 

Kaarniranta, 2009; Selvakumaran et al., 2013; Trocoli & Djavaheri-Mergny, 2011; 341 

Zhang et al., 2012). Autophagic lysosomal digestion can be triggered by many 342 

environmental stressors including caloric restriction (CR), hypoxia, ROS, exercise, 343 

many toxins and phytochemicals, and sunlight and vitamin D mediated via the 344 

vitamin D receptor - VDR (Chatterjee etal., 2014; Delmas et al., 2011; Ferrari et al., 345 

2011; Mestre & Columbo, 2013; Moore et al., 2008; Wu & Sun, 2011; Zhang et al., 346 

2012).  347 

 348 

Augmented autophagy is controlled by switching off the mTOR (mechanistic target of 349 

rapamycin; part of mTORC1  mTOR complex 1) kinase: mTOR signalling is 350 

involved in many aspects of cell growth-regulation and has also been implicated in 351 

some cancers (Fig. 6; Asnaghi et al., 2004; Lamming et al., 2013; Laplante & 352 

Sabatini, 2009, 2012; Levine, 2005; Proud, 2002).  mTOR kinase is also coupled with 353 

a nutrient sensing pathway; and is switched off by lack of nutrients (see review by 354 

Proud, 2004). This kinase is evolutionarily conserved in eukaryotes and has been 355 

variously described in yeast, nematodes, molluscs, insects, crustaceans and 356 

mammals (Cammalleri et al., 2003; Beaumont et al., 2001; Levine, 2005; Klionsky & 357 

Emr, 2000). The mTOR signalling system is classically switched off by nutrient 358 

deprivation (i.e., amino acids), with resultant up-regulation of autophagy in mammals, 359 

which has been described in mussels and marine and terrestrial snails (Fig. 6; Bayne 360 

et al., 1978, 1979; Bergamini et al., 2003; Cuervo, 2004; Moore & Halton, 1973, 361 

1977; Moore et al., 1979; Moore et al., 1985, 1986; Proud et al., 2002). Autophagy, 362 

when triggered by inhibition of mTOR and other mTOR-independent pathways (e.g., 363 

SIRT 1 - NAD-dependent deacetylase sirtuin-1 and VDR  vitamin D receptor), is 364 

probably an important component of hormetic responses, particularly in anti-ageing 365 

processes (Blagosklonny, 2011, Kim et al., 2012; Martins et al., 2011; Moore & 366 

Stebbing, 1976; Rubinsztein et al., 2011; Salminen et al., 2012; Wu & Sun, 2011). 367 

Calorie restriction (CR) is now well established as having beneficial effects in a wide 368 

range of organisms by increasing lifespan and reducing the risk from age-related 369 

cancers, cardiovascular and neurodegenerative diseases (Mattson & Wan, 2005; 370 

Fontana et al., 2010). 371 

 372 

Molluscan hepatopancreatic lysosomes are also a major site for generation of 373 

reactive oxygen species (ROS), including oxyradicals, as demonstrated by Winston 374 

et al. (1991) in isolated digestive cells. Within the lysosomes of normal unstressed 375 



hepatopancreatic digestive cells, ROS are probably generated by transition metal 376 

ions, such as iron and copper, which accumulate in lysosomes from exogenous 377 

sources, such as algal and microbial food, and also by autophagic degradation of 378 

endogenous metallo-proteins (Fig. 1; Brunk & Terman, 2002; Moore et al., 2006a, 379 

2007).  Although molluscan digestive cell lysosomes spontaneously generate 380 

oxyradicals such as superoxide, they also contain a superoxide dismutase, which 381 

may protect the lysosomal membrane from excessive oxidative damage (Livingstone 382 

et al., 1992; Winston et al., 1991).  Exposure of mussels to copper and some PAHs 383 

also results in increased ROS; as well as does re-immersion in seawater following a 384 

period of anoxia as described above (Livingstone, 2001; Moore, 2008; Moore et al., 385 

2008; Regoli, 2000). Re-immersion following anoxia is probably analogous to 386 

reperfusion injury (Robin et al., 2007). Copper exposure also increases the 387 

concentration of protein carbonyls and lipofuscin (Kirchin et al., 1992; Moore et al., 388 

2007). 389 

 390 

Periwinkles are robust animals that frequently live in fluctuating environments such 391 

as estuaries where they are subjected to variable nutritional, temperature and salinity 392 

regimes, as well as repeated air exposure and re-immersion in seawater.  393 

Consequently, this essentially stressful fluctuating environment will tend to trigger 394 

repeated autophagic events, which by effectively removing inappropriately altered 395 

proteins and damaged or redundant cellular constituents will result in more efficient 396 

- fuscin and 397 

other aggregates (Fig. 4; Bergamini et al., 2003; Brunk & Terman, 2002; Cuervo, 398 

2004; Hawkins & Day, 1996; Hipkiss, 2006; Kirchin et al., 1992; Moore, 1988, 2004; 399 

Moore et al., 2006a, b, c and unpublished data).   400 

 401 

This more efficient cellular functionality may underpin the ability of intertidal molluscs 402 

such as periwinkles and mussels to survive, and often thrive, in environments that 403 

are subject to man-made stresses such as chemical pollution (Moore, 2004; Moore et 404 

al., 2006a, b, c). 405 

 406 

Changes in lysosomes have been used as biomarkers of ageing (aging) in a wide 407 

range of organisms including nematodes, fruit flies, molluscs and mammals (see 408 

review by Cuervo & Dice, 2000; Hole et al., 1992, 1993). In general there is a trend 409 

for decreasing proteolytic capability with increased age that has been linked with a 410 

gradual decline in the efficiency of the autophagic process (Cuervo & Dice, 2000).  411 

However, Bergamini et al. (2003) have proposed that repeated triggering of the 412 



autophagic system by nutrient deprivation or caloric restriction will prevent the 413 

decline in proteolytic capacity and, hence, contribute to increased lifespan probably 414 

415 

the situation of intertidal animals like periwinkles and mussels that live in an 416 

environment where autophagy is repeatedly switched on and off as discussed above, 417 

thus maintaining an effective capacity for the removal of altered proteins, membranes 418 

and organelles that are damaged by ROS and hypoxia-induced methylglyoxal (Fig. 5; 419 

Cuervo, 2004; Hawkins & Day, 1996; Hipkiss, 2006; Kiffen et al., 2004; Moore, 2004; 420 

Moore et al., 2006a, b, c, 2007; Regoli, 2000). Further investigation of the role of 421 

lysosomal autophagy in conferring resistance to stress is required but the possibility 422 

raises provocative questions about the possible role of ongoing and fluctuating low 423 

levels of stress in the evolution of stress tolerance (Moore, 2008; Moore et al., 2006a, 424 

b, c, 2007). 425 

 426 

There are also parallels between repeated stimulation of autophagy by mild 427 

environmental stressors (Moore (2008) and the growing anti-ageing evidence for 428 

fasting and caloric restriction (CR) induced autophagic removal of damaged or old 429 

intracellular proteins and organelles (see Fig. 5; Cuervo, 2004, 2008;  Cuervo & Dice, 430 

2000;  Madeo et al., 2010; Rubinsztein et al., 2011). 431 

 432 

Many readily detectable harmful pathological reactions occur at the cell and tissue 433 

level as a result of environmental insult (Moore, 2002a, b; Lowe et al., 2006).  Some 434 

cellular and 435 

tissue damage will occur unless the causative factors are removed. A key objective 436 

for ecotoxicology is to develop prognostic biomarkers and generic simulation models 437 

for responses to environmental change in whole systems, that are based on current 438 

and developing knowledge of genomic, proteomic, metabolomic, cellular and higher 439 

level biological processes. Access to such tools will be essential in the future for 440 

environmental managers and regulators; where they will be used in integrated 441 

environmental evaluation strategies for risk assessment and prediction in order to 442 

effectively manage resource sustainability (Moore, 2002b).   443 

 444 
However, one of the major difficulties in predicting impact and risk is our current 445 

ability, or rather the lack of it, to link harmful biological effects of environmental 446 

stressors in individual animals with their ecological consequences.  This problem has 447 

-  seeking to develop effective policies for 448 

sustainable use of resources and environmental protection. The key issues are 449 



complex and interfacial and require a cross-disciplinary approach. These include the 450 

effects of the physico-chemical environment  on the speciation/binding and uptake of 451 

pollutant chemicals; and inherent inter-individual and inter-species differences in 452 

vulnerability to toxicity, in particular,  the toxicity of complex mixtures. It is also 453 

essential to be able to link the impact of pollutants on whole biological systems 454 

(biocomplexity), from cells through the higher order interactive levels of organisation 455 

to functional ecosystems (using ensemble averages), leading eventually to 456 

Allen & McVeigh, 2004; Allen & Moore, 2004).  457 

 458 

Consequently, the immense complexity of the interactive functional level of biology 459 

dictates that we think in terms of integrated models that address this problem in a 460 

way that our limited mental computing capability cannot (Noble, 2002a, b, c). In 461 

essence, can mathematical modelling of biological processes shed light on cell injury, 462 

pathology, disease and ecosystem damage? Fortunately, models can help to make a 463 

coherent whole from disparate data sets; and are also useful conceptual indicators 464 

for the design of experiments that rigorously test current paradigms (Allen & Moore, 465 

2004; Lauffenburger & Linderman, 1993; Moore, 2002a, b; Moore & Allen, 2002).  In 466 

467 

impediment to progress.  However, the recent work of Noble (2002a, b) in developing 468 

numerical physiological models, and that of Düchting et al. (1996) with a tumour 469 

model, has opened a new avenue for the future in many areas of biomedicine and 470 

toxicology (Hunter et al., 2002a, b; Noble, 2002b). In traffic management and 471 

chemical engineering, physics and epidemiology, for example, it is well understood 472 

that complex systems can be accurately understood only by constructing quantitative 473 

mathematical models (Maddox, 1998).  However, ecotoxicologists are still largely 474 

working in the dark in this respect; and will remain so, until realistic models have 475 

been built for the process describing how the specificity of the whole system 476 

response matches that of the external signal or potentially harmful perturbation it 477 

receives (Allen & McVeigh, 2004; Allen & Moore, 2004; Moore, 2002a; Moore & 478 

Noble, 2004). 479 

 480 

Complexity of a cellular biological system can be used as an indicator of homeostasis 481 

(Lewis et al., 1992; Moore, 2010; Sedivy, 1999). Consequently, inputting the 482 

biomarker data from this experiment into a directed cell physiology network model 483 

showed that there was a statistically significant increase in system complexity 484 

indicating increased homeostasis and health status (Table 1). Network topology was 485 



also significantly different in terms of node size (Fig. 2). These results support the 486 

hypothesis that hormesis is occurring in the fasted animals and this is in line with the 487 

predictions for the effects of mild stress on the cellular physiology described by 488 

Moore (2010). The network models also demonstrate that autophagy is an important 489 

hub in the cellular physiology of the system being tested, which lends support to the 490 

overall hypothesis (Fig. 2). The network approach demonstrates that cell injury and 491 

pathology can be defined as a loss in system complexity, while an increase can 492 

indicate hormesis (Lewis et al., 1992; Moore, 2010; Sedivy, 1999). Consequently, 493 

cellular networks can be used to integrate information from biomarker data; and to 494 

direct the selection of biomarkers and design of experiments, in order to develop 495 

suites of tests that will demonstrate which links are active or inactive, and to what 496 

degree, thus providing mathematical formalism for an objective evaluation of health 497 

status for potential use in risk assessment (Moore, 2002b, Moore et al., 2004). 498 

Cellular interaction networks also have considerable potential for integrating multi-499 

 500 
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