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Summary

1. Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in

a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phyloge-

netic comparative studies have provided ways to incorporate measurement error and to address computational

challenges. However, missing data remain a particularly common problem, in which data are unavailable for

some but not all traits of interest for a given species (or individual), leaving researchers with the choice between

omitting observations or utilizing imputation-based approaches.

2. Here, we introduce an R implementation of PhyloPars, a tool for phylogenetic imputation of missing data

and estimation of trait covariance across species (phylogenetic covariance) andwithin species (phenotypic covari-

ance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast lin-

ear-time algorithm, thus allowing for extremely large data sets (which were previously computationally

infeasible) to be analysed in seconds orminutes rather than hours.

3. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars

methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early-Burst,

multivariate Ornstein-Uhlenbeck).

4. By providing fast and computationally efficient methods with flexible options for various phylogenetic com-

parative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data

withmissing observations, within-species variation and deviations fromBrownianmotion.

Key-words: fast methods, linear-time algorithm, missing data, multivariate Ornstein-Uhlenbeck,

phylogenetic comparativemethod, phylogenetic generalized least squares, phylogenetic imputation

Introduction

Phylogenetic comparative methods provide tools for studying

trait evolutionary history and trait covariance while account-

ing for non-independence of data collected across species.

Since the introduction of phylogenetically independent con-

trasts (PICs; Felsenstein 1985), thousands of studies have

incorporated phylogeny into statistical analyses. Since then, a

number of theoretical advances have been made, including a

flexible generalization of PICs with phylogenetic generalized

least squares (PGLS;Martins&Hansen 1997), and subsequent

generalizations in the form of phylogenetic mixed models

(PMMs; Housworth, Martins & Lynch 2004; Ives, Midford &

Garland 2007; Hadfield & Nakagawa 2010). These develop-

ments provide a unified framework for conducting compara-

tive analyses, allowing for flexible incorporation of alternative

evolutionary models (Hansen 1997), within-species variation

(Ives, Midford & Garland 2007; Hansen & Bartoszek 2012)

and high-dimensional multivariate extensions (Adams 2014a,

b; Denton & Adams 2015). Felsenstein (2008) introduced an

extension of PICs incorporating within-species variation in an

expectation-maximization algorithm that simultaneously esti-

mates across-species (phylogenetic) and within-species (pheno-

typic) trait covariation. This model is conceptually and

statistically similar to PMMs as well as within-species methods

proposed by Ives, Midford & Garland (2007), with the main

difference being that Ives, Midford &Garland (2007) use sum-

mary statistics (species trait means and standard errors)

whereas Felsenstein’s model utilizes raw observations from

individuals (Felsenstein 2008).

Dealingwithmissing data in comparative studies

A frequently encountered problem in comparative studies is

the difficulty (or impossibility) of obtaining observations for

every trait from each species in a study. For example, a realistic*Correspondence author. E-mail: eric.goolsby.evolution@gmail.com
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scenario might be 10 variables and a 10% missing rate. Most

often, researchers handle missing data by omitting individuals

for which all observations are not available. In the previous

example, this would lead to excluding 65% of individuals

(1 � 0�910), a drastic reduction in the data size, if the values are
missing at random. Alternatively, researchers sometimes rely

on pairwise observations to estimate pairwise trait covariance,

whichmay result in a non-invertible covariancematrix because

each covariance element is calculated from a different subset of

observations (Arbuckle, Marcoulides & Schumacker 1996).

This is undesirable, as a singular covariance matrix corre-

sponds to an undefined log-likelihood, rendering likelihood-

based parameter estimation, model diagnostics and model

selection procedures (e.g. likelihood ratio tests, AIC, BIC)

impossible. Both approaches are problematic, resulting in

unnecessary loss of statistical power and risking substantial

bias in parameter estimates (Pakeman 2014). Accordingly,

comparative studies in which data are assumed to be missing

at random should utilize methods incorporating all available

observations.

Although Felsenstein’s model requires that all observations

are completely available for each trait, individual and species,

the possibility of developing a likelihood-based modification

of the algorithm to estimate trait covariance in the presence of

missing data was suggested (Felsenstein 2008). This idea was

implemented in an online web interface called PhyloPars

(Bruggeman, Heringa & Brandt 2009), which is a statistical

framework for estimating phylogenetic trait covariance while

accounting for both within-species variation and missing data.

PhyloPars can also be used to phylogenetically impute

missing species data, perform ancestral state reconstruction

and test hypotheses of correlated trait evolution, among

others.

Computational feasibility of large-scale
comparative studies

Until recently, most comparative studies involved at most a

few hundred species. However, in recent years, comparative

studies have begun expanding in size to include several thou-

sand species (e.g. Smith et al. 2011; FitzJohn et al. 2014).

Because PGLS-based analyses require inversion of the phylo-

genetic covariance matrix corresponding to the tree topology

and the evolutionary model [most often Brownian motion

(BM)], large-scale comparative studies can become pro-

hibitively time-consuming – with single inversions taking sev-

eral days or weeks to complete or, in some cases, failing

entirely (Ho & An�e 2014), as the computational time required

to invert square matrices grows faster than the square of the

number of rows and columns. Additionally, many compara-

tive algorithms, including PhyloPars, require thousands of

matrix inversions for likelihood-based parameter estimation.

The inclusion of multiple traits and multiple within-species

observations dramatically exacerbates this problem: for a

study with s species,m traits and kwithin-species observations,

a matrix with smk rows and columns must be inverted. For

example, a studywith 5000 species, 4 traits and 5within-species

observations per trait results in a matrix with 100 000 rows

and columns (10 billion individual cells total). A study of this

size relying on repeated direct matrix inversions is simply not

feasible.

To meet the demand for computationally feasible com-

parative methods, multiple algorithms have been developed

to run in linear rather than polynomial time (Felsenstein

1973; FitzJohn 2012; Freckleton 2012; Ho & An�e 2014).

For example, PIC-based calculations, which are statistically

equivalent to PGLS (assuming BM evolution and a single

observation per species), are linear in time with the num-

ber of species included. This property of PICs was

exploited by Freckleton (2012) to develop fast methods for

comparative likelihood calculations in a variety of applica-

tions. More recently, Ho & An�e (2014) developed a versa-

tile linear-time algorithm which can be used to calculate

many different quantities required for different phylogenetic

comparative applications.

Here, we modify the methods presented in Ho &An�e (2014)

to develop a linear-time implementation of PhyloPars

(Bruggeman, Heringa & Brandt 2009) in R called

Rphylopars (Appendix S1, Supporting Information). Our

algorithm avoids large matrix inversions and allows for extre-

mely large problems to be analysed using modest computa-

tional resources (e.g. a standard laptop) while avoiding

excessive memory burdens typically associated with large-scale

comparative analyses. We further extend the Rphylopars

model to allow forwithin-species trait correlations (the original

PhyloPars implementation assumed zero within-species

correlations). We also implement methods for incorporating

alternative evolutionary models, such as Early-Burst (EB;

Harmon et al. 2010) and Ornstein-Uhlenbeck (OU; Hansen

1997), for multivariate data with missing observations and

within-species variation.

Rphyloparsdescription

Models can be fit in Rphylopars using the phylopars

function. This function estimates the specified evolutionary

model using restricted maximum likelihood, performs ances-

tral state reconstruction, imputes values for missing data and

provides prediction variances for ancestral states and imputed

data.

WITHIN-SPECIES VARIAT ION AND MISSING DATA

If multiple within-species observations are available,

Rphylopars automatically estimates within-species (pheno-

typic) trait covariance in addition to among-species (phyloge-

netic) covariance. As in Felsenstein (2008), phenotypic

covariance is assumed to be equivalent among species. The

estimation of phenotypic covariance can be suppressed by set-

ting the pheno_error option to FALSE, and the algo-

rithm instead uses species means to estimate phylogenetic

covariance assuming no within-species covariance. Alterna-

tively, within-species variance may be estimated without esti-

mating within-species correlation (i.e. a diagonal phenotypic
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covariance matrix) by setting the pheno_correlated

option to FALSE.

Rphylopars also readily incorporates missing observa-

tions by maximizing the log-likelihood of the covariance

parameters using all available data (Bruggeman, Heringa &

Brandt 2009). Using the estimated evolutionary model, miss-

ing data and ancestral states (which can also be viewed asmiss-

ing data) are phylogenetically imputed as the best linear

unbiased predictions, which is mathematically equivalent to

universal kriging in spatial statistics (Bruggeman, Heringa &

Brandt 2009; Ho&An�e 2014; Cressie 2015). This methodmay

also be used to predict phenotypic values in completely unob-

served species. Bymodifying the methods of Ho&An�e (2014),

Rphylopars is able to compute these quantities in linear

time, providing the maximum likelihood ancestral reconstruc-

tions and prediction covariances for each internal node, as well

as predicted means and covariances for missing values at the

tips of the tree (Appendix S1).

ALTERNATIVE EVOLUTIONARY MODELS

The OU model is a popular alternative to BM, which fits

parameters for both a (adaptation rate towards an optimal

trait value) and Σ (rate of drift variance accumulation; Hansen

1997; Bartoszek et al. 2012). Because the OU model can fit a

variety of evolutionary patterns in addition to adaptation, a
should be more broadly interpreted as the overall strength of

phylogenetic correlation, where low values of a correspond to

high phylogenetic correlation (Hansen 1997; Harmon et al.

2010). Ho & An�e (2014) discussed a fast linear-time algorithm

for the univariate OU model, but concluded that a fast algo-

rithm for the multivariate OU model could not be adapted

because different traits (and their covariances) operate under

different three-point structured matrices, each matrix repre-

senting a BM-like process on a transformed tree. Estimation of

the a and Σ matrices requires numerical optimization, and as

such poses a large computational burden when large numbers

of species and traits are present. In the mvMORPH package, Cla-

vel, Escarguel &Merceron (2015) use Cholesky decomposition

to speed up log-likelihood computations, but this and related

approaches are still nonlinear in complexity and remain infea-

sible for extremely large problems. Additionally, the complex-

ity of filling in the large covariance matrix for log-likelihood

computations is itself nonlinear [up to O(n2)]. Our linear-time

algorithm overcomes both of these problems, as it allows for

different three-point structured matrices among traits while

simultaneously avoiding the need to explicitly build large

matrices (Appendix S1). The multivariate OU model may be

specified in the phylopars function by setting the option

model=’mvOU’. By default, a is a full positive-definite matrix

(full_alpha=TRUE), in which case a influences both the

phylogenetic correlation between species and correlated evolu-

tion between traits. Alternatively, full_alphamay be set to

FALSE to estimate the model with a diagonal a to represent

adaptation acting on traits separately, in which case a influ-

ences the phylogenetic correlation between species but not cor-

relations between traits.

A special case of the multivariate OUmodel assumes a diag-

onal amatrix with equal values along the diagonal. This model

can be estimated by applying a branch length transformation

(OU a) such that a BM-like process applies on the transformed

tree. Other evolutionarymodels, including EB, k, j and d, may

be fit as tree transformations in a similar manner (Pagel 1997,

1999; Harmon et al. 2010; Ho &An�e 2014). Additionally, BM

covariance parameters may be estimated assuming a star phy-

logeny (equivalent to setting k = 0). These models may be

specified in the phylopars function by setting the option

model to ‘OU’, ‘EB’, ‘lambda’, ‘kappa’, ‘delta’

or ‘star’, respectively.

PARAMETER ESTIMATION

Aside from simple BM with no missing data, the evolutionary

model parameters described here lack closed-form solutions.

Rphylopars uses Broyden–Fletcher–Goldfarb–Shannon
(BFGS) optimization for parameter estimation using a modi-

fied log-Cholesky parametrization (Pinheiro &Bates 1996). To

provide reasonable starting parameters for optimization, two

Expectation-Maximization algorithms are implemented:

EMFelsenstein and EMmissing (Dempster, Laird & Rubin 1977;

Felsenstein 2008). The EMFelsenstein algorithm is used to simul-

taneously estimate phylogenetic and phenotypic covariance

matrices, as described in Felsenstein (2008). The EMmissing

algorithm is used to estimate phylogenetic trait covariance in

the presence of missing data. If multiple within-species obser-

vations are present with missing data, EMFelsenstein is nested

within each iteration of EMmissing using current parameter esti-

mates to impute missing observations (Appendix S1). EM

algorithms are not necessarily guaranteed to converge on the

maximum likelihood solution, but generally provide reason-

able starting parameters for BFGS optimization for BMmod-

els and BM-like tree transformations. For themultivariate OU

model, maximum likelihood BM covariance parameters and

the identity matrix for a are used by default to initialize numer-

ical optimization.

For high-dimensional optimization problems, it is well

known that optimization routines may converge on local

optima rather than the maximum likelihood solution. To

increase confidence in estimated parameters, multiple starting

parameters may be tried by overriding EM-generated starting

parameters. User-defined starting parameters may be supplied

for phylogenetic covariance (phylocov_start), phenotypic

covariance (phenocov_start) or for alternative evolution-

ary model parameters (model_par_start). Similarly, any

of these parameters may be fixed during optimization by sup-

plying the arguments phylocov_fixed, phenocov_fixed or

model_par_fixed.

ALTERNATIVES TO RPHYLOPARS

The original online PhyloPars interface can fit a BM

model with missing data and multiple within-species

observations (Bruggeman, Heringa & Brandt 2009). Addi-

tionally, the R package mvMORPH (Clavel, Escarguel &
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Merceron 2015) can fit most of the models described here,

including multivariate evolutionary models incorporating

missing data, within-species variation and alternatives to

BM evolution. Three main differences exist between

Rphylopars and mvMORPH regarding the implementation

of these models: (i) mvMORPH utilizes summary statistics

(means and standard errors) to accommodate within-

species variation, whereas Rphylopars directly utilizes

raw data and can incorporate intraspecific correlations; (ii)

Rphylopars provides reconstructed ancestral states and

(co)variances at each node of the tree (as well as predicted

missing species values), whereas mvMORPH solely estimates

the root ancestral state; and (iii) mvMORPH relies on Cho-

lesky factorization or similar methods to speed up log-like-

lihood calculations for the multivariate OU model (which

exhibits nonlinear polynomial increases in computation

time as the number of species or traits increases), whereas

Rphylopars implements a fast linear-time algorithm

(note: the original PhyloPars interface also relies on

Cholesky factorization for log-likelihood calculations). Of

these three differences, the third (computational cost) is per-

haps the most striking: for large data sets, Rphylopars’

linear-time algorithm reduces computation time with sev-

eral orders of magnitude for large data sets, as discussed

in detail in the next section. In addition to the models’

specifications shared by Rphylopars and mvMORPH,

mvMORPH also allows for many other model specifications,

including shifts in evolutionary rates and multi-optima

multivariate OU models. Multivariate OU models may

also be fit in the OUCH (Butler & King 2004) and MVS-

LOUCH (Bartoszek et al. 2012) packages.

COMPUTATIONAL PERFORMANCE

Simulations were performed to compare the computation

times of Rphylopars and alternative implementations

(Fig. 1). First, the speed of Cholesky decomposition (the rate-

limiting step for log-likelihood calculations in the online

PhyloPars interface) was compared to log-likelihood calcu-

lation speed in Rphylopars (Fig. 1a). Simulations were
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Fig. 1. Computation time and log-likelihood comparisons between Rphylopars and alternative implementations for simulated data sets. For (a),

four-trait data sets with five within-species replicates per species per trait were simulated on 32-, 64-, 128-, 256-, 512-, 1024-, 2048- and 4096-species

pure-birth phylogenies, analysed with a BM model, and the computation time for a single log-likelihood calculation is presented. (a) PhyloPars
(open triangles) uses a Cholesky decomposition, whose time increases cubically as the number of species increases. Cholesky decomposition failed

entirely for 2048 and 4096-species data sets (a 4096-species data set with four traits and five within-species replicates corresponds to an

81 920 9 81 920 species-trait covariance matrix, or 6�71 billion matrix cells). Computation time for Rphylopars (solid circles) increased linearly,

with the computation time for a 4096-species data set completing in < 0�1 s. For (b), the multivariate OUwas fit on bivariate data sets simulated on

32-, 64-, 128-, 256-, 512-, 1024-, 2048- and 4096-species pure-birth phylogenies. Five data sets were simulated for each number of species, and the

mean time to convergence in mvMORPH and Rphylopars is compared (error bars correspond to standard deviation). (c) Demonstration of the

equivalence between log-likelihoods of converged parameters using mvMORPH and Rphylopars for themodels fit in (b).

Table 1. Mean (�SD) parameter estimates and differences in parameter estimates (elements ofΣ and a) between MVMORPH andRphylopars corre-

sponding to simulations described in the Computational performance section (Fig. 1b,c), alongwith theR2, slopes and intercepts of linear regression

between parameter estimates fit in both packages

Parameter Mean estimate Avg.D R2 Slope Intercept

Σ1,1 1�073 � 2�456 �0�001 � 0�006 1�000 1�000 0�000
Σ1,2 0�208 � 1�311 �0�003 � 0�022 1�000 1�000 0�003
Σ2,2 1�755 � 1�616 �0�014 � 0�065 0�999 1�017 �0�016
a1,1 1�639 � 2�660 0�0430 � 0�273 0�989 0�999 �0�042
a1,2 0�116 � 1�352 �0�002 � 0�010 1�000 1�000 0�002
a2,2 2�272 � 2�424 �0�002 � 0�016 1�000 0�999 0�003
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performed using the simtraits function and consisted of

four-trait data sets with five within-species replicates per spe-

cies per trait simulated on 32-, 64-, 128-, 256-, 512-, 1024-,

2048- and 4096-species pure-birth phylogenies (the corre-

sponding species-trait covariance matrices for these simulated

data sets are of dimension s 9 5 9 4). Cholesky decomposi-

tion time increased cubically as the number of species increased

(R2 = 1�000; y = 0�167 9 10�6x3) and failed entirely for 2048-

and 4096-species data sets (Fig. 1a), as the memory require-

ments for the corresponding 40 960 9 40 960 and

81 920 9 81 920 dimension matrices (respectively) exceeded

available computational resources (on a standard laptop).

Conversely, log-likelihood calculations increased linearly in

Rphylopars (R2 = 0�999; y = 2 9 10�5x), and the log-likeli-

hood for the 4096-species data set was computed in just 0�08 s

(Fig. 1a). Next, the speed and convergence of Rphylopars

was compared to that of the R package mvMORPH (Clavel,

Escarguel & Merceron 2015) for fitting the multivariate OU

model (Fig. 1b; simulation code available in Appendix S2).

Simulations were performed using the mvSIM function in mv-

MORPH for bivariate traits ranging from 32 to 4006 species.

Simulations were performed using randomly generated posi-

tive-definite matrices for Σ and a and randomly generated root

values. By default, Rphylopars fits parameters via REML

rather thanML, so the option REMLwas set to FALSE in order

to fit models via ML for direct comparison with mvMORPH.

Both packages exhibited a lag effect in computation time for

smaller data sets (i.e. computation time was essentially

unchanged regardless of the number of species for data sets

with fewer than 128 species). Following the lag, computation

times for mvMORPH increased faster than quadratically with

the number of species (R2 = 0�985; slope = 2�759; inter-

cept = �5�326 on log10-transformed x and y), whereas

Rphylopars time to convergence increased approximately

linearly (R2 = 0�977; slope = 0�989; intercept = �1�300 on

log10-transformed values) (Fig. 1b). Models fit using

Rphylopars and mvMORPH converged to nearly identi-

cal log-likelihoods (R2 = 1�000; slope = 1�000; inter-

cept = �0�110), with Rphylopars log-likelihoods on average

greater than mvMORPH log-likelihoods by 0�099 (� 0�745; see
Fig. 1c). These differences are not due to differences in the way

likelihoods are calculated between the two packages, as

Rphylopars and mvMORPH return identical log-likelihoods

of up to 10�6 when supplied identical parameters (R2 = 1�000;
slope = 1�000; intercept = 0�000). Rather, differences in

parameter estimates are due to the difficulty of numerical esti-

mation and highlight the importance of tryingmultiple starting

parameters, as convergence on the maximum likelihood solu-

tion is not guaranteed for either package. However, overall

these differences appear to be negligible, as parameter esti-

mates forΣ and awere very similar (Table 1).

Conclusion

We have implemented a fast linear-time algorithm in

Rphylopars which allows for the estimation of phylogenetic

trait covariance for data sets with missing observations and

multiple within-species observations. The methods described

here extend the original PhyloPars implementation in an R

environment to allow incorporation of within-species (pheno-

typic) correlations and alternative evolutionary models. As

comparative data sets continue to grow in number of species

and traits observed, fast methods will become increasingly

critical. Rphylopars is available on the CRAN repository

(https://cran.r-project.org/web/packages/Rphylopars/), aswell

as onGitHub (https://github.com/ericgoolsby/Rphylopars). A

tutorial with worked examples is provided in Appendix S3

for implementing the features described here, and addi-

tional information can be found on the Rphylopars wiki

(https://github.com/ericgoolsby/Rphylopars/wiki).
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