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Abstract—Existing remote sensing algorithms to estimate the 

phycocyanin (PC) concentration in turbid inland waters have high 

associated uncertainties, especially at low PC concentrations in 

diverse phytoplankton communities. This study provides the 

theoretical framework for a four-band semi-analytical algorithm 

(FBA_PC) which isolates PC absorption from second-order 

variability caused by yellow matter and other phytoplankton 

pigment absorption. The algorithm suits the band configuration 

of both the Medium Resolution Imaging Spectrometer (MERIS) 

and Sentinel-3 Ocean and Land Color Instrument (OLCI). 

Calibration of the algorithm was based on absorption data from 

twelve inland water bodies in the USA, The Netherlands, and 

China, combined with measurements from laboratory-grown 

cultures, demonstrated that the assumptions underlying FBA-PC 

are an improvement over existing three-band approaches. 

Validation of FBA_PC in seven inland water bodies in the USA, 

The Netherlands, and China showed good agreement of FBA_PC 

adjusted to the MERIS/OLCI band configuration with measured 

PC, with root-mean-square error (RMSE) = 27.691 mg m-3, mean 

absolute percentage error (MAPE) = 172.863 %, and coefficient of 
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determination (R2) = 0.730). FBA_PC outperformed previously 

proposed PC algorithms that can be applied to MERIS or OLCI 

data, and is expected to be more robust when applied to a wider 

range of water bodies. 

 
Index Terms—remote sensing, turbid inland waters, 

phytoplankton, cyanobacteria, phycocyanin, MERIS, OLCI  

 

I. INTRODUCTION 

he combined effects of increased anthropogenic nutrient 

loading of freshwater systems and global warming have led 

to a global increase of cyanobacterial blooms in inland waters 

[1-4]. A number of bloom-forming species produce toxins 

(neurotoxins, hepatotoxins, cytotoxins, and irritant and 

gastrointestinal toxins) which pose a hazard to animal and 

human health [5, 6]. Cyanobacterial blooms can affect drinking 

water supply [7], disrupt food webs [8], lead to hypoxia [9], and 

reduce biodiversity [10, 11]. Identifying and quantifying 

cyanobacteria biomass is therefore key for monitoring, 

forecasting, early warning, and risk management of inland 

water bodies. 

Traditional laboratory methods can provide detailed 

quantitative biological and chemical characterization of 

cyanobacteria blooms. These methods include cell counts, 

biovolume, chlorophyll-a (Chla), phycocyanin (PC), 

microcystin (MC), dissolved oxygen concentration (DO), and 

chemical oxygen demand (COD). Remote sensing can provide 

a synoptic complement to the traditional methods by targeting 

optically active substance concentrations. Cyanobacterial 

biomass can be characterized from PC, a prominent accessory 

photosynthetic pigment of freshwater cyanobacteria [12]. PC 

has a distinct absorption peak at 615 nm which can be targeted 

with remote sensors for monitoring and assessment of 

freshwater cyanobacteria. Remote sensing reflectance (𝑅𝑟𝑠(𝜆)), 

with λ denoting the waveband of light, is a function of the 

inherent absorption ( 𝑎(𝜆) ) and backscattering coefficient 

(𝑏𝑏(𝜆)) [13] : 

𝑅𝑟𝑠(𝜆) =
𝑓(𝜆)

𝑄(𝜆)
×

𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
                          (1) 

Where f(λ)  describes the sensitivity of the reflectance to 

variations in the solar angle [14] and Q(λ)  describes the 

bidirectional properties of the reflectance [15]. The ratio 

𝑓(𝜆)/𝑄(𝜆)  can be approximated by a constant for limited 
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variation in sun angle, and is only weakly dependent on 

wavelength [15, 16]. The absorption coefficient 𝑎(λ) can be 

divided into absorption by pure water (𝑎𝑤(𝜆)), PC (𝑎𝑃𝐶(𝜆)), 

non-phycocyanin phytoplankton pigment ( 𝑎𝑝ℎ−𝑃𝐶(𝜆) ), and 

yellow matter (𝑎𝑦𝑚(𝜆)), the sum of dissolved organic matter 

and non-pigmented particulates: 
𝑎(λ) = 𝑎𝑃𝐶(𝜆) + 𝑎𝑝ℎ−𝑃𝐶(𝜆) + 𝑎𝑦𝑚(𝜆) + 𝑎𝑤(𝜆)   (2) 

Algorithms previously proposed for estimating PC from 𝑅𝑟𝑠(𝜆) 

can be separated into empirical and semi-analytical categories.  

Dekker et al. (1993) presented an empirical baseline 

algorithm which uses the relative height of 𝑅𝑟𝑠(624) against 

two neighboring bands (𝑅𝑟𝑠(600) and 𝑅𝑟𝑠(648)) as an index 

of PC concentration in 10 lakes in The Netherlands [17]. Qi et 

al. (2014) developed a band-subtraction model (henceforth 

denoted Qi14) which can be used with Medium Resolution 

Imaging Spectrometer (MERIS) data to retrieve PC 

concentration in Lake Taihu, China (Eq. 3) [18].  
Qi14 = 𝑅𝑟𝑠(560) − 𝑅𝑟𝑠(620) 

+
620−560

665−560
× (𝑅𝑟𝑠(665) − 𝑅𝑟𝑠(560)) (3) 

Schalles et al. (2000) used the ratio 𝑅𝑟𝑠(650)/𝑅𝑟𝑠(625) 

(denoted Schalles00) to estimate PC in Lake Carter, USA [19]. 

Mishra et al. (2009) presented a band ratio algorithm based on 

the ratio 𝑅𝑟𝑠(700)/𝑅𝑟𝑠(600), where 𝑅𝑟𝑠(600) is used to avoid 

Chla absorption which overlaps with the PC absorption peak 

[20]. Woźniak et al. (2016) showed a model which was based 

on linear combination of two variables that is logarithmic 

transformation of two band ratios for the estimation of PC in the 

optically complex waters of the Baltic Sea, and formulates 

solutions for hyperspectral  𝑅𝑟𝑠(𝜆) as well as 𝑅𝑟𝑠(𝜆) restricted 

to the wavebands of MERIS and Sentinel-3 Ocean and Land 

Colour Imager (OLCI) radiometer, respectively [21]. 

Semi-analytical algorithms include that of Simis et al. (2005) 

who proposed a nested semi-analytical band ratio algorithm 

(denoted Simis05) [22]. This algorithm combines two ratios of 

bands compatible with MERIS [23, 24]. Simis05 uses Rrs(778) 

to retrieve bb, 𝑅𝑟𝑠(709)/𝑅𝑟𝑠(665) to estimate Chla absorption 

at 665 nm (𝑎𝐶ℎ𝑙𝑎(665)),  and 𝑅𝑟𝑠(709)/𝑅𝑟𝑠(620) to estimate 

the total absorption of Chla and PC at 620 nm (𝑎𝐶ℎ𝑙𝑎+𝑃𝐶(620)). 

Then, a semi-empirical correction is applied to (𝑎𝐶ℎ𝑙𝑎+𝑃𝐶(620) 

to remove the contribution by Chla, isolating PC absorption. 

Hunter et al. (2008, 2010) used the three band model which was 

firstly proposed for Chla estimation by Dall’Olmo et al. (2003) 

[25] to retrieve PC in laboratory culture experiments and in 

Loch Leven and Esthwaite Water, UK, two shallow, eutrophic 

lakes (denoted Hunter10) [26, 27]. Duan et al. (2012) adapted 

Hunter10 for MERIS for the estimation of PC in three inland 

lakes (Lake Taihu, Lake Dongjiu, and Lake Gehu) in China 

(denoted as HD12) [28]. Li et al. (2012) proposed a method that 

combines a three band algorithm with a baseline algorithm 

(denoted TBBA) which is less sensitive to the interference of 

absorption due to yellow matter, other pigments and 

backscattering of the water column, to estimate PC in three 

reservoirs in central Indiana, USA [29]. Mishra et al. (2014) 

presented a three band algorithm (denoted Mishra14) which 

accountes for 𝑎𝐶ℎ𝑙𝑎(620) by using an empirical relationship to 

the band ratio 𝑅𝑟𝑠(560)/𝑅𝑟𝑠(665), using in situ data collected 

from 15 aquaculture ponds with high PC concentrations [30]. 

MERIS (2002-2012) provided observations at spectral (15 

bands from 412 to 900 nm, including 620 nm), radiometric 

(16-bit), spatial (300 nm at full resolution) and temporal 

(three-day revisit at the equator) resolutions [31] that are 

considered adequate for inland water monitoring [32]. The 

Sentinel-3 mission carrying the Ocean and Land Colour 

Instrument (OLCI) continues the capability for remote sensing 

of PC in inland waters, with Sentinel-3A launched in 2016. Of 

the algorithms listed above only Schalles00, Simis05, HD12, 

Mishra14, and Qi14 can be used with MERIS/OLCI band 

configurations. The empirical algorithms Schalles00 and Qi14 

are not a monotonic function of PC, so these algorithms may be 

sensitive to variability in optically active water constituents 

outside the range considered when the algorithms are 

developed. Simis05, HD12, and Mishra14 are semi-analytical 

algorithms, aiming to isolate 𝑎𝑝𝑐(620) from 𝑎(620). Simis05 

uses two empirical coefficients to tune the retrieval of aph(620) 

and aph(665), which may lead to errors when 𝑎𝑦𝑚(620) varies 

outside the range over which Simis05 was calibrated. HD12 

uses 𝑎𝑝ℎ(709)  and 𝑎𝑦𝑚(709)  to account for non-PC 

𝑎𝑝ℎ(620)  and 𝑎𝑦𝑚(620)  simultaneously. In turbid inland 

waters, if the difference of 𝑎𝑦𝑚(𝜆) between 620 and 709 nm is 

non-negligible, subtracting the effect of yellow matter in HD12 

may result in erroneous estimates of PC values. Mishra14 

attribute the absorption signal at 620 nm to Chla, PC, and water, 

but ignoring influences of yellow matter absorption. Whereas 

each algorithm accounts for secondary (non-PC related) 

variability in specific ways, each presents limitations which are 

expected to affect their transferability between different optical 

water types [33-35].  

In the present study, the secondary variability around PC 

retrieval is addressed in a semi-analytical four band algorithm 

(FBA_PC) with applicability to MERIS/OLCI bands. The 

primary approach is a modification of the Hunter10 algorithm 

with the aim to effectively isolate 𝑎𝑝𝑐(620)  from 𝑎(620) , 

based on new assumptions on the variability of 𝑎𝑝ℎ(𝜆) and 

𝑎𝑦𝑚(𝜆). The performance of FBA_PC is evaluated using an 

extensive database of field radiometric and pigment data 

obtained in seven inland lakes. 

II. DATA AND METHODS 

A. Study Areas 

(1) Indiana Reservoirs, USA 

The sites include three Indiana reservoirs: Eagle Creek 

Reservoir (39.8°N, 86.3° W), Geist Reservoir (39.9° N, 85.9° 

W), and Morse Reservoir (40.1° N, 86.0° W). The three 

reservoirs supply drinking water to the Indianapolis 

metropolitan area and have similar depth (3.2- 4.7 m), surface 

area (5.0- 7.5 𝑘𝑚2), volume (21-28 × 106  𝑚3) and residence 

times (55 – 70 days) [29, 36]. Ten field campaigns were 

conducted in these reservoirs in 2010, collecting hyperspectral 

reflectance, PC and Chla concentrations, and absorption 

measurements. A brief description of measurement protocols is 
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provided further below. The range of PC and Chla 

concentrations observed in these campaigns is listed in Table 1. 

(2) Lake IJsselmeer, The Netherlands 

Lake IJsselmeer (52.8° N, 5.3° E) is the largest freshwater 

body of Western Europe (1190 km2 ). The lake is shallow 

(mean depth 4.4 m) and eutrophic as a result of anthropogenic 

activities [37]. The lake has a seasonal phytoplankton 

succession of microalgae and cyanobacteria, the latter 

predominant in late summer. Cyanobacteria blooms consist of 

Aphanizomenon sp. and Microcystis sp. and occasionally 

accumulate at the water surface during calm summer days [38, 

39]. Six sampling campaigns took place in spring, summer, and 

late summer during 2004-2005, collecting hyperspectral 

reflectance and water samples for pigment concentrations and 

absorption. Measurements and protocols are briefly described 

further below. The range of PC and Chla concentrations 

observed in this lake is summarized in Table 1. 

(3) Chinese Lakes And Reservoirs 

Absorption measurements were carried out on water samples 

collected from eight inland water bodies in China: Lake Taihu, 

Lake Chaohu, Lake Hengshui, Lake Dianchi, Lake Dongting, 

Lake Erhai, Jiajiang Reservoir, and Three Gorges Reservoir. 

Lake Taihu (31.2° N, 120.1° E) located in the Yangtze River 

Delta is the third largest freshwater body in China. It is a highly 

eutrophic lake in which cyanobacterial blooms (Microcystis sp.) 

have occurred frequently over the past twenty years [40]. Lake 

Chaohu (31.5° N, 117.6° E) is the largest lake in Anhui 

Province and the fifth largest freshwater body in China. The 

extensive exploitation of Lake Chaohu in recent years has led to 

eutrophication and silting [41]. Lake Hengshui (37.6° N, 115.6° 

E) located in the Hebei Province is one of the important bird 

habitats in the north of China. Lake Dianchi (24.5° N, 102.3° E) 

is the largest plateau lake in Yunnan Province, with a coving 

area of 370 km2. It is a seriously eutrophic lake with frequent 

cyanobacterial blooms and extremely high concentrations of 

total nitrogen (TN), total phosphorus (TP), and Chla [42-44]. 

Lake Dongting (29.2° N, 113.0° E) is the second largest 

freshwater body in China. It plays a highly important role in 

this region for flood protection, drinking water supply, and as 

water supply for agriculture [45]. The water of Lake Dongting 

has experienced eutrophication in recent years [41]. Lake Erhai 

(25.4° N, 99.5° E) located in the Yunnan Province plays a vital 

role in freshwater supply, agricultural irrigation, fishery, 

tourism, and navigation [46]. Jiajiang Reservoir (32.0° N, 118.7° 

E) is located in the lower reaches of the Yangtze River near the 

city of Nanjing and its main source of drinking water. Three 

Gorges Reservoir (30.8° E, 110.9° E) is located in the upstream 

part of the Yangtze River at the boundary of Hubei Province 

and Chongqing City and is also experiencing eutrophication 

[47]. Basic statistics on the in situ 𝑎𝑝ℎ(620) , 𝑎𝑦𝑚(620) , 

𝑎𝑝ℎ(620): 𝑎𝑦𝑚(620) , 𝑎𝑦𝑚(620): 𝑃𝐶 , and 𝑎𝑝ℎ(620): PC 

values in Table 2 shows the large difference of the bio-optical 

properties between the different inland lakes. 

B. In Situ Remote Sensing Reflectance Data 

An Ocean Optics USA400 unit (Ocean Optics, Inc., Dunedin, 

FL, USA) radiometer with fibre optics was used to measure 

𝑅𝑟𝑠(𝜆)  in the three Indiana reservoirs in 2010. The 

measurements of 𝑅𝑟𝑠(𝜆)  followed the procedure that is 

described in detail in Gitelson et al. (2008) [48]. For the dataset 

of Dutch lakes, a PR-650 (Photo Research) was used to 

measure 𝑅𝑟𝑠(𝜆) in consecutive measurements of water leaving 

radiance, sky radiance and radiance reflected by a calibrated 

Spectralon diffuser plate. Details on the measurement 

procedure are provided in Simis et al. (2005) [22]. The 

FieldSpec spectroradiometer (Analytical Spectral Devices, Inc., 

Boulder, CO, USA) was used to measure 𝑅𝑟𝑠(𝜆)  with 

wavelength ranges from 350-1050 nm in Lake Taihu, Lake 

Chaohu, and Lake Hengshui in China in 2016. The 

measurements of 𝑅𝑟𝑠(𝜆)  followed the procedure that is 

described in detail in Mueller et al. (2000) [49]. 

The measured 𝑅𝑟𝑠(𝜆)  were convolved to represent the 

spectra of MERIS. This was achieved by applying MERIS’s 

spectral response function (SRF) with in situ 𝑅𝑟𝑠(𝜆) data [50]. 

The SRF were downloaded from the U.S NASA Goddard 

Flight Space Center (GSFC, http://oceancolor.gsfc.nasa.gov). 

C. Water Sample Analyses  

Surface water samples were collected, filtered onboard and 

then transferred to cold, dark coolers in the laboratory for 

analysis within 24h. The absorption coefficient of total 

particular matter, subsequently separated into phytoplankton 

and detrital components through bleaching with 80% hot 

ethanol, were measured following the QFT approach, using a 

150-mm integrating sphere with corrections [22]. The 

absorption coefficient of dissolved organic matter was 

determined spectrophotometrically against a reference of 

ultrapure water, following filtration of the water sample over a 

0.2 μm membrane filter. The determination of in situ PC 

concentration in the three Indiana reservoirs, Lake Taihu, Lake 

Chaohu, and Lake Hengshui were same and different from 

Lake IJsselmeer. For the samples collected in the three 

Indianan reservoirs, Lake Taihu, Lake Chaohu, and Lake 

Hengshui, PC concentration was determined based on the 

method detailed in Randolph et al. (2008) [35] which was a 

modified method of the homogenization method by Sarada et al. 

(1999) [51]. The in situ samples were filtered through 0.7 μm 

pore size glass fibers, a stainless steel spatula was used to 

transfer to 50 ml polycarbonate centrifuge tubes and broken up 

in 50 mmol l-1 sodium phosphate buffer (pH 7.0 ±0.2) [29]. 

The broken filters then went through two rounds of grinding 

and centrifugation. Finally, the PC concentration of the 

supernatant was fluorometrically determined using a 

TD700-fluorometer (Turner Designs, Inc.). For the samples 

collected in Lake IJsselmeer, the freeze-thawing method of 

Sarada et al. (1999) [51] was used but extended to nine cycles 

of freezing at -20°C with subsequent high speed centrifugation 

and spectrophotometric quantification, as described in Simis et 

al. (2005) [22]. 

D. Phytoplankton Culture Experiments 

Cultures of the chlorophyte Chlorella vulgaris, the 

cryptophyta Cryptomonas ovata, and the diatom Cyclotella 

meneghiniana, were grown on BG11, AF-6, and CSI media, 
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respectively. All three algae strains were maintained in a 

culture cabinet at 25 ±1 °C under a white light intensity of 25 

μmol 𝑚−2𝑠−1  photons on a 12 h : 12 h light/dark cycle. 

Because none of these algae species contained PC, 𝑎𝑝ℎ(𝜆) can 

be considered equal to 𝑎𝑝ℎ−𝑃𝐶(𝜆). 

E. Accuracy Assessment 

The relative error (RE), mean absolute percentage error 

(MAPE) and root-mean-square error (RMSE) were used to 

evaluate the accuracy of the presented algorithms: 

RE = |
𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖−𝑣𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖

𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖
| × 100%            (4) 

MAPE =
1

𝑁
∑ |

𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖−𝑣𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖

𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖
|𝑁

𝑖=1 × 100%   (5) 

RMSE = √
∑ (𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖−𝑣𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)2𝑁

𝑖=1

𝑁
          (6)  

Where 𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖  is the variable that is considered the 

reference observed from in situ measurements, 𝑣𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 

represents the same variable of interest derived from proposed 

models or algorithms, and N is the number of observations. 

III. THEORY OF THE FBA_PC MODEL 

The four bands of FBA_PC were selected based on the 

following assumptions, which extends the theory of a 

three-band retrieval algorithm as described by Dall’Olmo [52] 

and applied by Hunter et al. (2010) for PC retrieval [26]: 

 (1) The first band 𝜆1 should be maximally sensitive to the 

targeted optically active substance, in this case PC absorption 

( 𝑎𝑃𝐶(𝜆1) ≫ 𝑎𝑃𝐶(𝜆2) , 𝑎𝑃𝐶(𝜆1) ≫ 𝑎𝑃𝐶(𝜆3) ). Waveband 𝜆1 

should thus be narrow and located near the absorption 

maximum of PC at 615 nm. 

(2) The yellow matter absorption contained at 𝜆1 (𝑎𝑦𝑚(𝜆1)), 

as well as the non-PC phytoplankton pigment absorption at 𝜆1 

(𝑎𝑝ℎ−𝑃𝐶(𝜆1)) should be captured using a band combination that 

captures the variability in these absorption components. The 

contribution to absorption in bands 𝜆2 and 𝜆3 is expressed with 

scaling parameter 𝜂 that we let vary between -0.1 and 1.1. The 

function of this parameter is to capture the influence of both 

𝑎𝑦𝑚(𝜆1) and 𝑎𝑝ℎ−𝑃𝐶(𝜆1), based on two reflectance bands, in a 

single algorithm parameter 𝜂. Band 𝜆2  and 𝜆3  are located at 

shorter and longer wavelengths than 𝜆1, respectively: 

{
𝑎𝑦𝑚(𝜆1) = 𝜂𝑎𝑦𝑚(𝜆2) + (1 − 𝜂)𝑎𝑦𝑚(𝜆3)                        (7a)

𝑎𝑝ℎ−𝑃𝐶(𝜆1) = 𝜂𝑎𝑝ℎ−𝑃𝐶(𝜆2) + (1 − 𝜂)𝑎𝑝ℎ−𝑃𝐶(𝜆3)        (7b)
 

Calibration of 𝜂 is covered in the next section. 

(3) The fourth band 𝜆4 is minimally sensitive to absorption 

by phytoplankton and yellow matter, whereas the absorption of 

pure water (𝑎𝑤(𝜆4) dominates [22, 52, 53]. 

(4) The backscattering coefficient 𝑏𝑏(𝜆) is not significantly 

different over the wavelength range between bands 𝜆1 to 𝜆4. 

Because this assumption will deviate from known spectral 

dependency of 𝑏𝑏(𝜆) found in many natural waters [22, 29], the 

best combination of bands will be those found in relatively 

close proximity, while still isolating the dominant absorption 

signals. 

Mathematically, the FBA_PC indices is defined as: 

FBA_PC = [
1

𝑅𝑟𝑠(𝜆1)
−

𝜂

𝑅𝑟𝑠(𝜆2)
−

1−𝜂

𝑅𝑟𝑠(𝜆3)
] 𝑅𝑟𝑠(𝜆4)       (8) 

Applying Eqs. 1-2 to Eq. 8 yields the long form of the 

algorithm with explicit absorption and backscattering terms for 

each band: 

FBA_PC ∝ [
𝑎𝑤(𝜆1) + 𝑎𝑦𝑚(𝜆1) + 𝑎𝑃𝐶(𝜆1) + 𝑎𝑝ℎ−𝑃𝐶(𝜆1) + 𝑏𝑏(𝜆1)

𝑏𝑏(𝜆1)
 

−
𝜂𝑎𝑤(𝜆2) + 𝜂𝑎𝑦𝑚(𝜆2) + 𝜂𝑎𝑃𝐶(𝜆2) + 𝜂𝑎𝑝ℎ−𝑃𝐶(𝜆2) + 𝜂𝑏𝑏(𝜆2)

𝑏𝑏(𝜆2)
 

−
(1−𝜂)𝑎𝑤(𝜆3)+(1−𝜂)𝑎𝑦𝑚(𝜆3)+(1−𝜂)𝑎𝑃𝐶(𝜆3)+(1−𝜂)𝑎𝑝ℎ−𝑃𝐶(𝜆3)+(1−𝜂)𝑏𝑏(𝜆3)

𝑏𝑏(𝜆3)
]       

×
𝑏𝑏(𝜆4)

𝑎𝑤(𝜆4)+𝑎𝑦𝑚(𝜆4)+𝑎𝑃𝐶(𝜆4)+𝑎𝑝ℎ−𝑃𝐶(𝜆4)+𝑏𝑏(𝜆4)
                    (9) 

With assumptions 1 – 4, the FBA_PC index is expressed as: 

FBA_PC ∝ [𝑎𝑝𝑐(𝜆1) + 𝑎𝑤(𝜆1) − 𝜂𝑎𝑤(𝜆2) − (1 − 𝜂)𝑎𝑤(𝜆3)]/

𝑎𝑤(𝜆4)   (10) 

The PC concentration can subsequently be derived by 

dividing 𝑎𝑝𝑐(𝜆1)  by the PC-specific absorption 

coefficient at 𝜆1 (𝑎𝑃𝐶
∗ (𝜆1)). From Eq. 10, we can see that 

the relationship between FBA_PC and the PC 

concentration is monotonic under the assumptions of 

FBA_PC.  

IV. RESULTS AND DISCUSSION 

From Lake IJsselmeer, Lake Taihu, Lake Chaohu, Lake 

Hengshui, Morse Reservoir, Geist Reservoir, and Eagle Creek 

Reservoir, there are a total of 431 samples for which reflectance 

and PC pigment data are available. The PC concentration of 

430 samples was  < 350 mg m-3 while one sample measured 

710.29 mg m-3. This sample constitutes an outlier that was 

omitted from the analysis of the performance of FBA and 

previous MERIS algorithms. The remaining 430 samples were 

divided into random subsets of 215 samples for algorithm 

calibration and 215 samples was used for algorithm validation. 

In addition, a geographical rather than a random split between 

the datasets is described in section D, below. 

A. Optimizing 𝜂 In FBA_PC 

FBA_PC for MERIS is obtained by adapting MERIS bands 

(𝜆1=620, 𝜆2=560, 𝜆3=709, and 𝜆4=754 nm). The successful, 

robust application of FBA_PC requires a value of 𝜂 to hold for 

a variety of optical conditions found in inland water bodies. For 

discrete values of 𝜂 between -0.1 and 1.1 (evaluated at intervals 

of 0.1), we optimized 𝜂  with respect to the smallest MAPE 

while evaluating the term 𝜂𝑎𝑦𝑚(560) + (1 − 𝜂)𝑎𝑦𝑚(709) to 

estimate 𝑎𝑦𝑚(620) as in Eq. 7a. All absorption data collected 

from the study sites are used in this analysis. It is then found 

that for 𝜂 = 0.4, the term 0.4𝑎𝑦𝑚(560) + 0.6𝑎𝑦𝑚(709) is in 

good agreement with 𝑎𝑦𝑚(620), following a highly significant 

linear relationship (slope of 1.073, R2 = 0.998) (Figure 1). The 

term used to estimate 𝑎𝑦𝑚(620) from two bands outperformed 

previous attempts using a single band, as shown in Figure 1 

with the present model yielding 10.368% error compared to 

61.942% in HD12. From Table 3 we can see that, in all the 12 

study areas, the term 0.4𝑎𝑦𝑚(560) + 0.6𝑎𝑦𝑚(709)  in 

FBA_PC has a better performance than only using 𝑎𝑦𝑚(709) 

in HD12 in the estimation of 𝑎𝑦𝑚(620). 

Next, the optimized 𝜂 = 0.4 is tested in the estimation of 

𝑎𝑝ℎ−𝑃𝐶(620)  using absorption data from laboratory-grown 
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algal cultures. Figure 2 shows how the term 0.4𝑎𝑝ℎ−𝑃𝐶(560) +

0.6𝑎𝑝ℎ−𝑃𝐶(709) corresponds to 𝑎𝑝ℎ−𝑃𝐶(620) as expressed in 

Eq. 7b. The MAPEs for Chlorella vulgaris, Cryptomonas ovata, 

and Cyclotella meneghiniana are 74.268%, 26.631%, and 

67.718%, respectively. In comparison, when only 

𝑎𝑝ℎ−𝑃𝐶(709) is used to estimate 𝑎𝑝ℎ−𝑃𝐶(620), the MAPEs for 

Chlorella vulgaris, Cryptomonas ovata, and Cyclotella 

meneghiniana are 86.159%, 91.823%, and 85.165%, 

respectively. The term used to estimate 𝑎𝑝ℎ−𝑃𝐶(620)  in 

FBA_PC still has large error for Chlorella vulgaris and 

Cyclotella meneghiniana, but improves upon using only 

𝑎𝑝ℎ−𝑃𝐶(709) in HD12. 

B. Calibration Of FBA_PC And Other Algorithms 

The calibration dataset with in situ PC concentrations 

ranging from 0.327 to 317.743 mg m-3 was used to establish the 

expression of FBA_PC (Eq. 11). In addition to FBA_PC, we 

also apply Schalles00, HD12, and Qi14 algorithms. Algorithm 

calibration of a single algorithm against the present data set 

would likely lead to an unfair advantage over the other 

algorithms used in comparison. Therefore, each algorithm was 

calibrated against the same calibration dataset for an unbiased 

comparison of PC retrieval skill. From the calibration data, the 

FBA_PC algorithm was established as Eq. 11 and the 

expressions of the other three algorithms were shown in Figure 

3. 

FBA_PC = [
1

𝑅𝑟𝑠(620)
−

0.4

𝑅𝑟𝑠(560)
−

0.6

𝑅𝑟𝑠(709)
]𝑅𝑟𝑠(754)     

 

PC = 462.5 × FBA_PC + 22.598                    (11) 

Figure 3 shows strong and similar relationships between 

each reflectance or absorption indices of FBA_PC, Schalless00, 

HD12, and the in situ PC concentration (R2 = 0.686, 0.640, 

0.700, respectively). The relationship between the reflectance 

indices of Qi14 and in situ PC concentration are weaker (R2 = 

0.095) in comparison. 

C. Validation Of FBA_PC And Previous MERIS Algorithms 

Statistics on RMSE and MAPE were used to evaluate the 

performance of each algorithm in their final re-calibrated form. 

Results illustrated in Figure 4 shows that in terms of RMSE, 

FBA_PC gave the best performance (RMSE = 27.691 mg m-3), 

whereas HD12 and Schalles00 algorithms follow closely 

(RMSE = 30.050 and 31.836 mg m-3, respectively). The Qi14 

shows relatively worse performance (RMSE = 48.222 mg m-3). 

The MAPE shows the clearest differences in algorithm 

performance with Qi14 > 400%, Schalles00 and HD12 in the 

200-300% range (214.856% and 284.199%, respectively) and 

FBA_PC only giving 172.863%. 

Many attempts at PC estimation have shown poor 

performance in the low PC concentration range in turbid inland 

waters in previous studies [29, 38, 54]. Therefore, we evaluated 

the accuracy of each algorithm not only for the whole PC range 

but also for the low PC range ≤ 50.000 mg m-3 (Table 4). The 

retrieval performance of each algorithm decreased markedly 

when estimating low PC concentration. The estimated PC 

values of Qi14 had next to no correlation with the in situ PC 

values (R2 = 0.028) which illustrates that this algorithm is not 

suitable for the low PC concentration range. Schalles00 and 

HD12 perform relatively better (R2 = 0.320 and 0.295, 

respectively, RMSE = 23.282 and 23.656 mg m-3), but the 

MAPEs of these algorithms exceed 300% (Schalles00 = 

323.046%, and HD12 = 431.900%). For FBA_PC, we observed 

somewhat higher R2 (0.364), lower RMSE (18.439 mg m-3), 

and MAPE below 300 % (255.798%). 

D. Geographic Transferability Of FBA_PC And Previous 

MERIS Algorithms 

The geographic transferability of FBA_PC and other MERIS 

algorithms was tested by calibrating the algorithm explicitly 

using a single dataset (in situ data collected from the 

Netherlands) and validating against other datasets (in situ data 

collected from China and the United States, respectively). The 

re-calibration results of these algorithms are shown in Figure 5. 

FBA_PC, Schalles00, and HD12 all had strong and similar 

relationships between their indices and the in situ PC 

concentration (R2=0.657, 0.563, and 0.662, respectively). The 

relationship between the reflectance indices of Qi14 and in situ 

PC concentration are weaker (R2 = 0.176) in comparison. 

The validation results of these algorithms in China are shown 

in Figure 6. The RMSE of FBA_PC, Schalles00, HD12, and 

Qi14 were 32.494, 37.980, 34.102, and 63.602 mg m-3, 

respectively. The MAPE of these four algorithms were 

114.846%, 158.157%, 136.417%, and 164.351%, respectively. 

FBA_PC outperformed the other algorithms both in terms of 

RMSE or MAPE for this independent dataset. The validation 

results of these algorithms in the United States are shown in 

Figure 7. In terms of RMSE, Schalles00 gave the best 

performance (RMSE = 25.216 mg m-3), followed closely by 

HD12 and FBA_PC with RMSE = 29.285 and 29.788 mg m-3, 

respectively. Qi14 showed relatively worse performance with 

RMSE = 37.609 mg m-3. Although Schalles00 and HD12 both 

showed relatively lower RMSE, the MAPE of these two 

algorithms were >100% (Schalles00: 104.783%, and 

108.681%). The MAPE of FBA_PC was < 50% (49.183%) 

illustrating that FBA_PC can get more reliable inversion results 

than the existing algorithms, for this in situ dataset. Figure 6 

and Figure 7 both show that the FBA_PC model calibrated 

using the Dutch in situ dataset consistently underestimates PC 

concentration in both in situ dataset collected in China and the 

United States, especially when the PC concentration is higher 

than 50 mg m-3. 

E. Factors Influencing The Performance Of PC Retrieval 

From MERIS/OLCI Bands 

Interference from other optically active constituents (OACs) 

such as yellow matter and non-PC pigments will cause error in 

estimated PC [22, 35, 38, 55]. The poor performance of 

Schalles00 indicates that directly omitting the signal of other 

optically constituents (OACs) may result in large instabilities in 

estimated PC concentration. The low correlation between 

retrieved PC concentrations from Qi14 and in situ PC 

concentrations also shows that the “baseline” method may not 

have the PC estimation ability at broad geographic scales. With 

the exception of the Schalles00 and Qi14 algorithms, FBA_PC 
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and HD12 algorithms described in this paper both have specific 

ways to remove the signal of other OACs and isolate the PC 

absorption signal (𝑎𝑃𝐶). 

To investigate the influence of yellow matter and non-PC 

pigments absorption to the accuracy of PC estimation for 

FBA_PC and HD12 algorithms, the relationship between the 

REs of these algorithms and two ratios of 𝑎𝑦𝑚(620): PC and 

𝑎𝑝ℎ(620): PC are shown in Figure 8. HD12 showed significant 

correlations with the ratios 𝑎𝑦𝑚(620): PC (R2 = 0.627, p<0.05). 

When 𝑎𝑦𝑚(620): PC > 0.1, it is clear that the REs of HD12 

increased with 𝑎𝑦𝑚(620): PC, so that aym(620) influences the 

error in retrieved PC. For the FBA_PC algorithm, the REs 

showed a positive correlation with the ratio 𝑎𝑦𝑚(620): PC, but 

the relationship is no longer significant (R2 = 0.221, p<0.05). 

Figure 5b shows the relationship between REs and the ratios 

𝑎𝑝ℎ(620): PC of FBA_PC and HD12 algorithms, respectively. 

HD12 gave a weaker correlation (R2 = 0.282, p<0.05), while 

FBA_PC outperformed HD12 (R2 = 0.374, p<0.05). The 

analysis of laboratory-grown cultures described in the previous 

section have slightly improved the removal of 𝑎𝑝ℎ−𝑃𝐶(620) in 

FBA_PC compared to HD12, based on three species of algae 

(Figure 2). However, the in situ data showed opposite results 

and the influence of the absorption signal of phycoerythrin (PE) 

of some species algae of Cyanophyta at ~565 nm may be the 

reason. Using the current set of wavebands, FBA_PC may have 

large uncertainties in the estimation of PC when PE-bearing 

phytoplankton is present. 

We only measured 𝑎𝑝ℎ(𝜆) of algae for the laboratory-grown 

cultures and in situ samples. Therefore, we cannot evaluate the 

performance of the term 0.4𝑎𝑝ℎ−𝑃𝐶(560) + 0.6𝑎𝑝ℎ−𝑃𝐶(709) 

for the estimation of 𝑎𝑝ℎ−𝑃𝐶(620)  for Cyanophyta which 

contain PC and PE. Ideally this should be included in further 

work, potentially targeting additional satellite wavebands on 

future sensors which may better capture natural variability in 

both PC and PE.  

V. CONCLUSION 

FBA_PC, an extension of HD12 algorithm was developed to 

estimate PC concentration in turbid inland waters. In situ 

absorption data collected from various inland water bodies 

demonstrate the feasibility of estimating absorption terms of 

non-PC components at 620 nm from a single band combination, 

with a robust parameterization between the study sites. 

FBA_PC shows improved performance over three previously 

described algorithms for MERIS/OLCI.  
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Table 1. Descriptive statistics of water quality parameters in Eagle Creek Reservoir (ECR), Geist Reservoir (GR), 

Morse Reservoir (MR), Lake IJsselmeer (LIJ), Lake Taihu (LTH), Lake Chaohu (LCH) and Lake Hengshui (LHS). 

 Location   Chla (mg m-3) PC (mg m-3) 

ECR (n=60) 

Min 22.029 8.580 

Mean 55.194 32.588 

Max 122.573 72.240 

GR (n=37) 

Min 19.835 6.570 

Mean 38.697 69.314 

Max 62.121 157.200 

MR (n=54) 

Min 1.850 1.388 

Mean 60.209 66.439 

Max 129.389 146.100 

LIJ (n=187) 

Min 1.899 0.327 

Mean 334.175 710.287 

Max 44.616 43.089 

LTH (n=23) 

Min 4.338 4.005 

Mean 189.586 61.739 

Max 48.617 299.443 

LCH(n=65) 

Min 13.578 5.004 

Mean 37.607 29.383 

Max 98.184 217.674 

LHS (n=9) 

Min 37.2 22.708 

Mean 52.533 36.617 

Max 43.133 50.153 
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Table 2. Statistics of 𝑎𝑝ℎ(620), 𝑎𝑦𝑚(620) and 𝑎𝑝ℎ(620): 𝑎𝑦𝑚(620) values from the Eagle Creek Reservoir (ECR), 

Geist Reservoir (GR), Morse Reservoir (MR), Lake IJsselmeer (LIJ), Lake Taihu (LTH), Lake Hengshui (LHS), Lake 

Chaohu (LCH), Lake Dianchi(LDC), Lake Dongting (LDT), Lake Erhai (LEH), Jiajiang Reservoir (JR), and Three 

Gorges Reservoir (TGR). 

Location   aph(620) (m-1) aym(620) (m-1) aph(620)/aym(620)   

ECR (n=81) 

Min 0.0270 0.0133 0.250 

Mean 0.250 0.153 3.252 

Max 0.640 0.579 8.444 

GR (n=58) 

Min 0.052 0.018 0.540 

Mean 0.336 0.143 2.747 

Max 0.616 0.786 5.368 

MR (n=54) 

Min 0.088 0.190 0.159 

Mean 0.976 0.408 1.630 

Max 0.588 0.617 3.788 

LIJ (n=105) 

Min 0.0162 0.029 0.054 

Mean 0.366 0.355 1.402 

Max 0.983 1.397 7.838 

LTH (n=224) 

Min 0.005 0.028 0.002 

Mean 0.741 0.638 1.709 

Max 6.532 4.861 15.808 

LCH (n=62) 

Min 0.051 0.124 0.267 

Mean 0.804 0.514 1.584 

Max 4.293 1.294 5.566 

LHS (n=9) 

Min 0.059 1.935 0.027 

Mean 0.905 3.047 0.289 

Max 1.124 3.928 0.436 

LDC (n=33) 

Min 0.472 0.081 1.140 

Mean 1.316 0.328 4.850 

Max 2.545 0.592 15.684 

LDT (n=87) 

Min 0.148 0.076 0.157 

Mean 1.652 1.088 2.271 

Max 8.462 3.361 7.434 

LEH (n=42) 

Min 0.0375 0.009 0.491 

Mean 0.074 0.049 2.083 

Max 0.160 0.096 6.464 

JR (n=29) 

Min 0.787 3.729 0.079 

Mean 2.591 7.268 0.400 

Max 5.740 17.648 1.197 

TGR (n=25) 

Min 0.020 0.0367 0.0487 

Mean 0.331 0.395 1.410 

Max 1.435 0.939 5.280 
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Table 3. The MRE of FBA_PC and HD12 in the estimation of 𝑎𝑦𝑚(620) with their specific assumption in Eagle Creek 

Reservoir (ECR), Geist Reservoir (GR), Morse Reservoir (MR), Lake IJsselmeer (LIJ), Lake Taihu (LTH) , Lake 

Hengshui (LHS), Lake Chaohu (LCH), Lake Dianchi(LDC), Lake Dongting (LDT), , Lake Erhai (LEH), Jiajiang 

Reservoir (JR), and Three Gorges Reservoir (TGR), respectively. 

Location MRE(%) of FBA_PC MRE(%) of HD12 

ECR (n=81) 2.780 75.871 

GR (n=58) 5.171 79.131 

MR (n=54) 3.297 75.394 

LIJ (n=105) 7.347 58.566 

LTH (n=224) 14.633 53.169 

LCH (n=62) 5.105 37.757 

LHS (n=9) 31.841 46.370 

LDC(n=33) 28.780 57.973 

LDT (n=87) 13.707 64.990 

LEH (n=42) 17.186 90.963 

JR (n=29) 9.940 30.199 

TGR (n=25) 21.009 73.532 
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Table 4. Error analysis of empirical and semi-analytical algorithms for estimating PC. Numbers in side square brackets 

are the PC ranges (mg m-3) when the algorithm was presented. 

Algorithm 

Range of PC concentration (mg m-3) 

0≤ PC ≤ 329.411  0 ≤ PC ≤ 50.0  

R2 MAPE (%) RMSE (mg m-3) R2 MAPE (%) RMSE (mg m-3) 

FBA_PC [0.33-710.29] 0.730  172.863 27.691 0.364 255.798 18.439 

Schalles00 [0-530] 0.630  214.856 31.836 0.320 323.046 23.282 

HD12 [0.09-7.71] 0.701  284.199 30.050 0.295 431.900 23.656 

Qi14 [1.58-263.71] 0.178  425.730 48.222 0.028 644.655 30.379 
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Figure 1. Scatterplot of 𝑎𝑦𝑚(709) (blue “circle”) and 0.4𝑎𝑦𝑚(560) + 0.6𝑎𝑐𝑑𝑚(709) (red “plus”) versus 𝑎𝑦𝑚(620). 

The solid line is 1:1 line. 
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Figure 2. Scatterplot of 𝑎𝑝ℎ−𝑃𝐶(709) (blue “circle”) and 0.4𝑎𝑝ℎ−𝑃𝐶(560) + 0.6𝑎𝑝ℎ−𝑃𝐶(709) (red “plus”) versus 

𝑎𝑝ℎ−𝑃𝐶(620) for (a) Chlorella vulgaris, (b) Cryptomonas ovata, and (c) Cyclotella meneghiniana. The solid lines are 

the 1:1 lines. 
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Figure 3. Indices of the models adjusted for the MERIS wavelengths versus PC concentrations: (a) FBA_PC, (b) 

Schalles00, (c) HD12, (d) Qi14. The dashed lines are the linear regression lines. The extreme value point in the dotted 

circle is not included in the model calibration. 
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Figure 4. Correlations between the measured and estimated PC concentrations by (a) FBA_PC, (b) Schalles00, (c) 

HD12, (d) Qi14. The solid lines are the 1:1 lines. 
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Figure 5. Indices of the models adjusted for the MERIS/OLCI wavelengths versus PC concentrations: (a) FBA_PC, (b) 

Schalles00, (c) HD12, (d) Qi14 only using in situ data collected in The Netherlands. The dashed lines are the linear 

regression lines. The extreme value point in the dotted circle is not included in the model calibration.
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Figure 6. Correlations between the measured and estimated PC concentrations by (a) FBA_PC, (b) Schalles00, (c) 

HD12, (d) Qi14 for the in situ data collected in China. The solid lines are the 1:1 lines. 
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Figure 7. Correlations between the measured and estimated PC concentrations by (a) FBA_PC, (b) Schalles00, (c) 

HD12, (d) Qi14 for the in situ data collected in the United States. The solid lines are the 1:1 lines. 
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Figure 8. Correlations between the relative error (RE) and the possible interfering factors: (a) 𝑎𝑦𝑚(620): PC, (b) 

𝑎𝑝ℎ(620): PC of different PC estimation models (FBA_PC in blue “circle” and HD12 in red “plus”). The dashed lines 

are the linear regression lines. 

 


