- 1 What can indicators of Good Environmental Status tell us about ecosystem services?: Reducing
- 2 efforts and increasing cost-effectiveness by reapplying biodiversity indicator data
- 3 Stefanie Broszeit¹, Nicola J. Beaumont¹, Maria C. Uyarra², Anna-Stiina Heiskanen³, Matthew Frost⁴,
- 4 Paul J. Somerfield¹, Axel G. Rossberg⁵, Heliana Teixeira⁶, Melanie C. Austen¹
- ¹ Plymouth Marine Laboratory, Plymouth, UK
- 6 ² AZTI, Marine Research Division, Pasaia, Spain
- 7 ³Finnish Environment Institute, Helsinki, Finland
- 8 ⁴ Marine Biological Association, Plymouth, UK
- 9 ⁵ School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- 10 ⁶ Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- 11 Keywords: marine ecosystem services, Marine Strategy Framework Directive, marine biodiversity
- 12 assessment, Biodiversity Strategy, indicators
- 13 Abbreviations

14 ES: ecosystem services, MSFD: Marine Strategy Framework Directive, GES: good environmental

- 15 status, EU: European Union, NIS: Non-indigenous species
- 16 ABSTRACT

17 The EU Marine Strategy Framework Directive (MSFD) requires member states to manage their 18 marine ecosystems with the goal of achieving Good Environmental Status (GES) of all European Seas 19 by 2020. Member states assess GES according to 11 descriptors set out in the MSFD, and their 20 associated indicators.

21 An ecosystem service approach is increasingly being advocated to ensure sustainable use of the 22 environment, and sets of indicators have been defined for ecosystem service assessments. We 23 considered whether a selection of GES indicators related to biological descriptors, D1 Biodiversity, 24 D2 Non-indigenous species, D4 Food webs and D6 Seafloor integrity, may provide information 25 relevant to ecosystem services, potentially allowing use of collected environmental data for more 26 than one purpose. Published lists of indicators for seven selected marine ecosystem services were 27 compared to 296 biodiversity-related indicators included within the DEVOTOOL catalogue, 28 established for screening marine biodiversity indicators for the MSFD. We concluded that 64 of 29 these biodiversity indicators are directly comparable to the ecosystem service indicators under 30 consideration. All 296 biodiversity indicators were then reassessed objectively to decide which of 31 them could be useful as ecosystem service indicators. To carry out this step in a consistent and 32 transparent manner, guidelines were developed among the co-authors that helped the decision

making process for each individual indicator. 247 biodiversity indicators were identified as potentially useful ecosystem service indicators. By highlighting the comparability between ecosystem service and biodiversity indicators it is hoped that future monitoring effort can be used not only to ensure that GES is attained, but also that ecosystem service provision is maximised. It is recommended that these indicators should be tested across EU regional seas to see if they are useful in practice, and if ecosystem service assessments are comparable across regional seas.

40 1.1 INTRODUCTION

39

41 Biodiversity is closely linked to ecosystem functioning, which in turn underpins the provision of 42 ecosystem services on which humanity depends, such as Food provision and Climate regulation 43 (Heiskanen et al., 2016; Liquete et al., 2016). According to the Convention on Biological Diversity 44 (CBD, 1992), biodiversity is defined as "the variability among living organisms from all sources 45 including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes 46 of which they are part; this includes diversity within species, between species and of ecosystems". 47 Yet, biodiversity is threatened worldwide by pressures such as habitat loss, overexploitation and pollution (Halpern et al., 2008; Knights et al., 2013). International environmental agreements, such 48 49 as the Aichi Biodiversity Targets for 2020 in the Convention of Biological Diversity (CBD, 1992), the 50 EU Biodiversity Strategy 2020 (BD; COM/2011/0244), and recent European Union legislation (e.g. the 51 EU Marine Strategy Framework Directive (MSFD; 2008/56/EC)) are placing increasing emphasis on 52 halting biodiversity loss (Laurila-Pant et al., 2015; Liquete et al., 2016).

The MSFD "establishes a framework for community action in the field of marine environmental 53 policy", which promotes the preservation and protection of marine waters in European member 54 55 states (European Commission, 2008). One aim of the MSFD is for each member state to take 56 measures to achieve and maintain Good Environmental Status (GES) in all four European Seas (i.e. 57 Baltic Sea, Black Sea, Mediterranean and North East Atlantic) by the year 2020, through countryspecific programmes of measures (Börger et al., 2016). The MSFD defines GES as: "the 58 59 environmental status of marine waters where these provide ecologically diverse and dynamic oceans 60 and seas which are clean, healthy and productive within their intrinsic conditions, and the use of the marine environment is at a level that is sustainable, thus safeguarding the potential for uses and 61 62 activities by current and future generations." This definition implies that ecosystem services and societal benefits should be taken into consideration when measuring GES but at the same time these 63 aspects are not mentioned in either the descriptors or associated criteria (Borja et al., 2013). 64 Recently, changes were suggested to some elements of the MSFD, including criteria and Annex III, 65 these are now awaiting acceptance. Among these changes is the acknowledgement that member 66 67 states may also assess ecosystem services under MSFD. These changes demonstrate the importance

of comparing ecosystem service indicators and biodiversity-related indicators (from now onbiodiversity indicators).

70 To assess the status of the seas and to be able to monitor changes in environmental status, each 71 member state has to carry out regular assessments addressing 11 descriptors that describe a state, 72 or a pressure, or both. These are: Descriptor (D) D1 – Biological diversity, D2 – Non-indigenous 73 species (NIS), D3 – Commercial fish and shellfish, D4 – Food webs, D5 – Eutrophication, D6 –Sea floor 74 integrity, D7 – Hydrological conditions, D8 – Concentration of contaminants, D9 – Contaminants in 75 fish and other seafood, D10 – Litter, D11 – Energy and noise. These 11 descriptors are further 76 defined by a set of 29 criteria and 56 indicators. Indicators are variables that provide information on 77 complex phenomena and if properly selected can show changes of such phenomena (Kandziora et al., 2013; Hattam et al., 2015). A requirement of the MSFD is that indicators focus on essential 78 79 biological components of the ecosystem, from taxonomic groups through habitats to ecosystems 80 (Borja et al., 2014; Berg et al., 2015). Member states considered the different criteria and indicators, 81 and for those of relevance to their seas they defined a series of indicators to be used to describe a 82 baseline, and then in regular monitoring programmes to assess the success of their programmes of 83 measures.

84 The biological components relevant for biodiversity assessments are described by Cochrane et al. 85 (2010), and specifically listed in the Table 1 of the Annex III of the MSFD. The biodiversity 86 components include predominant seabed and water column habitat types, as well as specific 87 habitats that have biodiversity conservation importance. Biological communities associated with 88 those seabed and water column habitats, such as phytoplankton and zooplankton communities, 89 angiosperms, macro-algae and invertebrate bottom fauna, or species belonging to groups such as 90 fish, marine mammals and reptiles, and seabirds are also included in the biodiversity components. 91 Currently there are a number of operational indicators available for the assessment of GES (Teixeira 92 et al. 2016), and more are being developed to be used in robust and cost-efficient monitoring and 93 assessments (Heiskanen et al., 2016).

94 Besides monitoring the status of marine waters, the MSFD dictates that member states shall adopt 95 an ecosystem-based management approach in their programmes of measures to "enable the 96 sustainable use of marine goods and services" (Paragraph 8 of the MSFD preamble). Ecosystem-97 based management is focused on ecosystems and human interactions within these systems, and 98 thus necessitates an understanding of the linkages within and between the biological components of 99 the ecosystems as well as with social and economic systems (McLeod et al., 2005; Atkins et al., 100 2011). Furthermore, it is stated in the MSFD Article 1, Paragraph 3.: "*Marine strategies shall apply an*

101 ecosystem-based approach to the management of human activities, ensuring that the collective 102 pressure of such activities is kept within levels compatible with the achievement of good 103 environmental status and that the capacity of marine ecosystems to respond to human-induced 104 changes is not compromised, while enabling the sustainable use of marine goods and services by 105 present and future generation". This anticipates that there is a link between GES and the sustainable 106 use of ecosystem goods and services. Although many of the GES indicators are well described and 107 used by EU member states, there is no operational example describing how these could also be used 108 in the assessment of ecosystem services, although some regional (Hasler et al., 2016) and EU-level 109 (Maes et al., 2016) suggestions have been made. Here we conceptualise 'sustainable use' in the 110 sense of 'weakly sustainable use' (sensu Rossberg et al., 2017) i.e. usage that can be continued 111 indefinitely in its current form. The key concept to assess status and trends of potential uses of an 112 ecosystem, particularly relevant in local and regional settings, is that of ecosystem services (Maes et al., 2012; O'Higgins and Gilbert, 2014). Ecosystem services are the direct and indirect contributions 113 114 of ecosystems to human well-being (TEEB, 2010) and are increasingly being considered in marine policy and planning (Fisher et al., 2009; Börger et al., 2014; Pendleton et al., 2016). 115

116 In the Millennium Ecosystem Assessment (MEA, 2005) ecosystem services were split into four 117 groups: i. provisioning, such as food and timber; ii. regulating, for example regulating climate or 118 water flows; iii. cultural, such as aesthetic experience derived from being in nature; and iv. 119 supporting, for example supply of larval fish (in this example supporting the service of Food 120 provision). This approach was criticised as it did not differentiate between processes and services or 121 services and benefits, potentially leading to double counting (Fisher et al., 2008). Since then several 122 alternative classifications have been proposed (Liquete et al., 2013), including a more hierarchical 123 approach as defined by Fisher et al. (2009) which renamed the supporting services as intermediate 124 services or processes. CICES (Common International Classification of Ecosystem Services) is another 125 classification example, which merges regulating and supporting ecosystem services into a new 126 category of "regulating and maintenance" ecosystem services and also includes a separate 127 framework for abiotic services (Haines-Yong and Potschin, 2013). Within this study, seven ecosystem 128 services (Table 1) were chosen that included examples from the MEA ecosystem service groups.

While the scientific literature on ecosystem services continues to grow it is still a challenge to apply this concept in practice (Kandziora et al., 2013). To assess ecosystem services, it is important to understand and quantify the link between biodiversity; i.e. species or communities or traits of species and the flow of services they supply or to which they contribute. However, this challenging task is hampered because biodiversity-ecosystem function relationships are still subject of ongoing

134 research, particularly in the marine environment (Liquete et al., 2013; Gamfeldt et al., 2015; Strong 135 et al., 2015). Yet, some biological components of the ecosystem do play clear roles in the provision of ecosystem services (Kandziora et al., 2013). For example, charismatic species attract visitors for 136 137 ecotourism and therefore contribute to the service of Leisure and Recreation (Uyarra and Côté, 138 2007). In this way ecosystem services can be linked to MSFD biological components. Another 139 example is the invasive macrozoobenthic polychaete genus Marenzelleria which, in the Baltic Sea, 140 enhances retention of phosphorus in sediments and so promotes the Bioremediation of waste 141 service (Norkko et al., 2012). Effects of biodiversity on ecosystem services may be explained by 142 functional traits of species, so identification of "key functional traits," that have the capacity to 143 influence the provision of multiple ecosystem services, is promising (Hevia et al., 2017). Table 2 lists 144 examples of how each component contributes to the provision of particular ecosystem services.

145 Links between ecosystem components and ecosystem services can help to identify suitable 146 ecosystem service indicators. The biodiversity indicators used to monitor GES could then also be 147 used to assess ecosystem services, providing a cost-effective approach to support the management 148 of regional seas and the services they provide. Several ecosystem service indicator lists have been 149 published although none claims to be complete (Böhnke-Henrichs et al., 2013; Liquete et al., 2013; 150 European Commission, 2014; Atkins et al., 2015; Hattam et al., 2015). Currently there are no 151 accepted operational practise nor guidelines for the development or selection of useful marine 152 ecosystem service indicators (Hattam et al., 2015; Hasler et al., 2016). Therefore, in this study, we 153 have considered the applicability of biodiversity indicators for assessing the seven selected marine 154 ecosystem services, to support the practical application of ecosystem services as a management tool 155 within the framework of the MSFD implementation or other biodiversity assessments.

156 2.1 METHODS

157 2.1.1 Marine ecosystem service indicators

158 It was deemed efficient to concentrate on a broad selection of ecosystem services rather than all 159 services, because each service indicator had to be cross checked against each biodiversity indicator, which is more manageable with a smaller number of services. This approach resulted in seven 160 161 ecosystem services being selected for this study (MEA category in brackets): Food provision 162 (provisioning), Climate regulation (regulating), Disturbance prevention and moderation (regulating), 163 Bioremediation of waste (regulating), Biological control (supporting), Leisure and Recreation (cultural) and Aesthetic experience (cultural). Several studies have classified ecosystem services and 164 165 prepared indicators for marine ecosystem services (Böhnke-Henrichs et al., 2013; Liquete et al., 166 2013; European Commission, 2014; Atkins et al., 2015; Hattam et al., 2015). We selected the three

167 most comprehensive descriptions of marine ecosystem services (European Commission, 2014; Atkins 168 et al., 2015; Hattam et al., 2015), and then used these to revise the descriptions of the seven 169 services (Table 1). Published definitions of the Biological control service were particularly difficult to 170 reconcile. Some encompass the concept of resilience, for example through food web dynamics, but 171 also as disease and pest control, but we lack understanding of the connections between resilience 172 and biodiversity, and how such knowledge can be used to inform management (Oliver et al., 2015). 173 Our narrower description of this service therefore focused on pest, disease-bearing and harmful 174 species. The terms nuisance species and pest species are currently used interchangeably in the ecological literature and are mostly aimed at invasive species. Here, by combining definitions of pest 175 176 (Daily (2003) and nuisance (Hall-Spencer and Allen, 2015) species, we consider pest species to 177 include humanity's competitors for food and other natural products and any other organisms that 178 have undesirable effects from a human perspective, including invasive and native organisms, 179 harmful algal blooms, opportunistic macro-algal blooms, and jellyfish swarms. We collated the three 180 indicator lists into one, as examples of published ecosystem service indicators (Appendix 1). This 181 provided a concise selection of published indicators that were well described in the respective 182 sources, giving us information on metrics and units for each.

183 2.1.2 Comparability of biodiversity and ecosystem service indicators

184 The MSFD-relevant biodiversity indicators were taken from the freely available software DEVOTOOL 185 (Version 0.64, http://www.devotes-project.eu/devotool/). DEVOTOOL provides a catalogue of biodiversity indicators from a wide range of countries, including some non-EU countries. The 186 187 database focuses on indicators of the following descriptors: D1 Biodiversity, D2 Non-Indigenous 188 Species, D4 Food webs and D6 Seafloor integrity (Teixeira et al., 2016). For each indicator, 189 information is provided on data requirements, geographical coverage, relevance to habitats and 190 biodiversity components as well as human pressures (Teixeira et al., 2016). At the time of access 191 (09/06/2015, database version 6), 558 indicators were catalogued, of which 292 were operational, 192 200 under development, 46 conceptual and for 30 no status was given. Only the operational 193 indicators for the biodiversity descriptors (D1, D2, D4 and D6) were included in this analysis.

Firstly, the published ecosystem service indicators were compared to the biodiversity indicators, to assess which of the latter are suitable for ecosystem service assessment. Biodiversity indicators had to fit the descriptions and metrics as well as units of published ecosystem service indicators to be selected. This assessment revealed that there is only a small overlap between the biodiversity and ecosystem services indicators and, as a result, information that is collected in biodiversity assessment may be not be directly used for ecosystem service assessment using published

indicators. Yet, the biodiversity indicators may provide useful information on ecosystem services in
 addition to biodiversity status. For example, biodiversity indicators of distributional ranges of fish
 and top predators can also provide information on the ecosystem services of Food provision and
 Leisure and recreation.

204 2.1.3 Evaluation of biodiversity indicators for ecosystem service indicators

205 Further investigation was undertaken to determine whether biodiversity indicators could be useful 206 for ecosystem service assessment. To be useful as an ecosystem service indicator, a biodiversity 207 indicator has to link to a service in a direct and plausible manner. For example, phytoplankton 208 biomass is not deemed suitable as an indicator for Food provision because, while phytoplankton is at 209 the base of the food chain, and therefore important for Food provision, humans do not consume 210 phytoplankton directly rendering it less useful in direct ecosystem service assessment. According to 211 the MEA (2005), primary production would be a supporting service and phytoplankton biomass 212 could be deemed in the same way as it has only an indirect impact on people (Liquete et al., 2016).

Guidelines were developed to evaluate if biodiversity indicators are useful for ecosystem service assessment (Table 3). Using these rationales, we considered each of the biodiversity indicators to assess its potential in ecosystem service assessments.

216

217 **3.1 RESULTS**

218 3.1.1 Comparability of biodiversity and ecosystem service indicators

219 In total, of the 296 operational DEVOTOOL indicators, 64 were directly comparable to published 220 ecosystem service indicators while 232 indicators were not (Figure 1). Twenty indicators were useful 221 for Food provision. Climate regulation could be measured with two indicators, Disturbance 222 prevention with one, Bioremediation with eight and Biological control with eleven. Biodiversity 223 indicators were most applicable for cultural services Leisure and recreation (35) and Aesthetic 224 experience (30). Of those indicators that were directly comparable to ecosystem service indicators, 225 29 could be used for one ecosystem service only, 33 could provide information for two ecosystem 226 services owing to similar data requirements, while two biodiversity indicators provided information 227 on three different ecosystem services (Figure 1, Appendix 2).

228 3.1.2 Evaluation of all biodiversity indicators for ecosystem service assessments

Rationales were established to assess the relevance of biodiversity indicators for ecosystem serviceassessments in a consistent and plausible manner (Table 3). For example, while there is agreement

in the ecological literature that zooplankton and fauna in general take up carbon, there is not enough evidence to show that this take-up leads to improved Climate regulation because organisms also respire carbon dioxide and may not remove any of it from the system (Legendre and Michaud, 1998; Turley et al., 2010). Therefore, indicators such as biomass of zooplankton or other faunal groups were rejected as indicators for Climate regulation.

236 Of the 296 GES indicators assessed using these rationales, 49 were found not to be useful for 237 ecosystem services assessment, while 247 were considered suitable. Of these, 18 indicators 238 additional to those already published could be used for Food provision, 36 for Climate regulation, 27 239 for Disturbance prevention, 35 for Bioremediation of waste, 12 for Biological checks and balances, 240 66 for Leisure and recreation as well as 50 for Aesthetic experience. Ninety-four biodiversity 241 indicators were useful for one ecosystem service while 163 could be useful for two or more 242 ecosystem services (Figure 1, Appendix 2). Multimetric indicators were often rejected as the integration of several types or sources of information made their interpretation in relation to 243 244 ecosystem services rather complex; nevertheless, it is recognized that the datasets necessary to 245 calculate these could contain useful information for ecosystem services assessment.

246

247 4.1 Discussion

This paper identifies potential indicators for seven selected ecosystem services from a list of 248 249 biodiversity indicators prepared for the GES assessment of the MSFD. Ecosystem services are generated from many interactions in complex systems and not all links between ecosystem 250 251 components and ecosystem services are fully understood (Balvanera et al., 2013; Liquete et al., 252 2016). For some services the role of the contributing components is clear. For others, relationships 253 between ecosystem components and services (examples provided in Table 2) can help to 254 conceptualise the links and to identify indicators for such services. This can also help with defining rationales for accepting or rejecting indicators as being useful for ecosystem service assessment. 255

256 Combining three lists of published ecosystem service indicators showed that they complemented 257 each other well in terms of information on indicators. It also showed that each ecosystem service 258 needs several indicators to be measured effectively, as has also been demonstrated by Atkins et al. 259 (2015). For instance, for Food provision, abundance or biomass of edible species is important but so 260 is the quality of fish and shellfish stocks, and so indicators such as the length profile of a fish 261 community (abundance/biomass of large fish versus small fish) are insufficient on their own to 262 measure service provision.

263 The comparison of biodiversity indicators for MSFD GES assessment with published indicators for 264 ecosystem service assessment showed that there was little overlap of the conceptual approaches 265 underpinning these assessments (Figure 1). However, biodiversity indicators do provide valuable 266 information on ecosystem services, and the indicator lists could be updated to include biodiversity 267 indicators identified as useful in this study. For the taxa and components for which links between 268 their environmental status and ecosystem services are clear, the indicators used to assess GES of 269 such components could also be used as ecosystem service indicators. For example, the abundance 270 and distribution of marine mammals could be a useful indicator of the ecosystem service of Leisure 271 and Recreation but further information such as proximity to the shore would be needed to assess if 272 marine mammals could be watched from the shore or from small boats. Further ecological and 273 ecosystem service research could advance our understanding of relationships between components 274 and ecosystem services. For instance, a better comprehension of the key species, and functional 275 traits, and habitats involved in services such as Bioremediation of waste or Biological control would 276 improve the choices of indicators as well as management measures to keep this service sustainable. 277 Such species and habitats will differ regionally. For example, one ecosystem service indicator for 278 Biological control is 'Quality of pest control species', but pest species and the species that control 279 them will differ regionally and this should be taken into consideration in each study area.

The application of functional traits in ecosystem services assessment may be a promising way forward, linking biodiversity to ecosystem services (Hevia et al., 2017 and references therein). This would enable connection between ecosystem structure and functioning and ecosystem services. However, there is lack of biological trait data to derive ecological indicators, as those are not currently included in marine monitoring (Beauchard et al., 2017). To date trait-based indicators are rarely used in marine systems (Teixeira et al., 2016) and were thus excluded from this analysis.

286 Other biodiversity indicators are only useful if target species (or functional trait) data are measured 287 and can be extracted from available data sets. 'Biomass of zooplankton' may be useful for Leisure 288 and Recreation if data on jellyfish blooms can be extracted, as jellyfish blooms may have a negative 289 effect on beach goers. Some biodiversity indicators may inform us of potential declines in services. 290 For example 'Areal extent of opportunistic macroalgae' can indicate a reduction in the Leisure and 291 recreation service if rotting mats of macroalgae cover beaches. Similarly, 'Extent of dead seagrass 292 beds' is an indicator of reduced Climate regulation as dead or degraded seagrass beds no longer 293 sequester carbon at the same rate or, even worse, can turn from a carbon sink to a carbon source 294 (Pendleton et al., 2012; Macreadie et al., 2014).

295 Several multimetric indices are listed in DEVOTOOL. Many of these have been developed for the 296 Water Framework Directive and some are applied to derive Ecological Quality Ratios for the 297 assessment of the ecological status of surface waters. The principles of the development of 298 multimetric indices and their use in the ecological assessments are summarized by Hering et al. 299 (2006). They are also proposed, and in some cases adapted, for use in assessing GES. Some 300 multimetric indices integrate several ecological and biological parameters reflecting the status of a 301 biological community or Water Framework Directive 'quality element'. They are used to assess of 302 the current status of the biological community addressing different stressors or different ecological 303 or biological components (Hering et al., 2006). The combination of several parameters or several 304 functional groups into a single index or series of indices using simple to complex statistics hinders 305 the assessment of the link between ecosystem processes or components and the services they 306 provide, particularly if the index is unit-less and/or a ratio. These indices were therefore largely 307 rejected as being unsuitable for assessment of ecosystem services. An exception was made for 308 benthic diversity indices which can be useful for Bioremediation of waste regarding diversity as an 309 index and this is in agreement with Atkins et al. (2015) and Hattam et al. (2015). Higher diversity may 310 indicate that functioning Bioremediation of waste is taking place although further studies are 311 needed to confirm this. There may also be potential for their usefulness for ecosystem service 312 bundles (sets of ecosystem services that repeatedly appear together across time and space 313 (Raudsepp-Hearne et al., 2010), though to assess this was beyond the scope of this study.

314 For two services, Bioremediation of waste and Biological control, it was difficult to identify suitable 315 indicators. For both services, the absence of pollutants or nuisance species can indicate a functioning 316 service but it can also simply indicate the lack of pollutants or nuisance species in the first place, 317 making these services difficult to define. Also, in the case of Bioremediation of waste, it is difficult to 318 assess at which level the service fails if there is a lot of pollution. The service may still be there and 319 functioning but be overwhelmed by the amount of pollutants in the environment (for example in an 320 industrial harbour). In that case, pollution levels would be high even though the ecosystem service is 321 functioning and working at high level and rate. The same problem can occur in Biological control and 322 the indicator "Trends in arrival of non-indigenous species (NIS)" is a good example of this problem. If 323 there are no pathways for NIS to arrive then this indicator would appear to demonstrate a functioning service while, in reality, there simply are no NIS arriving but if NIS do arrive, the 324 325 ecosystem may not be able to cope with their numbers if the service was so far not "used". 326 Therefore, an additional indicator that would show the degree of pressure from a particular NIS 327 would be necessary to then demonstrate that the service is working.

328 4.2 Limitations of this assessment

Here, a list of new ecosystem service indicators based on biodiversity indicators is suggested. Our assessment was based on expert judgement rather than quantifiable criteria. To help overcome this limitation, rationales were created to reduce the subjectivity of the expert judgement approach.

332 The practical application of these indicators for ecosystem services assessment now needs to be tested using actual data. Ideally, this could be done in regional studies comparing ecosystem service 333 334 assessment results across regional seas based on these indicators. It should be combined with 335 evaluation of the general applicability of the rationales for selecting indicators for ecosystem service 336 assessment. Indicators should be gauged as being useful if they show policy-relevance and sensitivity 337 to changes within policy-relevant time frames. Additionally, this study did not look for appropriate 338 target ranges for each indicator that would provide useful information on potential changes to the ecosystem. Target setting for ecosystem service indicators should be related to the sustainability 339 340 definition of the resource in questions taking ecological, economic and social sustainability into 341 account (e.g. Rossberg et al., 2017).

342 This study concentrated on biodiversity indicators for D1, D2, D4 and D6, which were the focus of 343 the DEVOTOOL catalogue, on which we based our research. Indicators for other descriptors could 344 also provide information on ecosystem services and should be considered for ecosystem service assessments. For instance, D3 (Commercial fish and shellfish stocks) is solely concerned with 345 346 commercial species and therefore D3 indicators would clearly provide much information that is useful to assess Food provision and other services such as Biological control and Leisure and 347 348 Recreation. Other examples are indicators for D8 (Concentration of contaminants) and D9 349 (Contaminants in fish and other seafood) which may be more informative for Bioremediation of 350 waste and Food provision than the indicators addressed here, but such indicators were not included 351 in this study.

352 A large number of contributors added indicators to DEVOTOOL and this led to some limitations in 353 the catalogue (Teixeira et al., 2016). Chiefly these were: heterogeneity in the amount and type of 354 information reported for each indicator, some indicator titles occur multiple times, not all fields 355 were filled in correctly and some were left with gaps. Although they were addressed as far as 356 possible by Teixeira et al. (2016), these limitations also led to issues in this assessment of indicators 357 for ecosystem services. One problem was that not enough information was given on all indicators 358 found in DEVOTOOL to be able to readily understand the information that would be collected and 359 hence its relevance to ecosystem services. Although some indicators have a similar or even the same

title, the underlying data requirements may differ amongst indicators, therefore all indicators wereassessed in this study.

362 4.3 Recommendations and conclusion

363 Managing the marine environment of the European Union in a sustainable manner is a key aim of 364 the MSFD (Borja et al., 2013). Ecosystem services are a useful management tool to complement 365 traditional conservation measures (Luck et al., 2009; Maes et al., 2012). Therefore applying data 366 which were originally collected to carry out biodiversity assessments for ecosystem service 367 assessments would be a cost-effective way to facilitate management of the EU seas within an ecosystem service framework. Data for further ecosystem service indicators would be needed 368 because not all biodiversity indicators can be connected with ecosystem service indicators. This 369 370 study demonstrates that the majority of biodiversity indicators could also be useful for ecosystem 371 service assessment. To help member states identify which biodiversity indicators are useful for the 372 selected seven ecosystem services, appendix 2 of this study has been incorporated into DEVOTOOL Version 8 (http://www.devotes-project.eu/devotool/). 373

Although acknowledging the value that information on GES has for the assessment of ecosystem 374 375 services, this study also highlights the need to refine available biodiversity indicators for the 376 measurement of ecosystem services, recognising they are often too imprecise. This is in line with 377 other authors that have shown the importance of the specificity of indicators, particularly within 378 complex causal-link frameworks with many stages (e.g. Böhnke-Henrichs et al., 2013; Hattam et al., 379 2015). Furthermore, the choice of indicators should attend to the context of the assessment, 380 including whether there is a requirement for both, GES and ecosystem service assessment (Hooper 381 et al., 2014; Liquete et al., 2016).

382 Internationally, it is up to individual EU member states and other countries to choose biodiversity 383 and ecosystem service indicators as needed. However, a systematic approach to assess biodiversity 384 and how that relates to the status of ecosystem services would support coherent mapping and 385 assessment of ecosystem services, as required by e.g. the EU Biodiversity Strategy 2020 (Maes et al., 386 2016). That way, across a regional sea, data can be compared and management aligned more 387 effectively. This would also help fulfil the requirement of the MSFD for member states to "ensure 388 the coordinated development of marine strategies for each marine region or subregion" due to the 389 transboundary nature of the marine environment (MSFD, Article 13). Using these indicators for 390 ecosystem services where appropriate on a global scale will also allow development of robust and 391 comparable ecosystem service assessments worldwide which would also help achieve a convergence

of theoretical and practical approaches to ecosystem service management. The approach
 demonstrated here could now be extended to all ecosystem services because we have shown in this
 study that an objective approach can be used.

395

396 Acknowledgements

397 Torsten Berg helped with some data extraction from DEVOTOOL and advised on technical issues and 398 Susanna Jernberg helped to evaluate linkages of some Baltic Sea indicators with ecosystem services. 399 The authors would also like to acknowledge DEVOTES (DEVelopment Of innovative Tools for under-400 standing marine biodiversity and assessing good Environmental Status) project funded by the European Union under the 7th Framework Program, 'The Ocean for Tomorrow' Theme (grant 401 402 agreement no. 308392, www.devotes-project.eu). This work was supported by the Natural 403 Environment Research Council and Department for Environment, Food and Rural Affairs [grant 404 number NE/L003279/1, Marine Ecosystems Research Programme]. María C. Uyarra is partially 405 funded through the Spanish programme for Talent and Employability in R+D+I "Torres Quevedo", and Anna-Stiina Heiskanen received partial funding from the BONUS COCOA (Nutrient COcktails in 406 407 COAstal zones of the Baltic Sea) project, funded jointly by the EU and the Academy of Finland.

408 References

410	Atkins, J.P., Burdon, D., Elliott, M., 2015. Chapter 5: Identification of a practicable set of indicators
411	for coastal and marine ecosystem services. , in: Turner, R.K., Schaafsma, M. (Eds.), Coastal
412	zones ecosystem services: from science to values and decision making. Springer,
413	Switzerland.

- Atkins, J.P., Burdon, D., Elliott, M., Gregory, A.J., 2011. Management of the marine environment:
 Integrating ecosystem services and societal benefits with the DPSIR framework in a systems
 approach. Marine Pollution Bulletin 62, 215-226.
- Balvanera, P., Siddique, I., Dee, L., Paquette, A., Isbell, F., Gonzalez, A., Byrnes, J., O'Connor, M.I.,
 Hungate, B.A., Griffin, J.N., 2013. Linking biodiversity and ecosystem services: current
 uncertainties and the necessary next steps. BioScience, bit003.
- Beauchard, O., Veríssimo, H., Queirós, A.M., Herman, P.M.J., 2017. The use of multiple biological
 traits in marine community ecology and its potential in ecological indicator development.
 Ecological Indicators 76, 81-96.
- Beaugrand, G., Edwards, M., Legendre, L., 2010. Marine biodiversity, ecosystem functioning, and
 carbon cycles. Proceedings of the National Academy of Sciences 107, 10120-10124.
- Berg, T., Fürhaupter, K., Teixeira, H., Uusitalo, L., Zampoukas, N., 2015. The Marine Strategy
 Framework Directive and the ecosystem-based approach pitfalls and solutions. Marine
 Pollution Bulletin.
- Böhnke-Henrichs, A., Baulcomb, C., Koss, R., Hussain, S.S., de Groot, R.S., 2013. Typology and
 indicators of ecosystem services for marine spatial planning and management. J. Environ.
 Manage. 130, 135-145.

- Börger, T., Beaumont, N.J., Pendleton, L., Boyle, K.J., Cooper, P., Fletcher, S., Haab, T., Hanemann,
 M., Hooper, T.L., Hussain, S.S., Portela, R., Stithou, M., Stockill, J., Taylor, T., Austen, M.C.,
 2014. Incorporating ecosystem services in marine planning: The role of valuation. Marine
 Policy 46, 161-170.
- Börger, T., Broszeit, S., Ahtiainen, H., Atkins, J., Burdon, D., Luisetti, T., Murillas, A., Oinonen, S.,
 Paltriguera, L., Roberts, L., Uyarra, M., Austen, M., 2016. Assessing costs and benefits of
 measures to achieve Good Environmental Status in European regional seas: Challenges,
 opportunities and lessons learnt. Frontiers in Marine Science 3.
- Borja, A., Elliott, M., Andersen, J.H., Cardoso, A.C., Carstensen, J., Ferreira, J.G., Heiskanen, A.-S.,
 Marques, J.C., Neto, J.M., Teixeira, H., 2013. Good Environmental Status of marine
 ecosystems: What is it and how do we know when we have attained it? Marine Pollution
 Bulletin 76, 16-27.
- Borja, A., Prins, T., Simboura, N., Andersen, J.H., Berg, T., Marques, J.C., Neto, J.M., Papadopoulou,
 N., Reker, J., Teixeira, H., Uusitalo, L., 2014. Tales from a thousand and one ways to integrate
 marine ecosystem components when assessing the environmental status. Frontiers in
 Marine Science 1.
- 447 Cochrane, S., Connor, D., Nilsson, P., Mitchell, I., Reker, J., Franco, J., Valavanis, V., Moncheva, S.,
 448 Ekebom, J., Nygaard, K., 2010. Marine Strategy Framework Directive–Task Group 1 Report
 449 Biological Diversity, Office for Official Publications of the European Communities, EUR, p.
 450 110.
- 451 Daily, G., 2003. What are ecosystem services? Rowman & Littlefield Publishers.
- 452 Davenport, J., Davenport, J.L., 2006. The impact of tourism and personal leisure transport on coastal
 453 environments: a review. Estuarine, Coastal and Shelf Science 67, 280-292.
- European Commission, 2008. Marine Strategy Framework Directive: Directive 2008/56/EC of the
 European Parliament and of the Council of 17 June 2008 establishing a framework for
 community action in the field of marine environmental policy, MSFD, pp. 19-40.
- 457 European Commission, 2014. Mapping and Assessment of Ecosystems and their Services.
- Fisher, B., Turner, K., Zylstra, M., Brouwer, R., Groot, R.d., Farber, S., Ferraro, P., Green, R., Hadley,
 D., Harlow, J., 2008. Ecosystem services and economic theory: integration for policy-relevant
 research. Ecological Applications 18, 2050-2067.
- 461 Fisher, B., Turner, R.K., Morling, P., 2009. Defining and classifying ecosystem services for decision
 462 making. Ecological Economics 68, 643-653.
- Gamfeldt, L., Lefcheck, J.S., Byrnes, J.E., Cardinale, B.J., Duffy, J.E., Griffin, J.N., 2015. Marine
 biodiversity and ecosystem functioning: what's known and what's next? Oikos 124, 252-265.
- Haines-Yong, R., Potschin, M., 2013. CICES V4.3 Revised report prepared following consultation on
 CICES Version 4, August-December 2012. EAA.
- Hall-Spencer, J., Allen, R., 2015. The impact of CO₂ emissions on "nuisance" marine species. Res. Rep.
 Biodivers. Stud 33, 33-46.
- Hall, S.J., Collie, J.S., Duplisea, D.E., Jennings, S., Bravington, M., Link, J., 2006. A length-based
 multispecies model for evaluating community responses to fishing. Can. J. Fish. Aquat. Sci.
 63, 1344-1359.
- Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., Bruno, J.F., Casey,
 K.S., Ebert, C., Fox, H.E., 2008. A global map of human impact on marine ecosystems. Science
 319, 948-952.
- Hasler, B., Ahtiainen, H., Hasselström, L., Heiskanen, A.-S., Soutukorva, Å., Martinsen, L., 2016.
 Marine Ecosystem Services: Marine ecosystem services in Nordic marine waters and the
 Baltic Sea–possibilities for valuation. Nordic Council of Ministers.
- Hattam, C., Atkins, J.P., Beaumont, N., Börger, T., Böhnke-Henrichs, A., Burdon, D., de Groot, R.,
 Hoefnagel, E., Nunes, P.A., Piwowarczyk, J., 2015. Marine ecosystem services: Linking
 indicators to their classification. Ecological Indicators 49, 61-75.

- Heiskanen, A.-S., Berg, T., Uusitalo, L., Teixeira, H., Bruhn, A., Krause-Jensen, D., Lynam, C.P.,
 Rossberg, A.G., Korpinen, S., Uyarra, M.C., Borja, A., 2016. Biodiversity in Marine
 Ecosystems—European Developments toward Robust Assessments. Frontiers in Marine
 Science 3.
- Hering, D., Feld, C.K., Moog, O., Ofenböck, T., 2006. Cook book for the development of a Multimetric
 Index for biological condition of aquatic ecosystems: experiences from the European AQEM
 and STAR projects and related initiatives. Hydrobiologia 566, 311-324.
- Hevia, V., Martín-López, B., Palomo, S., García-Llorente, M., Bello, F., González, J.A., 2017. Traitbased approaches to analyze links between the drivers of change and ecosystem services:
 Synthesizing existing evidence and future challenges. Ecology and Evolution.
- Hooper, T., Cooper, P., Hunt, A., Austen, M., 2014. A methodology for the assessment of local-scale
 changes in marine environmental benefits and its application. Ecosystem Services 8, 65-74.
- Kandziora, M., Burkhard, B., Müller, F., 2013. Interactions of ecosystem properties, ecosystem
 integrity and ecosystem service indicators—A theoretical matrix exercise. Ecological
 Indicators 28, 54-78.
- Knights, A.M., Koss, R.S., Robinson, L.A., 2013. Identifying common pressure pathways from a
 complex network of human activities to support ecosystem-based management. Ecological
 Applications 23, 755-765.
- Laurila-Pant, M., Lehikoinen, A., Uusitalo, L., Venesjärvi, R., 2015. How to value biodiversity in
 environmental management? Ecological Indicators 55, 1-11.
- Legendre, L., Michaud, J., 1998. Flux of biogenic carbon in oceans: size-dependent regulation by
 pelagic food webs. Marine Ecology Progress Series 164, 1-11.
- Liquete, C., Cid, N., Lanzanova, D., Grizzetti, B., Reynaud, A., 2016. Perspectives on the link between
 ecosystem services and biodiversity: The assessment of the nursery function. Ecological
 Indicators 63, 249-257.
- Liquete, C., Piroddi, C., Drakou, E.G., Gurney, L., Katsanevakis, S., Charef, A., Egoh, B., 2013. Current
 status and future prospects for the assessment of marine and coastal ecosystem services: a
 systematic review. PloS one 8, e67737.
- Luck, G.W., Harrington, R., Harrison, P.A., Kremen, C., Berry, P.M., Bugter, R., Dawson, T.P., de Bello,
 F., Díaz, S., Feld, C.K., Haslett, J.R., Hering, D., Kontogianni, A., Lavorel, S., Rounsevell, M.,
 Samways, M.J., Sandin, L., Settele, J., Sykes, M.T., van den Hove, S., Vandewalle, M., Zobel,
 M., 2009. Quantifying the Contribution of Organisms to the Provision of Ecosystem Services.
 Bioscience 59, 223-235.
- Macreadie, P.I., Baird, M.E., Trevathan-Tackett, S.M., Larkum, A.W.D., Ralph, P.J., 2014. Quantifying
 and modelling the carbon sequestration capacity of seagrass meadows A critical
 assessment. Marine Pollution Bulletin 83, 430-439.
- 517 Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M.L., Barredo, J.I., Grizzetti, B., Cardoso, A., 518 Somma, F., Petersen, J.-E., Meiner, A., Gelabert, E.R., Zal, N., Kristensen, P., Bastrup-Birk, A., 519 Biala, K., Piroddi, C., Egoh, B., Degeorges, P., Fiorina, C., Santos-Martín, F., Naruševičius, V., 520 Verboven, J., Pereira, H.M., Bengtsson, J., Gocheva, K., Marta-Pedroso, C., Snäll, T., Estreguil, 521 C., San-Miguel-Ayanz, J., Pérez-Soba, M., Grêt-Regamey, A., Lillebø, A.I., Malak, D.A., Condé, 522 S., Moen, J., Czúcz, B., Drakou, E.G., Zulian, G., Lavalle, C., 2016. An indicator framework for 523 assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem 524 Services 17, 14-23.
- Maes, J., Paracchini, M.L., Zulian, G., Dunbar, M.B., Alkemade, R., 2012. Synergies and trade-offs
 between ecosystem service supply, biodiversity, and habitat conservation status in Europe.
 Biological Conservation 155, 1-12.
- McLeod, K., Lubchenco, J., Palumbi, S., Rosenberg, A., 2005. Scientific consensus statement on
 marine ecosystem-based management, Signed by 221, pp. 1-21.
- 530 MEA, 2005. Millennium Ecosystem Assessment Ecosystems and human well-being. Island Press
 531 Washington, DC.

- Norkko, J., Reed, D.C., Timmermann, K., Norkko, A., Gustafsson, B.G., Bonsdorff, E., Slomp, C.P.,
 Carstensen, J., Conley, D.J., 2012. A welcome can of worms? Hypoxia mitigation by an
 invasive species. Global Change Biology 18, 422-434.
- 535 O'Higgins, T.G., Gilbert, A.J., 2014. Embedding ecosystem services into the Marine Strategy
 536 Framework Directive: Illustrated by eutrophication in the North Sea. Estuarine, Coastal and
 537 Shelf Science 140, 146-152.
- Oliver, T.H., Heard, M.S., Isaac, N.J.B., Roy, D.B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A.,
 Orme, C.D.L., Petchey, O.L., Proença, V., Raffaelli, D., Suttle, K.B., Mace, G.M., Martín-López,
 B., Woodcock, B.A., Bullock, J.M., 2015. Biodiversity and Resilience of Ecosystem Functions.
 Trends in ecology and evolution.
- Pendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., Craft, C., Fourqurean,
 J.W., Kauffman, J.B., Marbà, N., 2012. Estimating global "blue carbon" emissions from
 conversion and degradation of vegetated coastal ecosystems. PloS one 7, e43542.
- Pendleton, L.H., Thébaud, O., Mongruel, R.C., Levrel, H., 2016. Has the value of global marine and
 coastal ecosystem services changed? Marine Policy 64, 156-158.
- Raudsepp-Hearne, C., Peterson, G.D., Bennett, E.M., 2010. Ecosystem service bundles for analyzing
 tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences 107, 5242 5247.
- Rossberg, A.G., Uusitalo, L., Berg, T., Zaiko, A., Chenuil, A., Uyarra, M.C., Borja, A., Lynam, C.P., 2017.
 Quantitative criteria for choosing targets and indicators for sustainable use of ecosystems.
 Ecological Indicators 72, 215-224.
- Strong, J.A., Andonegi, E., Bizsel, K.C., Danovaro, R., Elliott, M., Franco, A., Garces, E., Little, S., Mazik,
 K., Moncheva, S., 2015. Marine biodiversity and ecosystem function relationships: The
 potential for practical monitoring applications. Estuarine, Coastal and Shelf Science.
- TEEB, 2010. The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations.
 Earthscan, London and Washington.
- Teixeira, H., Berg, T., Uusitalo, L., Fürhaupter, K., Heiskanen, A.-S., Mazik, K., Lynam, C., Neville, S.,
 Rodriguez, J.G., Papadopoulou, N., Moncheva, S., Churilova, T., Krivenko, O., Krause-Jensen,
 D., Zaiko, A., Verissimo, H., PANTAZI, M., Carvalho, S., Patrício, J., Uyarra, M., Borja, A., 2016.
 A Catalogue of marine biodiversity indicators. Frontiers in Marine Science 3.
- Turley, C., Blackford, J., Hardman-Mountford, N., Litt, E., Llewellyn, C., Lowe, D., Miller, P.,
 Nightingale, P., Rees, A., Smyth, T., 2010. Carbon uptake, transport and storage by oceans
- and the consequences of change. Issues in Environmental Science and Technology 29, 240.
 Livarra M.C. Côtó I.M. 2007. The quest for cruntic creatures: impacts of species focused.
- 565 Uyarra, M.C., Côté, I.M., 2007. The quest for cryptic creatures: impacts of species-focused
 566 recreational diving on corals. Biological Conservation 136, 77-84.
- Watson, S.C.L., Paterson, D.M., Queirós, A.M., Rees, A.P., Stephens, N., Widdicombe, S., Beaumont,
 N.J., 2016. A conceptual framework for assessing the ecosystem service of waste
 remediation: In the marine environment. Ecosystem Services 20, 69-81.
- 570

571 Tables, Figures and Appendices - Headings

- 572 Table 1: Descriptions of the seven ecosystem services addressed in this study, adapted from:
- 573 Böhnke-Henrichs et al. (2013), European Commission (2014), Atkins et al. (2015) and Hattam et al.
- 574 (2015)
- 575 Table 2:

Ecosystem Description

service	
Food provision	The availability of marine flora and fauna for human consumption that can be caught from the wild
Climate regulation	The contribution of the marine environment to the maintenance of a favourable climate
Disturbance prevention or moderation	The dampening of the intensity of environmental disturbances such as storm floods, tsunamis and hurricanes and including the prevention of coastal erosion
Bioremediation of waste	The removal of waste input from humans into the marine environment, e.g. excess nutrients, and chemicals, as well as hazardous substances
Biological control	Control of pest species such as sea lice, invasive species, harmful algal blooms, blooming macro-algae, disease bearers such as <i>Escherichia coli</i>
Leisure, recreation	The provision of opportunities for tourism, recreation and leisure that depend on a particular state of marine ecosystems, in particular abundance of charismatic species, species targeted by anglers, species and habitats visited by snorkelers and divers, also water is of sufficient quality to serve as bathing water
Aesthetic experience	The contribution of the marine environment to the existence of a seascape that generates a noticeable emotional response within an individual observer

577 Table 2: Biodiversity components (species and taxonomic groups; Cochrane et al. (2010)) listed in

578 Table 1 of Annex III of the MSFD as indicative biological features. For each component an example of

their contribution to a particular service is given. Table is split to increase legibility.

580

576

582 Table 2a

Ecosystem services	Biodiversity components (species and taxonomic groups) listed in Table 1 of Annex III of the MSFD						
	Phytoplankton	Zooplankton	Angiosperms	Benthic macroalgae	Benthic invertebrate fauna		
Food provision				Agar production for gelatine	Shellfish for human consumption		
Climate regulation	Removal of carbon dioxide from the water column		Removal of carbon dioxide from the water column		Burial of carbon during bioturbation		
Disturbance prevention			Reduce erosion by providing root structures in the sediments and reduce wave force and current strength	Reduce erosion by reducing wave force and current strength	Reduce wave force through bioengineering that creates obstacles for currents such as oyster beds and reefs		
Bioremediation	Take up of nutrients from the water column for growth	Remove wastes from seawater	Remove wastes from seawater	Take up of nutrients from the water column for growth	Remove wastes from seawater through filter feeding		
Biological control		By feeding on phytoplankton blooms	Remove bacteria from seawater		As predators of invasive species		

Ecosystem services	Biodiversity components (species and taxonomic groups) listed in Table 1 of Annex III of the MSFD							
	Phytoplankton	Zooplankton	Angiosperms	Benthic macroalgae	Benthic invertebrate fauna			
Food provision				Agar production for gelatine	Shellfish for human consumption			
Climate regulation	Removal of carbon dioxide from the water column		Removal of carbon dioxide from the water column		Burial of carbon during bioturbation			
Leisure/recreation	Diving/swimming/kayaking in bioluminescent water	Diving/swimming/kayaking in bioluminescent water	Snorkelling, diving	Snorkelling, diving	Angling bait, snorkelling, diving, crab catching			
Aesthetic experience	Diving/swimming/kayaking in bioluminescent water	Diving/swimming/kayaking in bioluminescent water	For snorkelers, divers	For snorkelers and divers	For snorkelers and divers			
Table 2b								
Ecosystem service	Biodiversity components (species a	and taxonomic groups) listed in Ta	ble 1 of Annex III of the MS	FD				

	Fish	Elasmo-branches	Marine mammals and reptiles	Seabirds	Non-indigenous species (NIS)
Food provision	Wild fish catches and aquaculture	Sharks and rays caught for human consumption	Grey seals are hunted in the Northern Baltic Sea, Finland	Common eiders are hunted in Denmark, Sweden and Finland	NIS can be introduced for their aquaculture qualities for example Pacific oysters or Manila clams

	Fish	Elasmo-branches	Marine mammals and reptiles	Seabirds	Non-indigenous species (NIS)
Climate regulation Disturbance prevention					Reduce wave force through bioengineering that creates obstacles for currents such as ovster beds
Bioremediation					Some NIS can remove waste from seawater through bioturbation and filtration
Biological control	As predators of invasive species	As predators of invasive species	As predators of invasive species	As predators of invasive species	*
Leisure/recreation	Angling	Angling/diving	Whale/seal/dolphin watching	Bird watching	
Aesthetic experience	For snorkelers and divers	Basking shark watching	Whale/seal/dolphin watching	Bird watching	

Ecosystem services Biodiversity components (species and taxonomic groups) listed in Table 1 of Annex III of the MSFD

585

586 Table 3: Guidelines developed in this study to help deciding which biodiversity indicators may be useful for ecosystem service assessments

	Indicator type	Example	Rationale	Decision	Example reference
General	Distributional range of a	Distributional range of	Useful to know where a particular service	Accept, but not useful on	
criteria	component	cephalopods	may be found but further information needed, such as abundance to give complete information. Also useful to show trends over	it's own	
			time.		

	Indicator type	Example	Rationale	Decision	Example reference
	Ratios	Biomass ratio of opportunistic macroalgae	Useful but further information needed, such as abundance to give complete information. Useful to show trends over time.	Accept, but not useful on it's own	
	NIS related indicators	Trends in arrival of new NIS	Depending on the particular species, NIS may change services for example reduce bioremediation by reducing filter feeder abundance but this link is indirect	Reject as too vague, need to know the species and how they affect a particular service	
	Management indicators	Bag size of hunted species	Such indicators show a management measure set in response to other ecosystem indicators and are therefore too indirect	Reject	
	Pressure indicators	Ratio of area affected by dredging proposal	Can indicate a reduction in a service, for example carbon sequestration may be reduced through dredging, but it is human made pressure rather than the effect of the pressure on the ecosystem that is measured here	Reject	
	Multimetric indicators	Cymoskew	Data required to calculate the majority of multimetric indicators is useful but most multimetric indicators, particularly EQR indicators which are unitless do not provide direct information about service provision	Reject, but some might be useful if simple to interpret (for example species diversity for leisure and recreation)	
Food provision	Biomass/abundance of groups that contain edible species	Biomass of cephalopods	Useful, if edible species are measured and data for these species can be extracted from available data	Accept	
	Size ratios	LFI - Large Fish indicator	Useful to assess status of fish communities containing commercial species	Accept	Hall et al. 2006

	Indicator type	Example	Rationale	Decision	Example reference
	Reproduction indicators	Fecundity rate of fish, Sex ratio of fish	This is a group of indicators that is classed into process indicators by Hattam et al. (2015) and Atkins et al. (2014) for Food provision. However, for top predators such as white tailed eagle reproduction is a useful indicator for the state of the ecosystem	Reject for food provision but accept if top predator health status can be used as an indicator of Biological control	
Climate regulation	Abundance or biomass of phytoplankton or macrophytes	Biomass of phytoplankton	(Biological control in the wider sense) Autotrophs take up carbon, which is good for climate regulation but the carbon needs to be removd from the system (e.g. through burial or export to the deep ocean) for it to be effectively a climate regulating service	Accept, but further information needed such as export rates	
	Depth limits of photic habitats such as seagrass beds	Depth limit of macrophytes	Greater depth range of a seagrass bed or of macroalgae potentially leads to larger area covered with such species which allows more uptake of carbon	Accept, but should be revisited in ecology	
	Zooplankton biomass/abundance etc	Biomass of selected zooplankton species and taxa groups	Heterotrophs do take up carbon, for example by eating phytoplankton, and some do move it down through the water column, particularly during dial vertical migration. They also excrete cells in faecal pellets which allows faster sinking rates, enhancing the organic pump	Reject as too indirect, further information on faecal matter and feeding rates needed to measure the service	Turley et al. 2010
	Fish and other fauna biomass	Biomass of demersal fish	Fish store carbon but also respire it, it does not lead to burial and removal of carbon	Reject as too indirect, further ecological study needed	Beaugrand et al. 2010
	Opportunistic macroalgae	Abundance of opportunistic macroalgae	Rafts of opportunistic macroalgae can wash up on shores, particularly after storms but are not buried, therefore carbon is not removed from the system	Reject	

	Indicator type	Example	Rationale	Decision	Example reference
	Distributional range of phytoplankton	Distributional range of phytoplankton	Indicator does not inform on how much carbon the phytoplankton take up or how much of that carbon is taken out of the system by burial or export therefore the link between the ecosystem service and the indicator is tenuous	Reject	
	Seagrass abundance, depth, biomass	Biomass of seagrass	Seagrass sequesters carbon and through the root system aids burial of carbon	Accept	Macreadie et al. 2014
	Bioengineering species	Biomass (per unit of surface) of structuring/engineering species (per habitat)	Species dependent: certain bioturbators aid the removal of carbon and nutrients from the system while others recirculate carbon and nutrients back through the system. Also, macrophytes can aid the removal of carbon (but see above indicators on macrophyte distribution and abundance) and biogenic reefs can aid carbon sequestration	Accept if bioturbators or macrophytes such as seagrass are measured	Norkko et al. 2012
Disturbanc e prevention	Extent of rocky habitat or sandy habitat	Areal extent of rocky habitats	Abiotic feature which does not inform on an ecosystem service	Reject	
	Macrophytes: biomass	Biomass of <i>Cystoseira</i> barbata	Species dependent and also dependent on where the species are in relation to the coast, a small-growing species of seaweed such as <i>Cystoseira</i> spp. may not reduce wave energy enough to provide a significant service, but large kelps may	Reject, further research needed	
	Depth limit of macrophytes	Depth limit of macrophytes	Distribution relative to coastline may be more important; greater depth will potentially reduce the service as it will not reduce wave and tidal strength	Reject, further research needed, but may be useful if seagrass is measured as seagrass roots hold substrate in place, reducing erosion	

	Indicator type	Example	Rationale	Decision	Example reference
	Bioengineering species	Biomass (per unit of surface) of structuring/engineering species (per habitat)	Species and biological trait dependent	Accept if species or biological trait that aid sedimentation, reduce erosion, reduce wave strength	
Bioremedia tion	Depth distribution of habitats	Depth distribution of <i>Posidonia oceanica</i> meadows	This indicator can inform on where habitats are that aid bioremediation but it does not provide enough information to assess the service	Reject, as it does not provide enough informatio on the function of the service	
	Depth limit of macrophytes	Depth limit of <i>Fucus</i> <i>vesiculosus</i>	Can inform on the water clarity (similar to Secci depth) but is a very indirect indicator, as water clarity also depends on physical and hydrological factors such as currents and waves	Reject	
	Distributional range of habitats, areal extent of habitats	Distributional range of circalittoral and bathial soft bottom habitats	Informs on where the service may take place	Accept	
	Benthic invertebrates	Abundance of selected benthic invertebrate species	Abundance of bioturbators may be useful to assess this service but further information would be needed	Accept	Watson et al. 2016
	Abundance, composition of functional groups	Abundance and composition of functional groups in selected habitats	May inform on different types of organisms that can contribute to Bioremediation of waste	Accept	

	Indicator type	Example	Rationale	Decision	Example reference
	Structuring/engineering species	Areal extent of biogenic/vulnerable habitats	Several engineering groups are involved in bioremediation: bioturbators, filter feeders, seagrass and knowing the areal extent of their occurrence may help assess where bioremediation takes place	Accept	Norkko et al. 2012
Biological control	Communities diversity indices	Abundance or biomass of key species in the coastal waters	This indicator, particularly if observed over time may inform on changes to communities and thereby if a service can improve or be reduced with time	Reject	
	Bird indicators	Reproduction capacity of white tailed eagle	These indicators can show if an ecosystem as a whole is able to support top predators but a change in such an indicator would need further investigation to understand why bird populations are stressed or declining	Reject	
	Abundance, composition of functional groups	Abundance of phyto- and zooplankton	This indicator on its own does not inform on the stressors that may lead to a lack of biological control	Reject	
	Extent of opportunists, dead/dying seagrass	Areal extent of intertidal opportunistic green algae Areal extent of dead <i>Posidonia oceanica</i> meadows	These indicators may show where the service has failed but further information on the cause would be needed (for example mortality of <i>Posidonia</i> may also be due to non-biological reasons such as mechanical stress)	Accept	
Leisure/rec reation	Depth distribution of habitats	Depth distribution of selected habitats	This information is important for divers, snorkellers, anglers as it can inform on the accessibility of the habitat for recreational activities	Accept	

	Indicator type	Example	Rationale	Decision	Example reference
	Diversity indices	Species diversity of benthic communities	Diverse benthic communities are important for snorkelling, diving and rockpooling	Accept	
	Biomass of charismatic species	Biomass of demersal elasmobranches	While charismatic species may attract visitors, for example on boat tours or for diving, abundance would be a better measure as these beneficiaries are more interested in knowing how many charismatic species are likely to be around than in their biomass	Reject	
	Breeding success, mortality of seabirds, reproduction in marine mammals	Productivity of seabirds (annual breeding success)	Can inform on the immediate future of the service	Accept	
	Biomass/abundance of zooplankton/phytoplan kton	Abundance of phyto- and zooplankton	If taxa can be distinguished in the data, then this can be a negative indicator for nuisance species, such as jellyfish, HABs	Accept, if nuisance species are measured	
	Opportunistic macroalgae	Abundance of opportunistic macroalgae	Negative indicator, as it may indicate beaches are covered in macroalgae	Accept	Davenport and Davenport, 2006
Aesthetic experience	Depth distribution of habitats	Depth distribution of selected habitats	This information is important for divers, snorkellers, anglers as it can inform on the accessibility of desirable habitat for recreational activities	Accept	
	Diversity indices	Species diversity of benthic communities	Diverse benthic communities are important for snorkelling, diving and rockpooling	Accept	
	Breeding success, mortality of seabirds, reproduction in marine mammals	Productivity of seabirds (annual breeding success)	Can inform on the immediate future of the service	Accept	

Indicator type	Example	Rationale	Decision	Example reference
Opportunistic macroalgae	Abundance of opportunistic macroalgae	Negative indicator, as it may indicate beaches are covered in macroalgae	Accept	Davenport and Davenport, 2006

589 Figure 1: Assessment of biodiversity indicators as a potential source of information on ecosystem 590 services. Hashed bars: compared to published ecosystem service indicators, most biodiversity 591 indicators (232 of 296) are not directly comparable. Full bars: biodiversity indicators reassessed 592 using guidelines developed in this study

594 595

593

596 Appendix 1: Indicator list collated from Atkins et al. (2015), Hattam et al. (2015) and Commission

597 (2014b)

Ecosystem service	Generic marine ecosystem service indicator	Metric (unit)	Additional or changed measurement s - general comments	Hattam	Atkins	Commission
Food provision - Wild capture sea food	Fish and shellfish populations, seaweed stock	Biomass (tonnes km ⁻²) or abundance (no. km ⁻²) of fish and shellfish; area (m ²) or biomass (tonnes km ⁻²) of seaweed		V	V	
	Quality of the fish, shellfish, seaweed stock	Species composition, age profile; length profile; % affected by disease; mortality rates		v	V	
Food provision - Farmed sea food	Fish and shellfish populations, seaweed stock	Biomass (tonnes km ⁻²) or abundance (no. km ⁻² of fish and shellfish; area (km ²) or biomass (tonnes km ⁻²) of seaweed		V		
	Quality of the fish, shellfish, seaweed stock	% affected by disease; mortality rates		٧		
Climate regulation	Air-sea and sediment water fluxes of carbon and CO ₂	mg C ⁻² d ⁻¹		V		
	Air-sea fluxes of other green house gases	μg green house gases m ⁻² d ⁻¹		٧	٧	

Ecosystem service	Generic marine ecosystem service indicator	Metric (unit)	Additional or changed measurement s - general comments	Hattam	Atkins	Commission
	Levels of carbon in different components of the marine ecosystem	biomass of carbon (gm ⁻²), dissolved organic and inorganic carbon (mg C m ⁻³ , burrier particulate organic or inorganic carbon (mg C m ⁻²)		V	V	<u> </u>
	Permanence of carbon sequestration	% of annual carbon turnover from		v		
	Carbon stock	sediments				v
	C sequestration	ton C year ⁻¹			v	V
	Blue C	ton C			-	-
	Primary production	ton C year ⁻¹				٧
	Assimilative and recycling capacity	No units given			٧	
	рН	Change in units	Time frame and spatial extent not identified			v
Disturbance prevention or moderation	Capacity of water storage of habitat	Water storage capacity (m ³ /area) for different intertidal habitats (e.g. sediment, saltmarsh, mangrove)		V	V	
	Reduction of wave energy by near shore and intertidal habitats	Change in wave energy (Joules m ⁻²) attributed to different intertidal and near shore habitats	Width or area of salt marsh, reed bed, mudflat, sand dunes etc providing natural hazard protection (m, % cover, sediment	V	V	V

Ecosystem service	Generic marine ecosystem service indicator	Metric (unit)	Additional or changed measurement s - general comments stabilisation properties	Hattam	Atkins	Commission	
	Changing shoreline	Change in beach profile (slope (gradient) and width (m) and stability) over time determined empirically from photos, satellite, LiDAR, ARGUS camera and modelled	Sediment stability	v	V		
Bioremediatio n of waste	Absolute levels of waste in the water column and within species	Chemical analysis (contaminant concentrations) and visual analysis	Water quality indicators (N mgl ⁻¹ , P mgl ⁻¹), total dissolved solids (mgl ⁻¹)	V	V	v	
	Amount of heavy metals in water and sediment	mgl ⁻¹			٧		
	Number of shellfish area closures	No units given		٧			
	Presence of pathogens; outbreaks of <i>E.coli</i> infections; hospital admissions	Total coliforms or other pathogens (mgl ⁻¹)		v	V		
	Benthic biodiversity levels/ratios/no. of sensitive species	Different biodiversity indices		٧	v		

Ecosystem service	Generic marine ecosystem service indicator	Metric (unit)	Additional or changed measurement s - general comments	Hattam	Atkins	Commission
	Harmful algal bloom outbreaks	Remote sensing, water sampling to detect frequency and extent; modelling to determine future frequency and extent		V	V	
	Assimilative capacity	No unit given			v	
	Biological oxygen demand	mg $O_2 I^{-1} day^{-1}$			v	
	Oxyrisk	No unit given			٧	٧
	Amount of organic matter in water and sediment	mgl ⁻¹			V	
Biological control	Presence/absence/frequenc y of pests (e.g. algae blooms, foam, sea lice on farmed salmon)	Count data		V	as an intermediat e service	V
	Pest control Quality of pest control species	Distribution (km ⁻²) of alien species Abundance, health status			v	v
Leisure, recreation and tourism	Sea space available for recreation	Number of km ² of sea with safe water quality available for recreational use		V	V	
	Number of designated sites	Ν			V	
	Number per area of specific seascape features	N/area			v	

Ecosystem service	Generic marine ecosystem service indicator	Metric (unit)	Additional or changed measurement s - general comments	Hattam	Atkins	Commission
	% of total natural seascape	% of natural area in a specified area			v	
	Number and quality of beaches	Number and size of blue flag beaches		v	this is under benefits in Atkins	
	Water quality	Chemical analysis (contaminant concentrations) and visual analysis; total coliforms or other pathogens (quantity per ml of water)		V	this is under benefits in Atkins	
	Abundance and diversity of key species of recreational interest	Count data		v	this is under benefits in Atkins	
	Area of biotopes of key interest to recreational users	For example, extent of seagrass, maerl or kelp beds (km ²)		v	this is under benefits in Atkins	
Aesthetic experience	Uniqueness of a site	1/(Number of sites with similar features)		V	this is under benefits in Atkins	
	Abundance of key species of individual interest	Count data		٧	this is under benefits in Atkins	
	Area of biotopes of key interest to individuals	For example, extent of seagrass, maerl or kelp beds (km ²)		v	this is under benefits in Atkins	

- 599 Appendix 2: Biodiversity indicators have been identified as useful (yes) or not useful (no) for the
- assessment of the selected ecosystem services. Published: those that also occur on the published
- 601 ecosystem service indicator list created for this study

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance prevent ion or modera	Bioremedia tion of waste	Biological control	Leisure and recreation	Aesthetic experience
Abundance of selected (coastal) fish species	no	no	no	no	no	publishe d/yes	no
Trends in arrival of new non- indigenous species	no	no	no	no	yes	no	no
State of benthic communities	no	no	no	publishe d/yes	no	no	no
Abundance or biomass of key species in the coastal waters	no	no	no	no	yes	no	no
Depth limit of macrophytes	no	yes	no	yes	no	yes	yes
Trends in the arrival of new invasive species	no	no	no	no	yes	no	no
Trends in the abundance of settled invasive species	no	no	no	no	yes	no	no
Reproduction capacity of white tailed eagle	no	no	no	no	no	yes	yes
Number of endangered marine species and populations	no	no	no	no	no	no	no
Bag size of hunted species	no	no	no	no	no	no	no
Number of species mentioned in birds directive and habitat directive that are on the suitable protection level	no	no	no	no	no	no	no
Number of hunted seals (grey seal, ringed seal)	no	no	no	no	no	no	no

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
	P		prevent	waste			
			ion or modera tion				
Mortality of							
white-tailed	no	no	no	no	no	yes	yes
eagles							
Breeding success	no	no	no	no	no	ves	ves
of kittiwake						,	,
Species	no	no	no	publishe	no	no	no
composition	110	110		d/yes	110	110	110
Abundance of							
phyto- and	no	yes	no	no	yes	no	no
zooplankton							
Abundance of							
phyto- and	no	no	no	no	no	no	no
zooplankton							
WFD SHWAP -							
Schleswig-Holstein							
Wadden Sea	no	yes	yes	yes	no	no	no
Assessment of							
Phytobenthos							
WFD BALCOSIS -	no	yes	yes	no	no	no	no
Macrophyte Index		,					
WFD ELBO -		publishe					
German	no	d/yes	yes	no	no	no	no
Macrophyte index		.,					
MarBII - Marine	no	no	no	publishe	no	no	no
Biotic Index Tool				d/no			
Areal extent of							
intertidal	no	no	no	yes	yes	yes	yes
opportunistic							·
green algae							
WFD German							
ECOlogical							
phytopiankton	20	20	20	20	publishe	20	20
Chl a and	no	no	110	no	d/yes	no	ΠΟ
Phaeocystic							
blooms							
WFD German							
Ecological							
phytoplankton							
assessment with	no	yes	no	no	no	no	no
Chl a and							
biovolume							
Depth limit of							publishe
spermatophytes	no	yes	yes	no	no	yes	d/yes
Depth limit of	no	no	no	no	no	no	no

prevent waste	Aperience
ion or	
modera tion	
charophytes design of the second seco	
Depth limit of the way have been and the way	NOC
Fucus spp.	yes
Biomass ratio of	
opportunistic no no no no yes no	no
macroalgae	
Macrophyte	
species reduction no no no no no no	no
(reduced species	
list)	
Spread Index no no no publishe no no	no
Spread Index d/no	
WFD HPI -	
GermanMacroalga no no no no no no	no
e index	
Species diversity publishe p	publishe
and landscape no no no no no d/yes	d/yes
Patio of area of	
	no
area/total area	ΠŪ
Ratio of surface	
water bodies in	
good ecological no no no no no no	no
status	
AETV - German	
Estuary Typology no no no publishe no no	no
Procedure	
Distributional	
range of yes no no no yes	no
cephalopods	
Distributional	
range of demersal yes no no no no yes	no
elasmobranchs de la de	
Distributional	
range of pelagic yes no no no no yes	no
fish	
Distributional	
range of no yes no no no no	no
phytopiankton	
	1000
turtles	yes
Distributional	
range of no no no no no	no
zooplankton	110

Biodiversity	Food	Climate	Disturb	Bioremedia	Biological	Leisure and	Aesthetic
mulcator	provision	regulation	prevent	waste	control	recreation	experience
			ion or modera tion				
Distributional							
range of selected	yes	no	no	no	no	yes	no
demersal fish							
Distributional							
range of selected							
benthic	no	no	no	no	no	no	no
invertebrate							
species							
Distributional	no	no	no	no	no	yes	yes
range of whates							
Distributional	no	no	no	no	no	yes	yes
range of birds						,	,
Distributional							
pattern witnin the							
	no	no	no	no	no	yes	yes
turtloc							
Distributional							
nattern within the							
distributional	Ves	no	no	no	no	Ves	Ves
range of demersal	yes	110	110	110	110	yes	yes
fish							
Distributional							
pattern within the							
distributional	yes	no	no	no	no	yes	no
range of demersal							
elasmobranchs							
Distributional							
pattern within the							
distributional	no	yes	no	no	no	no	no
range of							
phytoplankton							
Distributional							
pattern within the							
	no	no	no	no	no	no	no
range of							
Distributional							
nattern within the							
distributional	no	no	no	no	no	yes	yes
range of birds							
Distributional							
pattern within the							
distributional	yes	no	no	no	no	yes	yes
range of	,					,	
cephalopds							

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
			prevent ion or modera tion	waste			
Abundance of cephalopds	publishe d/yes	no	no	no	no	yes	publishe d/yes
Ratio of fish species in good ecological status	no	no	no	no	no	yes	no
Abundance of demersal fish - representation for georeferenced data (GIS)	publishe d/yes	no	no	no	no	publishe d/yes	no
Abundance of demersal elasmobranchs - representation for georeferenced data (GIS)	publishe d/yes	no	no	no	no	publishe d/yes	publishe d/yes
Abundance of toxic phytoplankton taxa	yes	no	no	publishe d/yes	publishe d/yes	yes	yes
Biomass of zooplankton	no	no	no	no	no	no	no
Abundance of whales	no	no	no	no	no	publishe d/yes	publishe d/yes
Breeding population size of birds	no	no	no	no	no	yes	yes
Abundance of bird colonies	no	no	no	no	no	publishe d/yes	publishe d/yes
Abundance of demersal fish	publishe d/yes	no	no	no	no	publishe d/yes	yes
Biomass of demersal fish	publishe d/yes	no	no	no	no	publishe d/yes	no
Biomass of demersal elasmobranchs	yes	no	no	no	no	publishe d/yes	no
Body length distribution of fish	publishe d/yes	no	no	no	no	publishe d/yes	no
Body length distribution of sea-turtles (longest shell)	no	no	no	no	no	yes	yes
Abundance rank of phytoplankton species	no	no	no	no	no	no	no

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance prevent	Bioremedia tion of waste	Biological control	Leisure and recreation	Aesthetic experience
			ion or modera tion				
Presence rank of phytoplankton	no	no	no	no	no	no	no
Abundance rank of zooplankton species	no	no	no	no	no	no	no
Presence rank of zooplankton taxa	no	no	no	no	no	no	no
Demographic characteristics of mammals	no	no	no	no	no	yes	yes
Productivity of seabirds (annual breeding success)	no	no	no	no	no	yes	yes
Breeding failures (widespread colony abandonment of birds)	no	no	no	no	no	yes	yes
Survival rate of birds	no	no	no	no	no	yes	yes
Number of introduced predating birds	no	no	no	no	publishe d/yes	no	no
By-catch of seabirds	no	no	no	no	no	yes	no
Light pollution for sea birds	no	no	no	no	no	no	no
Body length distribution of fish	publishe d/yes	no	no	no	no	publishe d/yes	no
Distributional range of selected species	no	no	no	no	no	no	no
Body length distribution of pelagic invertebrates	publishe d/yes	no	no	no	no	no	no
Depth distribution of selected habitats	no	no	no	no	no	yes	no
Depth distribution of circalittoral and bathial soft bottom habitats	no	no	no	no	no	no	no

Biodiversity	Food	Climate	Disturb	Bioremedia	Biological	Leisure and	Aesthetic
Indicator	provision	regulation	prevent	waste	control	recreation	experience
			ion or modera tion				
Distributional							
range of							
circalittoral and	no	no	no	no	no	no	no
bathial soft							
bottom habitats							
Distributional							
range of							
circalittoral and	no	no	no	no	no	no	no
bathial soft							
bottom habitats							
Number of	20	20	20	20	20	20	20
lagoons	110	110	110	ΠΟ	110	no	no
Depth distribution							
of Posidonia	20	VOC	NOC	no	20	NOC	NOS
oceanica	110	yes	yes	110	110	yes	yes
meadows							
Number of rocky	20	20	20	20	20	20	20
habitat polygons	110	110	110	no	110	110	ΠΟ
Areal extent of							
rocky habitats	no	no	no	no	no	no	no
Depth distribution							
of selected	no	no	no	no	no	yes	no
habitats							
Distributional							
range of selected	no	no	no	no	no	yes	no
habitats						,	
Depth distribution							
of circalittoral and							
bathial soft	no	no	no	no	no	no	no
bottom habitats							
Ratio of area of							
infralittoral soft	no	no	no	no	no	no	no
bottom habitats							
Index of shape							
complexity	no	no	no	no	no	no	no
Perimeters (mean)							
of rocky habitats	no	no	no	no	no	no	no
Number of							
patches or							
polygons of rocky	no	no	no	no	no	no	no
habitats (0-50 m							
depth)							
Ratio							
nerimeters/areal							
extent of rocky	no	no	no	no	no	no	no
habitats							

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
			prevent ion or modera tion	waste			
Patch size standard deviation	no	no	no	no	no	no	no
Perimeters (sum) of rocky habitats	no	no	no	no	no	no	no
Distribution changes of established biocenosis	no	no	no	no	no	no	no
Ratio of area of selected habitats	no	no	no	no	no	no	no
Ratio of area with selected habitat in a bathymetric stratum	no	no	no	no	no	no	no
Areal extent of selected rocky habitats	no	no	no	no	no	yes	no
Areal extent of infralittoral rocky biogenic habitats	no	no	no	no	no	yes	no
Areal extent of infralittoral rocky habitats	no	no	no	no	no	yes	no
Ratio of area of lagoons	no	no	no	no	no	no	no
Areal extent of dead <i>Posidonia</i> <i>oceanica</i> meadows	no	no	yes	yes	no	yes	yes
Frequency of occurrence of habitats per square (in those cases without spatial continuity in cartography)	no	no	no	no	no	no	no
Areal extent (volume) of pelagic habitats	no	no	no	no	no	no	no
Species diversity (Shannon index)	no	no	no	no	no	no	no
Species diversity (Shannon index) of selected habitats	no	no	no	no	no	no	no

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance prevent ion or	Bioremedia tion of waste	Biological control	Leisure and recreation	Aesthetic experience
			modera tion				
Number of biocenosis/facies	no	no	no	no	no	no	no
CYMOX Index for lagoons	no	no	no	no	no	no	no
Abundance and composition of riparian vegetation	no	no	no	no	no	no	no
Abundance, composition and age structure of fishes in lagoons	publishe d/yes	no	no	no	no	publishe d/yes	no
Abundance of selected benthic invertebrate species	yes	no	no	yes	no	yes	yes
Flowering index of seagrass	no	no	no	no	no	no	no
Spatio-temporal variation of structural descriptors of <i>Posidonia</i> oceanica seagrass	no	yes	yes	yes	no	publishe d/yes	publishe d/yes
Abundance of functional groups	no	no	no	no	no	no	no
Abundance and composition of functional groups in selected habitats	no	no	no	yes	no	no	no
Abundance of keystone species or associated species	no	no	no	no	no	no	no
Hydrological condition of infralittoral rocky bottom habitats	no	no	no	no	no	no	no
Biomass of functional groups	no	no	no	yes	no	no	no
Body length distribution of fish	publishe d/yes	no	no	no	no	publishe d/yes	no

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance prevent ion or modera	Bioremedia tion of waste	Biological control	Leisure and recreation	Aesthetic experience
Species richness of birds (in the Important Bird Areas network)	no	no	no	no	no	yes	yes
Biomass or functional groups of demersal biota (fishes and invertebrates)	publishe d/yes	no	no	no	no	publishe d/yes	no
Biomass or functional groups of demersal biota (fishes and invertebrates)	publishe d/yes	no	no	no	no	publishe d/yes	no
Abundance of planktonic copepods	no	no	no	no	no	no	no
Ratio of area of biogenic/vulnerab le habitat	no	no	no	no	no	no	no
Areal extent of biogenic/vulnerab le habitats	no	no	yes	yes	no	yes	yes
Ratio of area of selected habitats	no	no	no	no	no	no	no
Areal extent of selected habitats	no	no	no	no	no	publishe d/no	publishe d/no
Biomass (per unit of surface) of structuring/engine ering species (per habitat)	no	no	yes	yes	no	publishe d/yes	publishe d/yes
Ratio of area potentially affected by changes in the sedimentation rate	no	no	no	no	no	no	no
Ratio of area potentially affected by selective extraction of substrate	no	no	no	no	no	no	no

Biodiversity	Food	Climate	Disturb	Bioremedia	Biological	Leisure and	Aesthetic
mulcator	provision	regulation	prevent	waste	control	recreation	experience
			ion or				
			modera tion				
Ratio of area							
potentially							
affected by	no	no	no	no	no	no	no
discharge of							
materials							
Ratio of area							
potentially							
affected by	20	20	no	no	20	20	no
changes in the	110	110	110	no	no	no	no
seafloor							
topography							
Ratio of area							
affected by each	no	no	no	no	no	no	no
type of fishing	110	110	110	10	110	110	110
gear							
Species diversity				nublicho			
of benthic	no	no	no	d/vos	no	yes	no
communities				u/yes			
Areal extent of							
alterated						nublisho	nublisho
Posidonia	no	no	yes	yes	no	d/ves	d/ves
oceanica						u/yes	u/yes
meadows							
Ratio of area							
affected by	no	no	no	no	no	no	yes
aquaculture							
Ratio of area							
affected by cables	no	no	no	no	no	no	yes
and pipelines							
Ratio of area							
affected by	no	no	no	no	no	no	Ves
human highly	110	110	110	110	110	110	yes
modified coast							
Ratio of area							
affected by harbor	no	no	no	no	no	no	yes
dredging activities							
Ratio of area							
affected by	no	no	no	no	no	no	yes
anchorage							
Ratio of area							
affected by	no	no	no	no	no	no	yes
dredging disposal							
Ratio of area							
affected by port	no	no	no	no	no	no	yes
infrastructure							

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
maloutor	p		prevent	waste			
			non or modera tion				
Ratio of area							
affected by							
artificial beaches	no	no	no	no	no	no	yes
or beach							
nourishment							
Depth limit of	no	ves	ves	no	no	publishe	publishe
eelgrass		,	,			d/yes	d/yes
Macroalgae-	no	no	no	ves	no	no	no
diversity indices				,			
Zoobenthos-	no	no	no	Ves	no	no	no
diversity indices	110			yes	110	110	110
Fish-diversity	no	no	no	no	no	VAS	no
index (Shannon)	110	110	110	10	110	yes	no
Areal extent of						nuhlishe	nublishe
marine	no	yes	yes	yes	no	d/ves	d/ves
angiosperms						4, 903	u, yes
Abundance of							
perennial	no	yes	yes	yes	no	no	no
seaweeds							
Abundance of							
seaturtle	no	no	no	no	no	yes	yes
spawning						· ·	,
population							
Survival rate of	20			20		20	1405
Posidonia	no	no	no	no	no	no	yes
Biomass ratio of							
demorsal fish (at							
higher trophic	Ves	no	no	no	no	Ves	no
levels in the total	yes	110	110	110	110	yes	110
catch)							
Trends in							
populations of	ves	no	no	no	no	ves	ves
large pelagic fish	,		_			,	/
Presence of							
particularly							
sensitive and/or	no	no	no	no	no	no	no
tolerant species							
Biomass ratio of							
benthic	nubliche						
invertebrates	d/vec	no	no	no	no	no	no
above specified	u/yes						
length							
Community	no	no	no	no	no	no	no
Trophic Index	10	10	10	no	10	10	10

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance prevent ion or modera	Bioremedia tion of waste	Biological control	Leisure and recreation	Aesthetic experience
Fish community size index	yes	no	no	no	no	no	no
Fish community abundance index	no	no	no	no	no	no	no
Abundance and composition of intertidal macroalgae	no	publishe d/yes	yes	yes	no	no	no
Biomass ratio of opportunistic macroalgae/total	no	no	no	yes	yes	no	no
Depth of sediment redox potential discontinuity	no	no	no	yes	no	no	no
Biomass of benthic invertebrate species in sediment habitats	no	no	no	yes	no	no	no
Bathymetry	no	no	no	no	no	no	no
Accumulation of contaminants in sediment	no	no	no	yes	no	no	no
Marine Biological Valuation Methodology	no	no	no	no	no	no	no
Abundance ratio of opportunistic/sen sitive species	no	no	no	no	no	no	no
Biomass of Cystoseira barbata	no	yes	no	no	no	no	yes
Biomass of Phyllophora crispa	no	yes	no	no	no	no	no
Biomass of seagrass	no	yes	yes	yes	no	no	no
Abundance of seagrass	no	yes	yes	yes	no	no	publishe d/yes
Evenness (Sheldon) of phytoplankton	no	no	no	no	no	no	no
IBI - Integrated Biological Index	no	no	no	no	no	no	no

Biodiversity	Food	Climate	Disturb ance	Bioremedia	Biological	Leisure and	Aesthetic experience
maloutor	provision	. cguiation	prevent	waste			capenence
			ion or modera tion				
Abundance ratio							
of selected	no	no	no	VOC	no	no	no
dinoflagellates (C-	110	no	110	yes	110	no	no
strategy species)							
Abundance of							
selected							
phytoplankton	no	yes	no	no	yes	no	no
species and taxa							
groups Biomass ratio of							
diatoms/dinoflage	no	no	no	no	no	no	no
llatos	110	110	110	110	110	110	110
Snatial							
distribution of					publishe		
non-indigenous	no	no	no	no	d/ves	no	no
species					-,,,		
Trends in arrival of							
new non-							
indigenous	no	no	no	no	publishe	no	no
species per					u/yes		
pathway							
Abundance ratio							
of bleached coral	no	no	yes	no	no	yes	yes
colonies							
POSWARE	no	yes	no	no	no	no	no
CymoSkew	no	yes	no	no	no	no	no
EPI - Estonian							
Phytobenthos	no	no	no	no	no	no	no
Index							
WFD Swedish							
Assessment of							
Elements in							
coastal and	no	no	no	no	no	no	no
transitional							
waters -							
macrovegetation							
WFD Polish							
Assessment							
system for coastal	20	20		20	20	20	20
and transitional	no	no	no	no	no	no	no
waters using							
macrophytes							
WFD Dutch	no	no	VAS	no	no	no	no
Eelgrass index	10	10	yes	10	10	10	10

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
			prevent ion or	waste			
			modera tion				
BEQI - Benthic							
Ecosystem Quality	no	no	no	no	no	no	no
Index							
BBI - Brackish							
water benthic	no	no	no	no	no	no	no
VVFD ZKI -							
Multimetric	no	no	no	no	no	no	no
macrozoobenthos	110	110	110	110	110	110	110
community index							
BAT - Benthic							
Assessment Tool	no	no	no	no	no	no	no
ITI - Tronhic index	no	no	no	no	no	no	no
NOL - Norwegian	110	110	110	110	110	110	110
Quality Index	no	no	no	no	no	no	no
MAB Macroalgal							
Bloom					publishe		
Assessment	no	no	no	no	d/ves	no	no
(OpportunisticMa					.,,,		
croalgae)							
WFD RSL -							
Macroalgae -							
Rocky Shore	no	no	no	no	no	no	no
Reduced Species							
LISL Donth limit of							
	no	no	no	no	no	no	no
Dopth limit of							
Depth limit of	20	20	20	20		20	20
Furcenuria	no	no	no	no	no	no	no
Intertidal							
macroalgae -	no	no	no	no	no	no	no
Reduced Species	110	110	110	110	110	110	110
List (RSL)							
MarMAT -							
MarineMacroalga	no	no	no	no	no	no	no
e Assessment Tool	10	no	10	10	10	no	10
The Elevated							
Phytonlankton					nuhlishe		
(Single Tava)	no	no	no	no	d/ves	no	no
					u/yes		
Abundance of						nuhlishe	nuhlishe
waterbirds in the	no	no	no	no	no	d/ves	d/ves
						1,155	1,120

Biodiversity	Food	Climate	Disturb ance	Bioremedia	Biological	Leisure and	Aesthetic experience
malcator	provision	regulation	prevent	waste	control	recreation	experience
			ion or modera tion				
breeding season							
Abundance of waterbirds in the wintering season	no	no	no	no	no	publishe d/yes	publishe d/yes
Distributional range of marine mammals	no	no	no	no	no	yes	yes
Nutritional status of marine mammals	no	no	no	no	no	yes	yes
Population growth rate, abundance and distribution of marine mammals	no	no	no	no	no	yes	yes
Pregnancy rates of marine mammals	no	no	no	no	no	yes	yes
Productivity of white-tailed eagle	no	no	no	no	no	yes	yes
Abundance of sea trout spawners and parr	no	no	no	no	no	yes	no
Abundance of salmon spawners and smolt	no	no	no	no	no	yes	no
WFD German Eelgrass index (intertidal)	no	no	no	no	no	no	no
AMBI - AZTI Marine Biotic Index	no	no	no	no	no	no	no
BOPA - Benthic Opportunistic Annelida Amphipoda Index	no	no	no	no	no	no	no
CARLIT-BENTHOS - Cartography of littoral and upper- sublittoral rocky- shore communities	no	no	no	no	no	no	no
DKI - Danish Quality Index	no	no	no	no	no	no	no
Depth limit of eelgrass	no	yes	yes	no	no	publishe d/yes	publishe d/yes

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
			prevent ion or modera tion	waste			•
M-AMBI - Multivariate AZTI Marine Biotic Index	no	no	no	no	no	no	no
POMI - Posidonia oceanica Multivariate Index	no	no	no	no	no	no	no
Biomass of cephalopods	publishe d/yes	no	no	no	no	yes	no
Biomass of demersal elasmobranchs	yes	no	no	no	no	yes	no
Biomass of selected zooplankton species and taxa groups	no	no	no	no	yes	no	no
Age-frequency distribution of fish	yes	no	no	no	no	yes	no
Fecundity rate of fish	no	no	no	no	no	yes	no
Sex ratio of fish	no	no	no	no	no	no	no
Survival rate of fish	publishe d/yes	no	no	no	no	yes	no
Biomass of phytoplankton	no	yes	no	no	no	no	no
Fecundity rate of sea turtles	no	no	no	no	no	yes	yes
Mortality rate of seaturtles	no	no	no	no	no	yes	yes
Biomass of zooplankton	no	no	no	no	no	no	no
Age-frequency distribution of <i>Pinna nobilis</i>	no	no	no	no	no	publishe d/yes	publishe d/yes
Biomass of zooplankton	no	no	no	no	no	no	no
Biomass of phytoplankton	no	yes	no	no	no	no	no
Biomass ratio of opportunistic/sen sitive species	no	no	no	no	yes	no	no
Blubber thickness of seals	no	no	no	no	no	yes	yes

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
		0	prevent ion or	waste			·
			modera tion				
PREI - Posidonia							
oceanica Rapid Easy Index	no	no	no	no	no	no	no
Abundance of benthic	no	no	no	Ves	no	no	no
invertebrates	110	110	110	yes	110	110	110
Abundance of fish	publishe d/yes	no	no	no	no	yes	no
Biomass of phyto- and zooplankton	no	yes	no	no	no	no	no
Biomass of phyto- and zooplankton	no	no	no	no	no	no	no
Areal extent of maerl-type biogenic	no	no	yes	no	no	publishe d/yes	publishe d/yes
sediments							
Abundance ratio							
invertebrates	no	no	no	no	no	no	no
above specified							
WFD German							
Saltmarsh index	no	no	no	no	no	no	no
WFD German							
Eastern Baltic	no	no	no	no	no	no	no
index							
Abundance of						publishe	publishe
bioengineering species	no	no	yes	yes	no	d/yes	d/yes
Catch per unit							
effort (CPUE) of	yes	no	no	no	no	no	no
species							
CFR - Multimetric							
CFR index (Quality	no	no	no	no	no	no	no
of Rocky Bottoms)							
Concentration of Chl <i>a</i>	no	yes	no	no	no	no	no
Concentration of							
oxygen at the	no	no	no	yes	no	no	no
Conservation							
status of fish	no	no	no	no	no	no	no

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
indiodeor	P		prevent	waste	••••••		
			modera tion				
Eveness (Pielou)							
of selected	no	no	no	no	no	no	no
biological	110		110	110	110	110	110
components							
Genetic							
population							
structure of	no	no	no	no	no	no	no
selected biological							
components							
Index of							
phytocoenoses	no	no	no	no	no	no	no
ecological activity	110		110	110	110	110	110
(S/Wph)							
MEDOCC	no	no	no	no	no	no	no
Secchi depth	no	yes	no	no	no	no	no
Abundance of						nuhlishe	nuhlishe
Macroalgae (total	no	yes	no	no	no	d/ves	d/ves
cover)						u/yc3	u/ycs
Abundance of	nublishe					nublishe	publishe
demersal	d/ves	no	no	no	no	d/ves	d/ves
elasmobranchs	u/yc3					u/yc3	u/ycs
Areal extent of							
selected	no	Ves	no	no	no	ves	Ves
Macroalgae	110	yes	110	110	110	yes	yes
species							
Species diversity							
(Shannon index)	no	no	no	ves	no	no	no
of benthic				,			
invertebrates							
Surface							
area/biomass							
ratio of selected	no	no	no	no	no	no	no
macroalgae							
species							
Species richness	no	no	no	no	no	yes	yes
of fish						,	
Species richness	no	no	no	yes	no	no	no
of Macroalgae				,			
Species richness	no	no	no	no	no	no	no
of plankton							
Species diversity							
(Shannon index)	no	no	no	no	no	no	no
of plankton							
Species diversity							
(Shannon index)	no	no	no	no	no	no	no
of macroalgae							

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
			ion or modera tion	waste			
Species diversity (Shannon index) of fish	no	no	no	no	no	yes	yes
Mortality rate of fish	publishe d/yes	no	no	no	no	no	no
MTI - Marine Trophic Index	no	no	no	no	no	no	no
IQI - Infaunal Quality Index	no	no	no	no	no	no	no
Abundance of populations of selected bird species (winter)	no	no	no	no	no	publishe d/yes	publishe d/yes
Abundance ratio of selected phytoplankton taxa groups	no	no	no	no	no	no	no
WFD British Seagrass index	no	no	no	no	no	publishe d/yes	publishe d/yes
Species richness of selected habitats	no	no	no	no	no	no	no
Species richness of benthic invertebrates	no	no	no	yes	no	no	no
Species diversity (Menhinick) of plankton	no	no	no	no	no	no	no
Abundance (per unit of surface) of structuring/engine ering species (per habitat)	no	yes	yes	yes	no	publishe d/yes	publishe d/yes
Substrate condition	no	no	no	no	no	no	no
Abundance of selected zooplankton species and taxa groups	no	no	no	no	yes	no	no
Abundance of functional groups of fish	publishe d/yes	no	no	no	no	no	no
Abundance of phytoplankton	no	yes	no	no	yes	no	no

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance	Bioremedia tion of	Biological control	Leisure and recreation	Aesthetic experience
maloator	p		prevent	waste			
			ion or modera				
			tion				
Abundance of	no	no	no	no	no	publishe	publishe
seals						d/yes	d/yes
Abundance of							
selected	20	100	20	20		20	20
species and taxa	no	yes	no	no	yes	no	no
groups							
Abundance of							
zooplankton	no	no	no	no	no	no	no
Areal extent of						publishe	publishe
eelgrass	no	yes	yes	yes	no	d/ves	d/ves
Areal extent of						- / /	- / /
Posidonia						publishe	publishe
oceanica	no	yes	yes	yes	no	d/yes	d/yes
meadows							
Abundance of							
shade-adapted,	no	VOC	no	no	no	no	no
slow growing	110	yes	110	110	110	110	no
calcareous species							
Abundance of							
opportunistic	no	no	no	yes	yes	no	no
macroalgae							
EEI - ECOlOgical	no	no	no	no	no	no	no
Evaluation Index							
BENTIX	no	no	no	no	no	no	no
BIOMASS OF	20	100		1405		20	20
species	no	yes	yes	yes	110	no	ΠΟ
Biomass of					nublisho		
Mnemionsis leidvi	no	no	no	no	d/ves	no	no
Biomass of					u, yes		
structuring	no	ves	ves	ves	no	no	no
species		,	,	,			
Biomass ratio of							
ESG IA species	no	no	no	no	no	no	no
LFI - Large Fish	publishe						
indicator	d/yes	no	no	no	no	yes	no
Body length							
distribution of							
demersal fishes,	yes	no	no	no	no	yes	no
elasmobranchs							
and invertebrates							

Biodiversity Indicator	Food provision	Climate regulation	Disturb ance prevent ion or modera tion	Bioremedia tion of waste	Biological control	Leisure and recreation	Aesthetic experience
Body length							
distribution of							
demersal fishes,	yes	no	no	no	no	yes	no
elasmobranchs							
and invertebrates							
BQI - Benthic				publishe			
Quality Index	no	no	no	d/yes	no	no	no
Sum "yes"	18	37	27	35	15	68	50
Sum							
published/yes	20	2	0	5	8	33	26
Sum all accepted	38	39	27	40	23	101	76