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Abstract Identification of oceanic regions characterized by particular optical properties is extremely
important for ocean color applications. The departure from globally established bio-optical models (i.e.,
anomaly) introduces uncertainties in the retrieval of biogeochemical quantities from satellite observations.
Thanks to an array of 105 Biogeochemical Argo floats acquiring almost daily downward irradiance measure-
ments at selected wavelengths in the UV and blue region of the spectrum, we reexamined the natural vari-
ability of the spectral diffuse attenuation coefficients, Kd(k), among the world’s oceans and compared them
to previously established bio-optical models. The analysis of 2847 measurements of Kd(k) at 380 and
490 nm, within the first optical depth, provided a classification of the examined regions into three groups.
The first one included the Black Sea, a water body characterized by a very high content of colored dissolved
organic matter (CDOM). The second group was essentially composed by the subtropical gyres (Atlantic and
Pacific Oceans), with optical properties consistent with previous models (i.e., no anomalies). High latitude
(North Atlantic and Southern oceans) and temperate (Mediterranean Sea) seas formed the third group, in
which optical properties departed from existing bio-optical models. Annual climatologies of the Kd(380)/
Kd(490) ratio evidenced a persistent anomaly in the Mediterranean Sea, that we attributed to a higher-than-
average CDOM contribution to total light absorption. In the North Atlantic subpolar gyre, anomalies were
observed only in wintertime and were also attributed to high CDOM concentrations. In the Southern Ocean,
the anomaly was likely related to high phytoplankton pigment packaging rather than to CDOM.

1. Introduction

In the 1970s and 1980s, the early years of development of modern optical oceanography, a few studies
established empirical relationships between the concentration of chlorophyll a, a proxy of phytoplankton
biomass, and the optical properties of the material dissolved or suspended in the seawater [Morel and Prieur,
1977; Gordon et al., 1988; Morel, 1988]. The purpose was to investigate and analyze the variability of the
optical properties of oceanic waters in order to extract biogeochemical quantities from the color of the
ocean that could be potentially measured by the emerging satellite platforms [Morel and Prieur, 1977; Morel,
1988]. With this aim, Morel and Prieur [1977] introduced the distinction between Case 1 and Case 2 water
types. Case 1 waters, i.e., most of the open ocean environments, were defined as those waters for which col-
ored dissolved organic matter (CDOM) and nonalgal particles (NAP) are of autochthonous origin and covary
with the concentration of chlorophyll a and other phytoplankton pigments regardless of their concentra-
tions. On the contrary, Case 2 waters were defined as all the other aquatic environments for which the con-
centrations of algal pigments, dissolved and particulate materials varied independently [Morel and Prieur,
1977; Antoine et al., 2014].

In the early 2000s, thanks to the emergence of more sophisticated analytical techniques (i.e., high perfor-
mance liquid chromatography), the concentrations of chlorophyll a as well as of other phytoplanktonic pig-
ments (xanthophylls and carotenoids) were determined with more accuracy [Vidussi et al., 2001]. The bio-
optical relationships were, therefore, reexamined [Morel and Maritorena, 2001; Bricaud et al., 2004; Morel
et al., 2007b]. Morel and Maritorena [2001], in particular, reevaluated the relationships between optical
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properties such as the spectral diffuse attenuation coefficients for downward irradiance, Kd(k), and chloro-
phyll a concentrations at the sea surface. The relationships established through these new databases
became the most commonly used bio-optical models for open ocean waters and were applied at the global
scale. The diffuse attenuation coefficients in the UV and visible domains were used to represent and explain
the variations in the light absorption by CDOM (with NAP) and chlorophylls (together with other pigments),
respectively, owing to their different spectral absorption properties [Bricaud et al., 1981; Prieur and
Sathyendranath, 1981; Bricaud et al., 2004]. Hence, Kd(k) values at given wavelengths emerged as optical
proxies of biogeochemical quantities such as chlorophyll a and CDOM concentrations [Morel and
Maritorena, 2001; Morel et al., 2007a, 2007b].

The hypothesis that optical properties in some open ocean regions can diverge from the average of the
world’s oceans was early proposed [Mitchell and Holm-Hansen, 1991]. However, only recently, the natural
variability around the mean statistical relationships has been analyzed for various optical properties [Morel
et al., 2007a; Szeto et al., 2011; Huot and Antoine, 2016]. These studies evidenced that the optical behavior of
several oceanic environments, in the UV and visible spectrum, is different. The main causes may be: (i) high
CDOM content [Morel et al., 2007a; Morel and Gentili, 2009a; Matsuoka et al., 2011; Szeto et al., 2011; Organelli
et al., 2014]; (ii) strong pigment packaging [Morel and Bricaud, 1981] of the phytoplankton community
[Mitchell and Holm-Hansen, 1991; Mitchell, 1992; Szeto et al., 2011] and/or presence/absence of accessory
pigments reflecting a particular light history [Bricaud et al., 2004, 2010]; (iii) occurrence of desert dusts
[Claustre et al., 2002; Claustre and Maritorena, 2003]. For example, when specifically addressing the mean
statistical relationship between the diffuse attenuation coefficient of downward irradiance at 490 nm and
chlorophyll a concentration, Morel et al. [2007a] found that two different environments such as the Mediter-
ranean Sea and the South Pacific Ocean were represented by the average relationship of Morel and
Maritorena [2001]. By contrast, the attenuation coefficients measured in the UV range were significantly
higher in the Mediterranean Sea than the global average [Morel et al., 2007a]. This departure from the
model was attributed to the higher-than-average contribution of CDOM with respect to other oceanic
regions, which was also later confirmed by other studies [Morel and Gentili, 2009b; Organelli et al., 2014].

Identifying regions with such an anomalous optical behavior (hereafter called ‘‘bio-optical anomaly’’) has an
impact on ocean color applications and especially for the retrieval of bio-optical and biogeochemical prod-
ucts. When a bio-optical anomaly is observed, as in the Mediterranean Sea, the particular optical properties
may introduce greater uncertainty into standard remote sensing inversion algorithms [D’Ortenzio et al.,
2002; Organelli et al., 2016a]. Ocean-based regional algorithms could, instead, facilitate more acceptable
retrievals [Bricaud et al., 2002; Szeto et al., 2011]. However, the undersampling that emerges from current in
situ databases has so far limited the development of open ocean regional algorithms [Szeto et al., 2011].

Over the last 5 years, a large array of autonomous Biogeochemical Argo floats (hereafter ‘‘BGC-Argo floats’’)
equipped with sensors for measuring inherent and apparent optical properties as well as biogeochemical
variables [IOCCG, 2011; Biogeochemical-Argo Planning Group, 2016; Johnson and Claustre, 2016; Organelli
et al., 2016b] have been deployed in various open-ocean systems and trophic conditions. Contrarily to the
traditional sampling from oceanographic vessels, BGC-Argo floats acquire data up to every 10 days, in
remote areas (e.g., subtropical gyres, Arctic and Southern oceans), and even during periods with harsh seas
that limit ship-based sampling. Thus, the number of vertical profiles for several bio-optical and biogeochem-
ical variables has been dramatically increasing in few years. Therefore, the investigation of the bio-optical
anomalies can be performed with unprecedented spatial and temporal resolutions, which is a prerequisite
in view of characterizing nuances in mean bio-optical relationships at the regional scale.

This study examines the regional variability of relationships between CDOM (together with nonalgal par-
ticles) and phytoplankton light absorption properties with respect to previously established bio-optical
models [Morel and Maritorena, 2001; Morel et al., 2007b]. Diffuse attenuation coefficients of downward irra-
diance in the UV (i.e., 380 nm) and visible (i.e., 490 nm) over the world’s oceans as derived from the existing
BGC-Argo database [Organelli et al., 2016c] are used as proxies of these two quantities. Analyses focused on
the first optical depth (i.e., the layer of interest for satellite remote sensing) [Gordon and McCluney, 1975]
allow identifying regions with bio-optical anomalies, for which ocean-based regional algorithms should be
consolidated to improve the retrieval of biogeochemical quantities from remote sensing ocean color obser-
vations. The temporal variability around the mean statistical relationships is explored—for the first time—
for a comprehensive set of oceanic regions representative of diverse trophic and bio-optical conditions.
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Finally, possible factors causing the bio-optical anomalies are discussed with the help of concurrent meas-
urements of other variables such as chlorophyll a concentration, fluorescent dissolved organic matter,
and the particle light backscattering coefficient.

2. Materials and Methods

2.1. The BGC-Argo Database
An array of 105 ‘‘PROVOR-CTS4’’ profiling floats was deployed in several areas of the world’s oceans in the
frame of several research programs (Figure 1; see acknowledgements). Each float acquired vertical profiles
of optical and bio-optical variables (downward irradiance Ed(k), Photosynthetically Available Radiation PAR,
chlorophyll a fluorescence Chl, dissolved organic matter fluorescence FDOM, and particle light backscatter-
ing coefficient bbp(k)) in addition to temperature (T) and salinity (S). Upward casts were programmed every
1, 2, 3, 5, or 10 days depending on the mission and scientific objectives. Each cast started from the 1000 m
parking depth at sufficient time for surfacing around local noon. Data acquisition was nominally 10 m reso-
lution between 250 and 1000 m of depth, 1 m resolution between 10 and 250 m, and increased at 0.20 m
resolution between 10 m and the surface [Organelli et al., 2016b].

A total of 9837 BGC-Argo stations, each one corresponding to an upward cast collected between October
2012 and January 2016, were used in this study (Figure 1). All stations were checked for possible corruption
by biofouling (a profiling float spends most of its time in dark and cold 1000 m waters, which naturally pre-
vents or delays biofilm formation) or any instrumental drift. The stations were then grouped in 25 geographic
areas (Table 1) encompassing a wide range of oceanic conditions, from subpolar to tropical and from eutro-
phic systems to oligotrophic mid-ocean gyres. In the following sections, data analysis and quality-control pro-
tocols are briefly reported for each measured and derived parameter. Finally, the use of the quality-controlled
variables to identify and explain the optical behavior of the various oceanic areas is also presented.

2.2. Radiometry and Diffuse Attenuation Coefficients for Downward Irradiance
The profiling floats were equipped with a multispectral ocean color radiometer (OCR-504, SATLANTIC Inc.)
providing 0–250 m profiles of Ed(k) at three wavelengths (i.e., 380, 412, and 490 nm) and PAR integrated

Figure 1. The 9837 stations sampled by 105 Biogeochemical Argo floats between October 2012 and January 2016. Squares indicate the 2847 quality-controlled (QC) stations with simul-
taneous Kbio(380) and Kbio(490) coefficients used for identification of bio-optical anomalies. Abbreviations for the 25 geographic areas are displayed (see Table 1 for full description). The
map is drawn by the Ocean Data View software [R. Schlitzer, Ocean Data View, http://odv.awi.de].
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over 400–700 nm. Electronic counts
were converted into radiometric quanti-
ties (in units of: mW cm22 nm21 for Ed(k);
mmol quanta m22 s21 for PAR) according
to SATLANTIC [2013] and using specific
calibration coefficients for each channel
of each sensor.

Radiometric profiles were quality-
controlled following protocols and pro-
cedures specifically developed for auton-
omous measurements by Organelli et al.
[2016b]. Current dark, atmospheric
clouds, and wave focusing [Zaneveld
et al., 2001] occurrences were flagged
and removed from each profile. Meas-
urements performed during very unsta-
ble sky and sea conditions were also
identified and disregarded. No dark off-
set adjustment and correction for sen-
sor’s water temperature dependence
[Mueller et al., 2003] were applied, as
they have a negligible impact on surface
radiometric quantities of interest for this
study [Organelli et al., 2016b].

For each quality-controlled profile, Ed(0–)
and PAR just below the sea surface were extrapolated within the first optical depth (Zpd) using a second-
degree polynomial function [Organelli et al., 2016b]. Following Morel [1988], the first optical depth was com-
puted as Zeu/4.6 where the euphotic depth, Zeu, is the depth at which PAR is reduced to 1% of its value just
below the sea surface. A total of 5767 stations with quality-controlled Zeu and Zpd values were retained.
Then, the corresponding Ed(k) profiles were binned every 1 m and the diffuse attenuation coefficients
(Kd(k); in units of m21) were obtained from a linear fit between the natural logarithm of Ed(k) and depths
within Zpd [Mueller et al., 2003]. Check for Ed(k) outlier values was done before Kd(k) computation. Kd(k) val-
ues resulting from linear fits based on less than 3 points or with a determination coefficient (r2) lower than
0.90 were excluded from the analysis. Hence, a total of 4162, 3956, and 3557 values for Kd(380), Kd(412), and
Kd(490) coefficients, respectively, were retained. Standard errors of Kd(k) values were also obtained from lin-
ear fits. They varied between 0.0002–0.088, 0–0.098, and 0–0.083 m21 for Kd(380), Kd(412), and Kd(490) coef-
ficients, respectively.

2.3. Chlorophyll a, Fluorescent Dissolved Organic Matter, and Particle Light Backscattering
A WETLabs ECO sensor installed on each float provided simultaneous 0–1000 m profiles of chlorophyll a
(excitation/emission: 470/695 nm) and dissolved organic matter (excitation/emission: 370/460 nm) fluores-
cence, and of the angular scattering coefficient (b(h, k)) at 700 nm measured at an angle of 1248. For each
parameter, raw counts were converted in desired quantities and units using the calibration coefficients pro-
vided by the manufacturer.

The quality control of chlorophyll a, Chl (in units of mg m23), was performed following the procedures
described in Schmechtig et al. [2014]. Corrections aimed at adjusting the profile for no-zero dark values,
identifying the occurrences of negative spikes, and verifying the range of measured values according to
technical specifications provided by the manufacturer [WETLabs, 2016]. A correction for the nonphotochem-
ical quenching [Kiefer, 1973] was also performed following Xing et al. [2012]. In specific areas (e.g., Black
Sea), chlorophyll a concentration showed a tendency to increase at depth where it was supposed to be
zero. This behavior was associated to the influence of fluorescent dissolved organic matter [Proctor and
Roesler, 2010] and corrected according to the procedures established by Xing et al. [2017]. Finally, following
the recommendations by Roesler et al. [2017] on the evidence of a factory calibration bias in the estimated

Table 1. Basin, Abbreviation, and Number of Floats for 25 Geographic Areas
Included in the Biogeochemical Argo Databasea

Region Basin Abbreviation Float No.

Arctic Sea Norwegian Sea NOR 1
Black Sea Black Sea BLACK 4
Western

Mediterranean
Sea

Northwestern NW 9
Southwestern SW 6
Tyrrhenian Sea TYR 6

Eastern
Mediterranean
Sea

Ionian Sea ION 8
Levantine Sea LEV 7

North Atlantic
subpolar gyre

Labrador Sea LAS 15
Irminger Sea IRM 11
Iceland Basin ICB 8
South Labrador Sea SLAS 2
Transition zone NASTZ 1

North Atlantic
subtropical gyre

Subtropical gyre NASTG 4
Eastern subtropical gyre ENASTG 2
Western subtropical gyre WNASTG 2
Transition zone EQNASTZ 2

Red Sea Red Sea RED 2
South Atlantic Ocean Subtropical gyre SASTG 3

South subtropical gyre SSASTG 1
Transition Zone SASTZ 2

South Pacific Ocean Subtropical gyre SPSTG 3
New Caledonia NC 2

Southern Ocean Atlantic sector ATL 3
Atlantic to Indian sector ATOI 10
Indian sector IND 6

aNote that the total number of floats is >105 because some floats moved
across two or more basins during their lifetime.

Journal of Geophysical Research: Oceans 10.1002/2016JC012629

ORGANELLI ET AL. WORLD’S OCEAN BIO-OPTICAL ANOMALIES 3546



chlorophyll a concentrations from WETLab ECO series chlorophyll fluorometers, each quality-controlled
chlorophyll a value was divided by 2 to improve accuracy of measurements for applications at the global
scale. The correction factor was deduced from a global comparison of fluorescence with paired HPLC Chl
observations, and confirmed by HPLC-calibrated optical proxies of Chl such as the light absorption line
height [Roesler and Barnard, 2013].

The quality control of fluorescent dissolved organic matter, FDOM (in units of ppb), was executed according
to the following procedures. First, the range of measured values was verified following the technical specifi-
cations provided by the manufacturer [WETLabs, 2016]. Then, spikes were identified and removed. The BGC-
Argo floats included in this database spent their life without moving substantially among different deep
water masses. This, together with the assumption that the deep concentration of dissolved organic material
is conservative in a given water body [Nelson et al., 2007], allows profiles collected by a given float to be
scaled with confidence to the FDOM value measured by the first cast of the time series between 950 and
1000 m. Finally, remaining spikes were removed by applying a median filter (5 point window) and an aver-
age filter (7 point window) was then used to smooth the profile.

Following the procedures described in Schmechtig et al. [2016], the particle backscattering coefficient at
700 nm (bbp(700); in units of m21) was obtained by removing the contribution of pure seawater [Zhang
et al., 2009] from b(1248, 700) and then applying a conversion to total particle backscattering according to
procedures and constants in Boss and Pegau [2001] and Sullivan et al. [2013]. Vertical profiles of bbp(700)
were then quality controlled by verifying the range of measured values according to the technical specifica-
tions provided by the manufacturer [WETLabs, 2016] and removing negative spikes following Briggs et al.
[2011]. Other spikes were additionally removed by applying a median filter (5 point window).

Finally, all quality-controlled profiles of Chl, FDOM, and bbp(700) were binned every 1 m and the average
(with standard deviation) within Zpd was computed.

2.4. Identification of Bio-Optical Anomalies
The investigation on bio-optical anomalies involved analysis of 2847 simultaneous vertical profiles of diffuse
attenuation coefficients for downward irradiance at 380 and 490 nm (Kd(380) and Kd(490)) within the first
optical depth. Because of their physical nature (i.e., ratio of Ed(k) values within the same profile), Kd(k) values
are quasi-insensitive to instrument calibration issues and/or sensor drifts, thus revealing to be robust param-
eters for the investigation of ocean’s optical behavior over time. Kd(380) and Kd(490) coefficients were used
to estimate the variations in the light absorption by CDOM and NAP, and by phytoplankton, respectively.
The Kd(k) coefficients can be expressed as [Gordon, 1989]:

Kd51:04 ldð Þ21 a1bbð Þ (1)

where a and bb are the total light absorption and backscattering coefficients, respectively, and bb is typically
a few percent of the total absorption coefficient, except in extremely clear waters where it may occasionally
reach 25% in the blue-violet region of the light spectrum [Morel et al., 2007a]. In equation (1), md is the aver-
age cosine for downward irradiance Ed which depends on solar elevation, wavelength, and chlorophyll a
concentration [Morel and Loisel, 1998]. Values of md(k) were calculated using the mean chlorophyll a concen-
tration within Zpd of each profile, a solar zenith angle between 0 and 758, and an optical thickness at
550 nm of 0.05 due to the aerosol [Morel and Loisel, 1998]. The md(k) values varied in the ranges 0.692–0.927
and 0.679–0.948 for 380 and 490 nm, respectively, in agreement with Morel et al. [2007a].

Following Morel [1988], the constant contribution to attenuation of pure sea water (Kw(k)) [Morel and
Maritorena, 2001] was removed from Kd(k) and the quantity Kbio(k) was obtained as:

Kbio kð Þ5Kd kð Þ2Kw kð Þ (2)

Only Kbio(k)> 0.002 m21 (i.e., Kd(k) higher than 10% Kw(k)) were found to be reliable and used for the fol-
lowing analyses. A linear regression analysis was performed on the log-transforms of each Kbio(k) pair for
the whole data set. Regression coefficients were then compared to the previously established bio-optical
models by Morel and Maritorena [2001] and Morel et al. [2007b] representative of the ‘‘mean statistical rela-
tionships.’’ To identify regional bio-optical anomalies, a Student’s t-test was first applied to check if the aver-
age distance of points within a given region departed significantly (a 5 0.05) from the Morel et al. [2007b]
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relationship. Second, linear regressions on the log-transforms of Kbio(k) within each region were calculated
after removal of outliers on the residuals according to the Jackknife method [Tukey, 1958]. For significant
regression fits (a 5 0.01), a test of parallelism (a 5 0.01) was then used to verify the significance of the differ-
ences of regression coefficients with respect to the Morel et al. [2007b] model. Finally, the temporal variabil-
ity of each region around the mean statistical relationships was explored comparing the monthly
climatology of the ratio between Kbio(380) and Kbio(490), calculated as the average of all ratios within Zpd in
a given region for a given month, to the average ratio obtained from Morel et al. [2007b] relationships (and
computed for chlorophyll a ranges measured by BGC-Argo floats).

2.5. Understanding the Sources of the Anomalies
Monthly climatologies of chlorophyll a, FDOM and their ratio were used to interpret the bio-optical behavior
observed from the analysis of Kbio(k) coefficients and explain the variability of Kbio(380)/Kbio(490) ratios.
Cross-correlation analysis (a 5 0.05) was also performed between the two ratios in order to measure the
time lag. To identify any possible dependence of Kbio(k) values on specific optical properties of the phyto-
plankton community [e.g., ‘‘packaging effect,’’ Morel and Bricaud, 1981], the relationships between Kbio(490)
and chlorophyll a concentration were examined and compared to the bio-optical model by Morel et al.
[2007b]. Finally, relationships between Kbio(490) and bbp(700) were used to address to what extent and in
which region the particle light backscattering might contribute to enhance Kbio(k) values as a consequence
of, e.g., the presence of more abundant scattering particles.

3. Results and Discussion

3.1. Global Spectral Variability of Diffuse Attenuation Coefficients and Deviations From Mean
Statistical Relationships
The spectral variations of the nonwater diffuse attenuation coefficients (Kbio(k)) are displayed in Figure 2.
From the linear regression on log-transformed data, the relationship of Kbio(380) as a function of Kbio(490)
can be expressed as a power law (Figure 2a):

Kbio 380ð Þ50:944 60:010ð Þ � Kbio 490ð Þ0:754 60:007ð Þ n52847; r250:81
� �

(3)

with standard errors of linear regression coefficients on log-transformed quantities in parentheses.

This relationship can be compared to that established by Morel and Maritorena [2001]:

Figure 2. Log-log plot of Kbio(380) as a function of Kbio(490): (a) all measurements collected by BGC-Argo floats within the first optical
depth; (b) measurements collected by BGC-Argo floats within the first optical depth and a solar zenith angle between 0 and 758. In each
plot, the regression line for BGC-Argo measurements is displayed as a dashed line and statistics are shown. Previous regression lines from
Morel and Maritorena [2001] and Morel et al. [2007b] are shown for comparison and are limited to the range of Kbio(490) values found in
those studies.
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Kbio 380ð Þ51:723 � Kbio 490ð Þ0:993; (4)

and the one calculated from the database by Morel et al. [2007b] using Kbio(k)> 0.002 m21 (standard errors
of linear regression coefficients on log-transformed data in parentheses):

Kbio 380ð Þ51:721 60:046ð Þ � Kbio 490ð Þ0:996 60:028ð Þ n5220; r250:85
� �

(5)

Deviations of the BGC-Argo database from the mean statistical relationships appear (Figure 2a). BGC-Argo
derived Kbio(380) and Kbio(490) coefficients are consistent with the range of ship-based observations in
Morel and Maritorena [2001] and Morel et al. [2007b] studies, but for Kbio(490) values <0.004 m21 (i.e.,
Kd(490)< 0.02 m21). The range of BGC-Argo Kd(490) coefficients, and thus of Kbio(490) values, is also in
good agreement with ship-based measurements archived within other global compilations [Valente et al.,
2016]. However, Kbio(380) values are generally higher than those previously observed for a given Kbio(490),
with the difference increasing toward the lowest Kbio(490) coefficients (Figure 2a). Contrary to what was
found by Morel and Maritorena [2001] and Morel et al. [2007b] (equations (4) and (5)), the exponent in equa-
tion (3) also reveals that the relationship between the attenuation coefficients at the two selected wave-
lengths is nonlinear.

The main cause of the observed deviations is due to the different geographic distribution of the databases.
The study by Morel and Maritorena [2001] is mainly based on data collected in ultra to moderately oligotro-
phic environments (e.g., subtropical gyres) and only few samples were collected in mesotrophic to eutro-
phic waters. The Morel et al. [2007b] relationship is an updated version of the Morel and Maritorena [2001]’s
model with the addition of data collected in the Eastern South Pacific Ocean [BIOSOPE area; Claustre et al.,
2008], in the Mediterranean Sea during summer-early autumn and a few from the Benguela Current [Morel
et al., 2007b]. Therefore, previous models are very likely biased toward oligotrophic environments. The 25
regions of the BGC-Argo database used in this study cover a large diversity of trophic situations, encom-
passing waters from the oligotrophic subtropical gyres to the highly productive areas of the North Atlantic
subpolar gyre, Southern Ocean and North Western Mediterranean Sea, and also include the transition zones
between one regime and another.

In addition, the Morel and Maritorena [2001] and Morel et al. [2007b] data sets are compiled with data from
oceanographic cruises generally carried out during periods and seasons characterized by suitable meteoro-
logical conditions for sampling. This ultimately introduces also a temporal bias. The BGC-Argo floats are
designed to routinely acquire profiles anytime, regardless of sea conditions. As a consequence, the relation-
ship in equation (3) is based on data acquired in wintertime in areas such as the North Atlantic subpolar
gyre, the subtropical gyres and the Southern Ocean, data that are not included in previous relationships.

The relationship in equation (3) includes Kbio(k) coefficients acquired at high latitudes where the solar eleva-
tion could be too low and unsuitable for measuring downward irradiance even at local noon [Mueller et al.,
2003]. In Figure 2b, only Kbio(k) values derived from radiometric measurements acquired with 0–758 sun
zenith angles are shown and the relationship can be expressed as (standard errors of linear regression coef-
ficients on log-transformed data in parentheses):

Kbio 380ð Þ50:972 60:010ð Þ � Kbio 490ð Þ0:769 60:007ð Þ n52612; r250:83
� �

(6)

Removed samples are mainly from the Norwegian Sea, North Atlantic subpolar gyre, and Southern Ocean in
late autumn and wintertime. The regression and determination (r2) coefficients slightly increase compared
to equation (3) but deviations from the mean statistical relationships still appear (Figure 2b). Hence, these
samples with low solar elevation do not significantly affect the global trend, and thus they are kept for the
following analyses.

3.2. Regional Variability of Diffuse Attenuation Coefficients and Deviations From Mean Statistical
Relationships
The Black Sea shows the highest average Kbio(380) and Kbio(490) coefficients within the database (Table 2;
Figure 3). Among high latitude open ocean waters, the North Atlantic subpolar gyre shows the highest
Kbio(380) and Kbio(490) coefficients. Kbio(380) values range from 0.115 6 0.045 m21 to 0.144 6 0.060 m21,
while Kbio(490) coefficients vary between 0.065 6 0.048 m21 and 0.082 6 0.066 m21 in the Irminger and
Labrador Seas, respectively (Table 2; Figure 3). The Southern Ocean has, instead, lower average Kbio(k)
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coefficients than those observed in the northern hemisphere (Table 2). At temperate latitudes, the North
Western Mediterranean Sea shows high Kbio(k) coefficients close to those observed in the North Atlantic
subpolar gyre (Table 2; Figure 3), while values close to those found in the Southern Ocean are observed in
other subbasins of the region (Table 2; Figure 3). The Eastern Mediterranean Sea (together with the
Red Sea) shows lower Kbio(k) coefficients than those in the western part, especially in the Levantine Sea
(Table 2). The subtropical gyres and their surrounding areas have the lowest Kbio(k), with observed values of
0.013 6 0.006 and 0.009 6 0.004 m21 in the South Pacific, and 0.013 6 0.005 and 0.007 6 0.004 m21 in the
South Atlantic for Kbio(380) and Kbio(490) coefficients, respectively (Table 2; Figure 3).

The analysis of the average distance of each region from, and the results of the parallelism tests for regres-
sion coefficients with respect to the Morel et al. [2007b] relationship (equation (5)) evidence regional devia-
tions from the mean statistical relationship. In Figures 4 and 5, each of the 25 selected regions is displayed

Figure 3. (a) Average Kbio(380) values (6 standard deviation) as a function of the average Kbio(490) coefficients (6 standard deviation) for the 25 geographic areas (see Table 1 for
abbreviations); (b) as in Figure 3a but only for open ocean waters.

Table 2. Minimum, Maximum, Mean (6 Standard Deviation) and Number (N) of Kbio(380) and Kbio(490) Coefficients for the 25
Geographic Areas Included in the Biogeochemical Argo Databasea

Region Basin N

Kbio(380) (m–1) Kbio(490) (m–1)

Min Max Mean 6 SD (CV) Min Max Mean 6 SD (CV)

Arctic Sea Norwegian Sea 42 0.053 0.230 0.125 6 0.046 (37%) 0.010 0.156 0.053 6 0.033 (62%)
Black Sea Black Sea 81 0.162 0.460 0.298 6 0.048 (16%) 0.026 0.149 0.093 6 0.026 (28%)
Western

Mediterranean Sea
Northwestern 228 0.031 0.280 0.110 6 0.046 (42%) 0.005 0.267 0.064 6 0.048 (75%)
Southwestern 171 0.027 0.204 0.091 6 0.032 (35%) 0.004 0.146 0.046 6 0.025 (54%)
Tyrrhenian Sea 94 0.019 0.134 0.079 6 0.028 (35%) 0.003 0.093 0.033 6 0.019 (58%)

Eastern
Mediterranean Sea

Ionian Sea 245 0.013 0.181 0.065 6 0.026 (40%) 0.003 0.073 0.024 6 0.013 (54%)
Levantine Sea 92 0.010 0.117 0.037 6 0.021 (57%) 0.003 0.081 0.015 6 0.014 (93%)

North Atlantic
subpolar gyre

Labrador Sea 498 0.051 0.461 0.144 6 0.060 (42%) 0.009 0.460 0.082 6 0.066 (80%)
Irminger Sea 213 0.054 0.350 0.115 6 0.045 (39%) 0.005 0.353 0.065 6 0.048 (74%)
Iceland Basin 244 0.057 0.300 0.125 6 0.044 (35%) 0.011 0.255 0.073 6 0.044 (60%)
South Labrador Sea 15 0.073 0.124 0.100 6 0.015 (15%) 0.019 0.069 0.039 6 0.016 (41%)
Transition zone 25 0.081 0.203 0.142 6 0.039 (27%) 0.030 0.124 0.070 6 0.024 (34%)

North Atlantic
subtropical gyre

Subtropical gyre 67 0.008 0.041 0.019 6 0.006 (32%) 0.004 0.030 0.011 6 0.005 (45%)
Eastern subtropical gyre 37 0.009 0.086 0.040 6 0.018 (45%) 0.003 0.064 0.020 6 0.012 (60%)
Western subtropical gyre 1 0.024 0.011
Transition zone 3 0.030 0.040 0.035 6 0.005 (14%) 0.017 0.021 0.019 6 0.002 (11%)

Red Sea Red Sea 22 0.013 0.061 0.043 6 0.017 (40%) 0.003 0.047 0.020 6 0.011 (55%)
South Atlantic Ocean Subtropical gyre 91 0.006 0.033 0.014 6 0.006 (43%) 0.002 0.031 0.007 6 0.005 (71%)

South subtropical gyre 23 0.008 0.028 0.013 6 0.005 (38%) 0.002 0.020 0.007 6 0.004 (57%)
Transition Zone 31 0.044 0.108 0.073 6 0.017 (23%) 0.014 0.074 0.044 6 0.017 (39%)

South Pacific Ocean Subtropical gyre 45 0.005 0.032 0.013 6 0.006 (46%) 0.003 0.022 0.009 6 0.004 (44%)
New Caledonia 23 0.011 0.049 0.025 6 0.009 (36%) 0.004 0.029 0.014 6 0.008 (57%)

Southern Ocean Atlantic sector 129 0.023 0.317 0.069 6 0.054 (78%) 0.003 0.271 0.046 6 0.055 (120%)
Atlantic to Indian sector 228 0.027 0.136 0.062 6 0.019 (31%) 0.007 0.140 0.038 6 0.020 (53%)
Indian sector 199 0.026 0.157 0.060 6 0.023 (38%) 0.003 0.143 0.033 6 0.021 (64%)

aCoefficient of variation (CV, in units of %), calculated as 100*(SD-to-Mean ratio), is also shown.
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Figure 4. Log-log plot of Kbio(380) as a function of Kbio(490) for nonanomalous regions as compared to the global ocean represented by the BGC-Argo database. For each region, the
power law fit and outliers removed for the computation are shown (see Table 3 for statistics). In each plot, previous regression line from Morel et al. [2007b] is shown for comparison and
limited to the range of Kbio(490) values found in that study.
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Figure 5. As Figure 4 but for regions characterized by bio-optical anomalies. For each region, the power law fit and outliers removed for
the computation are shown (see Table 4 for statistics). In each plot, previous regression line from Morel et al. [2007b] is shown for
comparison and limited to the range of Kbio(490) values found in that study.
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against the rest of the data within the database and the relationship described by Morel et al. [2007b] is also
shown for comparison.

According to the observations by Morel et al. [2007a] in the South Pacific Ocean, all the subtropical gyres
and the surrounding areas (Table 1) included in the BGC-Argo database are homogeneously distributed
around the Morel et al. [2007b]’s model and no significant deviations are observed (Figures 4a–4j; Table 3).
Hence, no bio-optical anomalies are found for these regions, as well as in the South Labrador and Red seas
(Figures 4k and 4l; Table 3). More importantly, given the strong influence of ultraoligotrophic to oligotrophic
environments in the mean statistical relationship [Morel et al., 2007b], the observed results for subtropical
gyres and the surrounding areas confirm the consistency between the apparent optical properties mea-
sured by the autonomous BGC-Argo floats and those measured during traditional oceanographic cruises
under an operator’s control and suitable meteorological conditions.

Bio-optical anomalies of Kbio(k) coefficients are observed in the Norwegian Sea (Figure 5a), the North Atlan-
tic subpolar gyre (Figures 5b–5d), the Mediterranean Sea (Figures 5e–5i), and in the Southern Ocean (Fig-
ures 5j–5l). These results agree with the previous observations on Kbio(k) coefficients by Morel et al. [2007a]
for the Mediterranean Sea, and with the analysis by Szeto et al. [2011] on reflectance band ratios vs chloro-
phyll a in the Atlantic and Southern Oceans. Separate linear regressions on log-transformed attenuation
coefficients at 380 and 490 nm (Figure 5; Table 4) reveal that regional relationships significantly differ from

Table 3. Statistics of Linear Regressions on Log-Transformed Kbio(k) Quantities for Nonanomalous Open Ocean Waters Shown in
Figure 4a

Region Basin

Kbio(380) 5 A*Kbio(490)B

N A B r2

North Atlantic subpolar gyre South Labrador Sea 14 0.286 (60.037) 0.316 (60.026) 0.92b

Transition zone 24 0.443 (60.140) 0.422 (60.117) 0.34ns

North Atlantic subtropical gyre Subtropical gyre 63 0.419 (60.078) 0.680 (60.039) 0.83b

Eastern subtropical gyre 35 0.818 (60.088) 0.758 (60.049) 0.87b

Red Sea Red Sea 20 0.526 (60.121) 0.627 (60.068) 0.82b

South Atlantic Ocean Subtropical gyre 85 0.246 (60.071) 0.584 (60.032) 0.80b

South subtropical gyre 23 0.200 (60.224) 0.547 (60.101) 0.56b

Transition Zone 30 0.371 (60.056) 0.513 (60.040) 0.85b

South Pacific Ocean Subtropical gyre 42 0.324 (60.204) 0.685 (60.097) 0.55b

New Caledonia 23 0.254 (60.181) 0.550 (60.095) 0.60b

aN is the number of measurements after removal of outliers and used for linear regression analysis (see section 2.4 for details). In
parentheses, standard errors of linear regression coefficients on log-transformed data are reported. Regression statistics for the regions
WNASTG and EQNASTZ in the North Atlantic Ocean are not shown because of the insufficient number of data.

bHighly significant determination coefficients (r2), p< 0.01; ns not significant r2 values.

Table 4. Statistics of Linear Regressions on Log-Transformed Kbio(k) Quantities for the Black Sea and Open Ocean Waters Characterized
by Bio-Optical Anomalies and Shown in Figure 5a

Region Basin

Kbio(380) 5 A*Kbio(490)B

N A B r2

Arctic Sea Norwegian Sea 40 0.541 (60.051) 0.478 (60.037) 0.81b

North Atlantic subpolar gyre Labrador Sea 479 0.505 (60.011) 0.477 (60.009) 0.86b

Irminger Sea 201 0.386 (60.018) 0.425 (60.013) 0.84b

Iceland Basin 233 0.459 (60.018) 0.486 (60.015) 0.82b

Western Mediterranean Sea Northwestern 216 0.510 (60.018) 0.542 (60.013) 0.89b

Southwestern 161 0.506 (60.031) 0.540 (60.021) 0.80b

Tyrrhenian Sea 88 0.452 (60.036) 0.490 (60.023) 0.84b

Eastern Mediterranean Sea Ionian Sea 229 0.609 (60.033) 0.593 (60.020) 0.80b

Levantine Sea 87 0.623 (60.060) 0.662 (60.030) 0.85b

Southern Ocean Atlantic sector 120 0.526 (60.024) 0.626 (60.015) 0.94b

Atlantic to Indian sector 215 0.374 (60.023) 0.544 (60.016) 0.85b

Indian sector 190 0.457 (60.024) 0.586 (60.016) 0.88b

Black Sea Black Sea 74 0.736 (60.031) 0.378 (60.029) 0.69b

aN is the number of measurements after removal of outliers and used for linear regression analysis (see section 2.4 for details). In
parentheses, standard errors of linear regression coefficients on log-transformed data are reported.

bHighly significant determination coefficients (r2), p< 0.01.
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the model by Morel et al. [2007b] with Kbio(380) values generally above the curve, except for the highest
Kbio(490) coefficients (Figure 5; Table 4).

The Black Sea is identified as an anomalous region. All Kbio(k) coefficients measured in that area clearly dif-
ferentiate from the other examined zones and the Morel et al. [2007b]’s model (Figure 5m; Table 4). Previous
studies classify the Black Sea as a Case 2 water type [Kopelevich et al., 2008; Zibordi et al., 2013] while the
model by Morel et al. [2007b] represents only open ocean Case 1 waters [Morel and Prieur, 1977]. This specif-
icity is essentially related to the high concentrations of the colored fraction of dissolved organic pool [Suetin
et al., 2002; Kopelevich et al., 2008], confirmed also by the observations of a BGC-Argo float at the surface
(FDOM � 4 ppb). Indeed, owing to river freshwater inflows [Cauwet et al., 2002; Margolin et al., 2016], the
concentration of dissolved organic carbon in this basin is twice as high as in the open ocean [Ducklow et al.,
2007].

3.3. Temporal Variability and Sources of Bio-Optical Anomalies in Open Ocean Waters
Thanks to the sampling mode of BGC-Argo floats, anomalous open ocean waters were investigated for
more than 1 year. This provides—for the first time—an assessment of the temporal optical variability of sev-
eral regions with respect to the mean statistical relationships. Monthly climatologies of the Kbio(380)/Kbio(490)
and FDOM/Chl ratios, and of the bio-optical model by Morel et al. [2007b], are analyzed for this purpose,
except for the Norwegian Sea because of FDOM measurement unavailability. In view of this examination, and
given that geographically close regions behave similarly, the remaining 11 open ocean waters with bio-optical
anomalies are grouped into four major areas (Figure 6): (i) the North Atlantic subpolar gyre (i.e., Labrador Sea,
Irminger Sea, Iceland Basin); (ii) the Western Mediterranean Sea (Tyrrhenian Sea, Northern and Southern
basins); (iii) the Eastern Mediterranean Sea (Ionian and Levantine basins); and (iv) the Southern Ocean (Atlantic
and Indian sectors).

In the North Atlantic subpolar gyre, the largest deviations from the mean statistical relationship [Morel
et al., 2007b] are recorded in winter and autumn with Kbio(380)/Kbio(490) ratios up to 4.38 6 1.84 in Janu-
ary and 3.95 6 1.01 in December (Figure 6a). Deviations strongly decrease in spring and summer showing
Kbio(380)/Kbio(490) ratios close to the Morel et al. [2007b]’s model (Figure 6a). This temporal variation is
explained by dynamics of the phytoplankton chlorophyll a concentration and its relation with the dis-
solved organic matter (Figure 6b). The climatology of the FDOM/Chl ratios is correlated with that of the
Kbio(380)/Kbio(490) ratio (r 5 0.59) and no time shift is observed among their respective maxima and min-
ima (Figure 6c). Furthermore, the observed temporal trend of the bio-optical anomaly is essentially driven
by variations in chlorophyll a concentration rather than in FDOM. The North Atlantic subpolar gyre is a
region characterized every year by a massive phytoplankton bloom, typically of diatoms, starting in
March and ending at the end of the summer [Longhurst, 2007; Alkire et al., 2012], and that represents one
of the major planetary events of carbon export to the deep ocean [Martin et al., 1993; Briggs et al., 2011].
The BGC-Argo floats deployed in this region detected the bloom occurrence with Chl concentration up to
12 mg m23 within the first optical depth, higher by about three orders of magnitude than the concentra-
tions observed in winter (0.02 mg m23). On the contrary, FDOM remained approximately constant during
all the year (average value of 1.52 6 0.11 ppb; Figure 6b). According to the indications of Nelson and Gau-
glitz [2016] on the type of fluorescent dissolved organic material detected by a given excitation/emission
couple of wavelengths, fluorometers installed on BGC-Argo floats provide a measurement of aged humic
material rather than of freshly produced substances [Stedmon and Nelson, 2015]. This suggests the occur-
rence of a background of humic dissolved organic material in this area, likely due to the high vertical mix-
ing occurring in winter causing the upwelling of aged organic matter from deep reservoirs.

Large deviations of the Kbio(380)/Kbio(490) ratios from the mean statistical relationship [Morel et al., 2007b]
characterize the Western Mediterranean Sea after the spring bloom (Figure 6d). These deviations are nota-
bly remarkable during summertime when values up to 3.90 6 0.95 are reached (Figure 6d). Analogously to
the North Atlantic subpolar gyre, no time shift and significant correlation (r 5 0.49) are observed between
the time-series of Kbio(380)/Kbio(490) and FDOM/Chl ratios (Figures 6e–f). The persistent postbloom anomaly
is generated by higher than expected FDOM values for low chlorophyll a concentrations, even in summer
and autumn when FDOM values decrease because of photochemical degradation (Figure 6e). This state-
ment is consistent also with recent observations in the region [Organelli et al., 2014, 2016a, P�erez et al.,
2016]. Indeed, despite the clear seasonal dynamics of CDOM and NAP light absorption coefficients
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Figure 6. Monthly climatology of (left column) Kbio(380)/Kbio(490) ratios derived from BGC-Argo float measurements and from the Morel et al. [2007b] model; (central column) FDOM and
chlorophyll a concentrations (ppb and mg m23, respectively) and ratio (ppb m3 mg21). Right column plots show cross-correlation coefficient (r) between Kbio(380)/Kbio(490) and FDOM/
Chl ratios. Climatologies are for the following areas: (a–c) the North Atlantic subpolar Gyre (NASPG); (d–f) the Western Mediterranean Sea (WMED); (g–i) the Eastern Mediterranean Sea
(EMED); and (j–l) the Southern Ocean (SO). In left column plots, the solid line represents the mean Kbio(380)/Kbio(490) ratio as derived from the Morel et al. [2007b] model applied in the
range of chlorophyll a concentrations measured by BGC-Argo floats within a given region. Dashed lines represent the boundaries of the Kbio(380)/Kbio(490) ratios as derived from the
Morel et al. [2007b] model and the minimum and maximum of the measured chlorophyll a range.
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characterizing the Western Mediterranean basin, CDOM remains the main optically significant substance
dominating the light absorption budget in the UV and blue light spectrum during most of the year except
during the bloom [Organelli et al., 2014].

In the Eastern Mediterranean basin, deviations from the bio-optical relationship established by Morel et al.
[2007b] are observed during all the year and are enhanced in summer with values up to 5.90 6 0.94 (Figure
6g). The significant correlation between the time-series of Kbio(380)/Kbio(490) and FDOM/Chl ratios
(r 5 0.30), besides the lack of a time-shift between them, highlights the relevance of the dynamics of the
dissolved organic material with respect to phytoplankton chlorophyll. The Eastern Mediterranean basin is
an oligotrophic region with no bloom occurrence and consequently the lowest chlorophyll a concentrations
observed in the whole Mediterranean Sea during most of the year [Bosc et al., 2004; D’Ortenzio and Ribera
d’Alcal�a, 2009]. Despite these low Chl concentrations, also detected by BGC-Argo floats (Figure 6h), FDOM
values are close to those observed in the western part (Figure 6e) varying from 0.92 to 1.30 ppb (Figure 6h).
In summer, only a slight decrease in FDOM is observed as a consequence of the photochemical degradation
[Xing et al., 2014a] while chlorophyll a concentrations decrease to about 0.03 mg m23 (Figure 6h).

In the Southern Ocean, Kbio(380)/Kbio(490) ratio always remains close to the mean statistical relationship
[Morel et al., 2007b], except in winter when it increases up to 2.45 6 0.80 (Figure 6j). The FDOM/Chl ratios
also increase in parallel with the Kbio(k) ratio (Figures 6k and 6l). This is mainly due to a winter FDOM
increase in correspondence to low chlorophyll a values characterizing this area from March to September
(Figure 6k). Analogously to the North Atlantic subpolar gyre, this increase of FDOM could be a consequence
of the release of aged humic organic material by the deep ocean reservoirs owing to advection processes
[Nelson et al., 2010]. In the Southern Ocean, deviations from the Morel et al. [2007b]’s model (as well as the
variability of FDOM/Chl ratios) are, however, less apparent compared to the other examined regions (Figure
6). This suggests a weaker effect of the colored dissolved organic matter than observed in other anomalous
open ocean waters.

3.4. Other Sources of Bio-Optical Anomalies: Optical Properties of Phytoplankton Communities and
Particle Light Backscattering
A particular physiological state and structure of the phytoplankton community, in response to changes in
environmental conditions such as temperature, nutrient, and light availability, may impact the phytoplank-
ton light absorption coefficients and thus the attenuation of downward irradiance in the water column. This
was early observed in the Southern Ocean and polar regions where the cellular pigment packaging of the
algal communities was reported to be more important than for communities from low latitudes [Mitchell
and Holm-Hansen, 1991; Mitchell, 1992]. The increase of intracellular pigment contents induced by photoac-
climation to low light can actually increase the so-called ‘‘packaging effect’’ [Morel and Bricaud, 1981] and
lead to reduced chlorophyll specific phytoplankton light absorption [Sathyendranath et al., 1987; Bricaud
et al., 2004] and diffuse attenuation coefficients in the blue part of the spectrum [Mitchell and Holm-Hansen,
1991]. Algal cell size also influences the pigment packaging [Morel and Bricaud, 1981; Bricaud et al., 2004]
and induces a flattening of the light absorption spectra [Ciotti et al., 2002; Bricaud et al., 2010]. However,
because these spectral modifications of the light absorption coefficients simultaneously occur at 380 and
490 nm [Bricaud and Stramski, 1990], the analysis on Kbio ratios presented in the previous sections avoids
evaluating thoroughly the influence of phytoplankton community and its optical properties on the bio-
optical anomalies identified within the BGC-Argo database.

To evaluate this influence, the variations of Kbio(490) coefficients, and thus of the phytoplankton light
absorption, as a function of chlorophyll a concentration are shown in Figure 7 and compared to the mean
statistical relationship as described by Morel et al. [2007b]. The relationship based on BGC-Argo float data
can be expressed as (standard errors of linear regression coefficients on log-transformed data in
parentheses):

Kbio 490ð Þ50:063 60:005ð Þ � Chl0:467 60:007ð Þ n52454; r250:62
� �

(7)

Differences appear between the BGC-Argo and the Morel et al. [2007b] relationships. It is important to keep
in mind that the BGC-Argo Chl concentration is only a proxy of phytoplankton biomass as derived from
fluorescence measurements. This implies that, besides some instrumental-induced bias [Roesler et al., 2017],
the fluorescence to chlorophyll concentration ratio potentially varies among regions as a consequence of
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changes in photophysiology, nutrient availability, growth, and taxonomic composition of algal communities
[Cullen, 1982]. These sources of variability, together with errors associated to correction of the nonphoto-
chemical quenching [Xing et al., 2012], can introduce some uncertainty in the measured Chl concentration
that may not be taken in account by the factor 2 correction applied in this study.

Regional deviations from the mean statistical relationship [Morel et al., 2007b] are essentially observed for
the Southern Ocean and Black Sea (Figures 7h–7i). The subtropical gyres as well as other nonanomalous
areas are distributed around the Morel et al. [2007b] model (Figures 7a–7c). Among the regions with bio-
optical anomalies, observations around Morel et al. [2007b] are also recorded for the Norwegian Sea, the
North Atlantic subpolar gyre, and the Mediterranean Sea (Figures 7d–7g), that confirmed CDOM (with NAP)
and its relationship with chlorophyll a as principal drivers of the observed anomalies in the Kbio(k) coeffi-
cients (see section 3.3). It is worth also noting that low Kbio(490) variability around the Morel et al. [2007b]
model is mainly observed for high Chl concentrations (Figure 7). This may be a consequence of the few
data points available for this Chl range, but also of some similarity between algal communities and there-
fore absorption properties of actively growing cells. Instead, at lower Chl concentrations, variable environ-
mental conditions that limit algal growth may strongly modify pigment composition, intracellular pigment

Figure 7. Log-log plot of Kbio(490) as a function of chlorophyll a concentration (Chl) for the following areas in comparison to the global
ocean represented by the BGC-Argo database: (a) Subtropical gyres and surrounding areas (STG); (b) South Labrador Sea and transition
zone (SNAP); (c) Red Sea (RED); (d) Norwegian Sea (NOR); (e) North Atlantic subpolar gyre (NASPG); (f) Western Mediterranean Sea (WMED);
(g) Eastern Mediterranean Sea (EMED); (h) Southern Ocean (SO); and (i) Black Sea (BLACK). In each plot, the not-least square fit to the whole
BGC-Argo database is shown. Previous regression line from Morel et al. [2007b] is also shown for comparison and limited to the range of
Chl values found in that study.
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contents, and size structure. This will in turn increase the variability in light absorption properties, including
Kbio(490), among phytoplankton communities and regions [Bricaud et al., 2004].

On the contrary, in the Southern Ocean, Kbio(490) coefficients are generally lower than predicted by the
Morel et al. [2007b]’s model for a given chlorophyll a concentration (Figure 7h). In this area, Chl determina-
tion from fluorescence measurements might be more affected by natural variability of the fluorescence to
Chl ratio, possibly as a consequence of a higher fluorescence quantum yield than in other regions [Falkowski
and Kolber, 1995]. A sensitivity test using the regional calibration factor for the Southern Indian Ocean
[3.46 6 0.35; Roesler et al., 2017] evidences, however, only small changes in the distribution of points (data
not shown). This suggests that deviation of Kbio(490) coefficients with respect to the Morel et al. [2007b]
relationship expresses the presence of a higher pigment packaging of phytoplankton communities in the
Southern Ocean than observed in other areas. In support to this, communities chiefly composed of large
phytoplankton cells and notably diatoms, nanoflagellates, or colonies of the small haptophyte Phaeocystis
sp., dominate the austral phytoplankton community structure [Mitchell and Holm-Hansen, 1991; Uitz et al.,
2009; Wright et al., 2010]. Moreover, all these communities show relevant modifications of their optical prop-
erties and in particular a reduction of the chlorophyll-specific light absorption as a consequence of light or
iron stresses [Mitchell and Holm-Hansen, 1991; Mitchell et al., 1991; Moisan and Mitchell, 1999; Sosik and
Olson, 2002].

Differently from open ocean waters, Kbio(490) coefficients in the Black Sea are generally higher than pre-
dicted by the Morel et al. [2007b]’s model (Figure 7i) for a given chlorophyll a concentration. Although the
phytoplankton communities in this region are mainly composed by micro and nanophytoplankton [Agirbas
et al., 2015 and references therein] and a reduced light absorption per unit of chlorophyll as due to a high
pigment packaging should be expected, phytoplankton is generally a small fraction of the total particle
light absorption [Chami et al., 2005]. The high Kbio(490) coefficients observed by BGC-Argo floats are, thus,
likely due to high contributions of colored nonalgal particles mainly of mineral nature.

The total nonwater attenuation coefficients at 490 nm also covary with the total particle light backscattering
within the first optical depth (Figure 8; standard errors of linear regression coefficients on log-transformed
data in parentheses):

Kblo 490ð Þ515:99 60:041ð Þ � bbp 700ð Þ0:896 60:014ð Þ n52535; r250:63
� �

(8)

Modifications in the particle light backscattering are first dependent on the total particle amount, second
on the composition and refractive index, and last on the size, shape, and internal structure of the material
[Morel and Bricaud, 1986; Morel and Ahn, 1991; Stramski and Kiefer, 1991; Aas, 1996; Twardowski et al., 2001;
Stramski et al., 2004; Loisel et al., 2007].

The correlation between Kbio(490) and bbp(700) is evident at the highest latitudes (Figures 8b, 8d, 8e, 8h)
and in the Western Mediterranean Sea (Figure 8f), with r2 values ranging between 0.31 and 0.71. In these
regions, the varying contribution of the light backscattering coefficients mainly depends on strong modifi-
cations in particle concentrations observed over time [Antoine et al., 2011; Cetinic�et al., 2012]. The increase
of Kbio(490) with bbp(700) coefficients suggests that, because bbp(700) is a proxy of particulate organic car-
bon [POC; Cetinic�et al., 2012], phytoplankton light absorption is related both to Chl and POC concentra-
tions. Variations in bbp(700) coefficients in these areas also reflect changes in particle-size distribution
[Kheireddine and Antoine, 2014] as well as modifications of the phytoplankton community composition,
toward a taxonomical structure dominated by diatoms [Cetinic�et al., 2015] or highly scattering calcifying
haptophytes [Xing et al., 2014b]. As previously observed, changes in cell size and pigment composition can
modify the phytoplankton absorption coefficients, and eventually the light attenuation, in the blue part of
the light spectrum [Mitchell and Holm-Hansen, 1991; Bricaud et al., 2004].

In the subtropical gyres, the Red and Eastern Mediterranean seas, Kbio(490) coefficients vary over more than
one order of magnitude for a given bbp(700) value and no significant relationships are generally observed
(Figures 8a, 8c, 8g). The weak correlation between Kbio(490) and bbp(700) is likely related to a combination
of different causes. The variability in Kbio(490) coefficients could be first due to the presence of organic, liv-
ing or detrital, particles of various nature (e.g., nonalgal particles, bacteria, heterotrophs) that, despite similar
and low particle concentrations (i.e., small bbp(700) values), absorb different blue light quantities [Bricaud
et al., 2010]. Alternatively, changes in the physiological status of a given phytoplankton community in
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response to light and nutrient availabilities could induce modifications in the phytoplankton pigment con-
tent and in the optical properties of the community [Sosik and Mitchell, 1995; Lazzara et al., 1996; Behrenfeld
and Boss, 2003; Behrenfeld et al., 2005]. This can ultimately modify the attenuation of downward irradiance
in the water column, despite an unchanged total amount of particles (and bbp(700)).

3.5. Global Spatiotemporal Distribution of Anomalies as Inferred From Diffuse Attenuation
Coefficients for Downward Irradiance
The difference between the Kbio(380)/Kbio(490) ratio and the one estimated by the Morel et al. [2007b]’s
model from the chlorophyll a concentration measured by BGC-Argo floats at each station can be used as an
indicator for tracing bio-optical anomalies at the global scale and over time. From the analysis provided by
the BGC-Argo float database, the presence of bio-optical anomalies shows a latitudinal gradient character-
ized by an increase from the Equator toward highest latitudes (Figure 9). This gradient has prominent fea-
tures in winter (Figure 9a) and autumn (Figure 9d) while it is less marked in spring (Figure 9b) and summer
(Figure 9c). Instead, at temperate latitudes, the Mediterranean and Black seas are characterized by bio-
optical anomalies especially during summer (Figure 9c).

As discussed in previous sections, the colored fraction of the dissolved organic material, plus a contribution
<20% of nonalgal particles [Siegel et al., 2002], are the main factors driving these deviations from previously
established bio-optical models [i.e., Morel et al., 2007b]. However, an important aspect emerging from Figure 9

Figure 8. As in Figure 7 but for Kbio(490) as a function of bbp(700) coefficients within the first optical depth. In each plot, the not-least
square fit for the whole BGC-Argo database is shown.
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is that bio-optical anomalies can occur in a given region and time of the year in opposition to the average
regional behavior. For example, high differences between the Kbio(380)/Kbio(490) ratios and those estimated
by the Morel et al. [2007b]’s model are occasionally observed in the South Atlantic subtropical gyre in spring
(Figure 9b) while differences close to 0 are found in the Mediterranean Sea during summer (Figure 9c). Such
occurrences likely cause the large variability around the mean statistical relationships emerging from analyses
above (Figure 6), and reveal particular events and biogeochemical processes that might deserve to be better
addressed.

For example, unexpected low differences between measured and modeled Kbio(380)/Kbio(490) ratios could
be related to changes in phytoplankton blue-absorbing accessory pigment concentrations and composition
as a consequence of environmental stresses [Mitchell et al., 1991; Moisan and Mitchell, 1999] or, alternatively,
be a consequence of the presence of strongly absorbing mineral particles such as desert dusts deposited at
the sea surface [Stramski et al., 2001; Claustre et al., 2002]. On the other side, high unexpected differences
for a given region and time could be related to an increase of the relative contribution of well-colored
organic detrital material as generated by picophytoplankton dominated communities that, thanks to gener-
ally high spectral slope values, have higher relative absorption in the UV than in the visible light [Bricaud
et al., 2010]. Finally, the occurrence of these bio-optical anomalies could also be a consequence of physical
atmospheric and oceanic forcing that could generate high-frequency hydrodynamic variability (e.g., subme-
soscale circulation and deep vertical mixing), locally change the trophic environment and, in turn, modify
the optical response.

4. Summary and Conclusions

The main purpose of this study was to reexamine the regional variability of relationships between CDOM
(together with nonalgal particles) and phytoplankton light absorption properties for the identification of
those regions departing from previously established bio-optical models (i.e., bio-optical anomalies). Thanks
to an extensive in situ database of diffuse attenuation coefficients of downward irradiance in the UV and

Figure 9. Bio-optical anomalies with respect to the mean statistical relationship by Morel et al. [2007b] as derived from the Kbio(380)/Kbio(490) ratios and chlorophyll a concentrations
measured by BGC-Argo floats. Color bars indicate the difference between measured and modeled Kbio(380)/Kbio(490) ratios (dimensionless).
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visible derived from autonomous Biogeochemical Argo floats, sampled regions were grouped into three dif-
ferent groups according to their optical behavior within the first optical depth.

The first group only included the Black Sea, a water body characterized by very high CDOM contents. The
second group was composed by the subtropical gyres in the Atlantic and South Pacific oceans, South Labra-
dor, and Red seas. The optical properties of these latter areas were consistent with previously established
models and no significant deviations were observed (i.e., no bio-optical anomalies). High latitude (Norwe-
gian Sea, North Atlantic and Southern oceans) and temperate (Mediterranean Sea) seas formed the third
group, in which the optical properties departed from the bio-optical model described by Morel et al.
[2007b]. Furthermore, annual climatologies of the Kd(380)/Kd(490) ratios evidenced that the anomaly per-
sisted almost all the year in the Mediterranean Sea, due to higher-than-average CDOM contribution to light
absorption. In the North Atlantic subpolar gyre, it occurred only in wintertime, also due to the high CDOM
content in these waters. In the Southern Ocean, the anomaly was related to high phytoplankton pigment
packaging rather than to CDOM content. Particle light backscattering coefficients revealed the presence of
highly refractive or well-colored organic detrital particles which also contributed to enhanced Kbio(k) values.

Thanks to high-frequency measurements provided by BGC-Argo floats, the presence of single bio-optical
anomalous events with respect to the regional average optical behavior can be also established. These
occasional observations within a given region suggest that most of oceanic areas encounter, though with
different frequency, all types of optical responses. Identification of such occurrences has surely implications
on the application of bio-optical algorithms with in situ or satellite data for regional studies. More specifi-
cally, when an anomaly occurs, biogeochemical and bio-optical quantities might be retrieved with lower
accuracy. More importantly, these occasional bio-optical anomalies may reveal the presence of particular
events (e.g., submesoscale circulation, atmospheric fertilization) that underpin specific biogeochemical
processes and may eventually impact the assessment of oceanic carbon fluxes and their implications on the
Earth’s climate.

The Biogeochemical Argo float network therefore represents an emerging observation system that, thanks
to the several measured variables, helps better constraining the bio-optical behavior of the global ocean
and the link with biogeochemical quantities. Moreover, float-derived variables such as Kd(k) coefficients are,
because of their physical nature (i.e., Ed(k) ratios), robust products with respect to any instrumental drift or
biofouling issues. They could thus be implemented in programs of long-term data acquisition for identifica-
tion of bio-optical anomalies and satellite bio-optical product validation. Biogeochemical Argo floats may
therefore support and complement satellite ocean color measurements in next future, with activities rang-
ing from quality-control and validation to data exploitation and modelling [IOCCG, 2015; Biogeochemical-
Argo Planning Group, 2016 and references therein]. In the future, it could be also envisaged that thanks to
an integrated observation system composed by Biogeochemical Argo optical measurements and geosta-
tionary satellite platforms, regional, and/or occasional bio-optical anomalies could be detected in near real
time and used as proxies for identifying local biogeochemical processes. This could also help understanding
better if the ocean and its optical properties have changed and/or are changing over the decades. Finally,
thanks to the high spatial and temporal coverage, deciphering Biogeochemical Argo optical data can also
allow to define future strategies of float deployment and oceanographic cruises. It will undoubtedly help
reducing the undersampling bias characterizing ship-based observations and increasing the knowledge of
ocean variability. This will represent a relevant contribution to the investigation and setting of regional bio-
optical parameterizations aimed to improving satellite product retrievals in accuracy, as well as to the devel-
opment of new bio-optical ‘‘global’’ standards (i.e., bio-optical relationships) against which we could com-
pare optical and biogeochemical properties in different regions and maybe redefine current optical
classifications of water bodies.

References
Aas, E. (1996), Refractive index of phytoplankton derived from its metabolite composition, J. Plankton Res., 18, 2223–2249.
Agirbas, E., A. M. Feyzioglu, U. Kopuz, and C. A. Llewellyn (2015), Phytoplankton community composition in the south-eastern Black Sea

determined with pigments measured by HPLC-CHEMTAX analyses and microscopy cell counts, J. Mar. Biol. Assoc. U. K., 95, 35–52, doi:
10.1017/S0025315414001040.

Alkire, M. B., E. D’Asaro, C. Lee, M. J. Perry, A. Gray, I. Cetinic�, N. Briggs, E. Rehm, E. Kallin, J. Kaiser, and A. Gonz�alez-Posada (2012), Estimates
of net community production and export using high-resolution, Lagrangian measurements of O2, NO2

3, and POC through the evolution
of a spring diatom bloom in the North Atlantic, Deep Sea Res., Part I, 64, 157–174.

Acknowledgments
We are grateful to the valuable work of
Catherine Schmechtig (Ecce-Terra,
France) for management of data
acquired by the Biogeochemical Argo
floats, Antoine Poteau (Laboratoire
d’Oc�eanographie de Villefranche,
France) for pre and postdeployment
verification and monitoring of float
and sensor performance, and Grigor
Obolensky (Euro-Argo ERIC, France) for
deploying most of Biogeochemical
Argo floats in many different oceanic
areas. We warmly thank Bernard
Gentili (Laboratoire d’Oc�eanographie
de Villefranche, France) for sharing
data used to establish previous bio-
optical relationships. This study was
supported by the following research
projects: remOcean (funded by the
European Research Council, grant
agreement 246777), NAOS (funded by
the Agence Nationale de la Recherche
in the frame of the French
‘‘Equipement d’avenir’’ program, grant
agreement ANR J11R107-F), AtlantOS
(funded by the European Union’s
Horizon 2020 research and innovation
program, grant agreement 2014-
633211), SOCLIM (funded by the
Fondation BNP Paribas), E-AIMS
(funded by the European
Commission’s FP7 project, grant
agreement 312642), U.K. Bio-Argo
(funded by the British Natural
Environment Research Council, grant
agreement NE/L012855/1),
REOPTIMIZE (funded by the European
Union’s Horizon 2020 research and
innovation program, Marie
Skłodowska-Curie grant agreement
706781), Argo-Italy (funded by the
Italian Ministry of Education, University
and Research), and the French Bio-
Argo program (Bio-Argo France;
funded by CNES-TOSCA, LEFE Cyber,
and GMMC). We thank the PIs of
several BGC-Argo floats missions and
projects: Kjell-Arne Mork (Institute of
Marine Research, Norway; E-AIMS);
Violeta Slabakova (Bulgarian Academy
of Sciences, Bulgaria; E-AIMS); Emil
Stanev (University of Oldenburg,
Germany; E-AIMS); Pierre-Marie Poulain
(National Institute of Oceanography
and Experimental Geophysics, Italy;
Argo-Italy); Sabrina Speich (Laboratoire
de M�et�eorologie Dynamique, France;
Bio-Argo France); Virginie Thierry
(Ifremer, France; Bio-Argo France);
Pascal Conan (Observatoire
Oc�eanologique de Banyuls sur mer,
France; Bio-Argo France); Laurent
Coppola (Laboratoire d’Oc�eanographie
de Villefranche, France; Bio-Argo
France); Anne Petrenko
(Mediterranean Institute of
Oceanography, France; Bio-Argo
France); Jean-Baptiste Sall�ee
(Laboratoire d’Oc�eanographie et du
Climat, France; Bio-Argo France); and
Sorin Balan (GeoEcoMar, Romania).

Journal of Geophysical Research: Oceans 10.1002/2016JC012629

ORGANELLI ET AL. WORLD’S OCEAN BIO-OPTICAL ANOMALIES 3561

http://dx.doi.org/10.1017/S0025315414001040


Antoine, D., D. A. Siegel, T. Kostadinov, S. Maritorena, N. B. Nelson, B. Gentili, V. Vellucci, and N. Guillocheau (2011), Variability in optical par-
ticle backscattering in contrasting bio-optical oceanic regimes, Limnol. Oceanogr., 56(3), 955–973.

Antoine, D., M. Babin, J.-F. Berthon, A. Bricaud, B. Gentili, H. Loisel, S. Maritorena, and D. Stramski (2014), Shedding light on the sea: Andr�e
Morel’s legacy to optical oceanography, Annu. Rev. Mar. Sci., 6, 15.1–15.21.

Behrenfeld, M. J., and E. Boss (2003), The beam attenuation to chlorophyll ratio: An optical index of phytoplankton physiology in the sur-
face ocean?, Deep Sea Res., Part I, 50, 1537–1549.

Behrenfeld, M. J., E. Boss, D. A. Siegel, and D. M. Shea (2005), Carbon-based ocean productivity and phytoplankton physiology from space,
Global Biogeochem. Cycles, 19, GB1006, Ifremer, France, doi:10.1029/2004GB002299.

Biogeochemical-Argo Planning Group (2016), The Scientific Rationale, Design and Implementation Plan for a Biogeochemical-Argo Float
Array, edited by K. Johnson and H. Claustre, Ifremer, France, doi:10.13155/46601.

Bosc, E., A. Bricaud, and D. Antoine (2004), Seasonal and interannual variability in algal biomass and primary production in the Mediterra-
nean Sea, as derived from four years of SeaWiFS observations, Global Biogeochem. Cycles, 18, GB1005, doi:10.1029/2003GB002034.

Boss E., and W. S. Pegau (2001), Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,
Appl. Opt., 40(30), 5503–5507.

Bricaud, A., and D. Stramski (1990), Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison
between Peru upwelling area and Sargasso Sea, Limnol. Oceanogr., 35, 562–582.

Bricaud, A., A. Morel, and L. Prieur (1981), Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible
domains, Limnol. Oceanogr., 26(1), 43–53.

Bricaud, A., E. Bosc, and D. Antoine (2002), Algal biomass and sea surface temperature in the Mediterranean Basin: Intercomparison of data
from various satellite sensors, and implications for primary production estimates, Remote Sens. Environ., 81, 163–178.

Bricaud, A., H. Claustre, J. Ras, and K. Oubelkheir (2004), Natural variability of phytoplanktonic absorption in oceanic waters: Influence of
the size structure of algal populations, J. Geophys. Res., 109, C11010, doi:10.1029/2004JC002419.

Bricaud, A., M. Babin, H. Claustre, J. Ras, and F. Tièche (2010), Light absorption properties and absorption budget of Southeast Pacific
waters, J. Geophys. Res., 115, C08009, doi:10.1029/2009JC005517.

Briggs, N., M. J. Perry, I. Cetinic�, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm (2011), High-resolution observations of aggregate flux during a
sub-polar North Atlantic spring bloom, Deep Sea Res., Part I, 58, 1031–1039.

Cauwet, G., G. D�eliat, A. Krastev, G. Shtereva, S. Becquevort, C. Lancelot, A. Momzikoff, A. Saliot, A. Cociasu, and L. Popa (2002), Seasonal
DOC accumulation in the Black Sea: A regional explanation for a general mechanism, Mar. Chem., 79, 193–205.

Cetinic�, I., M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee (2012), Particulate organic carbon and inherent optical properties
during 2008 North Atlantic Bloom Experiment, J. Geophys. Res., 117, C06028, doi:10.1029/2011JC007771.

Cetinic�, I., M. J. Perry, E. D’Asaro, N. Briggs, N. Poulton, M. E. Sieracki, and C. M. Lee (2015), A simple optical index shows spatial and tempo-
ral heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment, Biogeosciences, 12,
2179–2194.

Chami, M., E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev (2005),
Optical properties of the particles in the Crimea coastal waters (Black Sea), J. Geophys. Res., 110, C11020, doi:10.1029/
2005JC003008.

Ciotti, A. M., M. R. Lewis, and J. J. Cullen (2002), Assessment of the relationships between dominant cell size in natural phytoplankton com-
munities and the spectral shape of the absorption coefficient, Limnol. Oceanogr., 47, 404–417.

Claustre, H., and S. Maritorena (2003), The many shades of ocean blue, Science, 302, 1514–1515.
Claustre, H., A. Sciandra, and D. Valuot (2008), Introduction to the special section bio-optical and biogeochemical conditions in the South

East Pacific in late 2004: The BIOSOPE program, Biogeosciences, 5, 679–691.
Claustre, H., A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Qu�eguiner, and S. Maritorena (2002), Is

desert dust making oligotrophic waters greener?, Geophys. Res. Lett., 29(10), 1469, doi:10.1029/2001GL014056.
Cullen, J. J. (1982), The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a, Can. J. Fish. Aquat. Sci., 39, 791–803.
D’Ortenzio, F., and M. Ribera d’Alcal�a (2009), On the trophic regimes of the Mediterranean Sea: A satellite analysis, Biogeosciences, 6, 139–

148.
D’Ortenzio, F., S. Marullo, M. Ragni, M. Ribera d’Alcal�a, and R. Santoleri (2002), Validation of empirical SeaWiFS algorithms for chlorophyll-a

retrieval in the Mediterranean Sea. A case study for oligotrophic seas, Remote Sens. Environ., 82, 79–94.
Ducklow, H. W., D. A. Hansell, and J. A. Morgan (2007), Dissolved organic carbon and nitrogen in the Western Black Sea, Mar. Chem., 105,

140–150.
Falkowski, P. G., and Z. Kolber (1995), Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans, Aust. J. Plant Phys-

iol., 22, 341–355.
Gordon, H. R. (1989), Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?, Limnol. Oceanogr., 34,

1389–1409.
Gordon, H. R., and W. R. McCluney (1975), Estimation of the depth of sunlight penetration in the sea for remote sensing, Appl. Opt., 14,

413–416.
Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark (1988), A semianalytic radiance model of ocean

color, J. Geophys. Res., 93, 10,909–10,924.
Huot, Y., and D. Antoine (2016), Remote sensing reflectance anomalies in the ocean, Remote Sens. Environ., 184, 101–111.
IOCCG (2011), Bio-optical sensors on Argo floats, IOCCG Rep. Ser. 11, 89 pp., Dartmouth, Canada.
IOCCG (2015), Proceedings of the 2015 International Ocean Colour Science Meeting, 45 pp., IOCCG, San Francisco, Calif. [Available at http://

iocs.ioccg.org.]
Johnson, K. S., and H. Claustre (2016), Bringing biogeochemistry into the Argo age, Eos, 97, doi:10.1029/2016EO062427.
Kheireddine, M., and D. Antoine (2014), Diel variability of the beam attenuation and backscattering coefficients in the northwestern Medi-

terranean Sea (BOUSSOLE site), J. Geophys. Res. Oceans, 119, 5465–5482, doi:10.1002/2014JC010007.
Kiefer, D. A. (1973), Fluorescence properties of natural phytoplankton populations, Mar. Biol., 22, 263–269.
Kopelevich, O. V., V. I. Burenkov, and S. V. Sheberstov (2008), Case studies of optical remote sensing in the Barent Sea, Black Sea and

Caspian Sea, in Remote Sensing of the European Seas, edited by V. Barale and M. Gade, pp. 53–66, Springer Science+Business Media BV,
Dordrecht, Netherlands.

Lazzara, L., A. Bricaud, and H. Claustre (1996), Spectral absorption and fluorescence excitation properties of phytoplankton popula-
tions at a mesotrophic and an oligotrophic site in the tropical North Atlantic (EUMELI program), Deep Sea Res., Part I, 43(8),
1215–1240.

Collin Roesler (Bowdoin College, USA)
and Emmanuel Boss (University of
Maine, USA) are acknowledged for
comments and discussion on data
during the analysis. Steven G. Ackleson
(NRL-DC, USA) and an anonymous
reviewer are thanked for the
constructive comments on a previous
version of the manuscript.
Biogeochemical Argo raw data used in
this study are publicly available online
(at ftp://ftp.ifremer.fr/ifremer/argo/dac/
coriolis) and distributed as netCDF
files. The quality-controlled database
of bio-optical products within the first
optical depth that supports
conclusions is publicly available from
SEANOE (SEA scieNtific Open data
Edition) publisher [Organelli et al.,
2016c]. No conflicts of interests are
declared.

Journal of Geophysical Research: Oceans 10.1002/2016JC012629

ORGANELLI ET AL. WORLD’S OCEAN BIO-OPTICAL ANOMALIES 3562

http://dx.doi.org/10.1029/2004GB002299
http://dx.doi.org/10.13155/46601
http://dx.doi.org/10.1029/2003GB002034
http://dx.doi.org/10.1029/2004JC002419
http://dx.doi.org/10.1029/2009JC005517
http://dx.doi.org/10.1029/2011JC007771
http://dx.doi.org/10.1029/2005JC003008
http://dx.doi.org/10.1029/2005JC003008
http://dx.doi.org/10.1029/2001GL014056
http://iocs.ioccg.org
http://iocs.ioccg.org
http://dx.doi.org/10.1029/2016EO062427
http://dx.doi.org/10.1002/2014JC010007
http://ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis
http://ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis


Loisel, H., X. M�eriaux, J.-F. Berthon, and A. Poteau (2007), Investigation of the optical backscattering to scattering ratio of marine particles
in relation to their biogeochemical composition in the eastern English Channel and southern North Sea, Limnol. Oceanogr., 52,
739–752.

Longhurst, A. R. (2007), The Atlantic Ocean, in Ecological Geography of the Sea, 2nd ed., edited by A. R. Longhurst, pp. 131–273, Academic,
Burlington.

Margolin, A. R., L. J. A. Gerringa, D. A. Hansell, and M. J. A. Rijkenberg (2016), Net removal of dissolved organic carbon in the anoxic waters
of the Black Sea, Mar. Chem., 183, 13–24.

Martin, J. H., S. E. Fitzwater, R. M. Gordon, C. N. Hunter, and S. J. Tanner (1993), Iron, primary production and carbon–nitrogen flux studies
during the JGOFS North Atlantic Bloom Experiment, Deep Sea Res., Part II, 40(1–2), 115–134.

Matsuoka, A., V. Hill, Y. Huot, M. Babin, and A. Bricaud (2011), Seasonal variability in the light absorption properties of western Arctic waters:
Parameterization of the individual components of absorption for ocean color applications, J. Geophys. Res., 116, C02007, doi:10.1029/
2009JC005594.

Mitchell, B. G. (1992), Predictive bio-optical relationships for polar oceans and marginal ice zones, J. Mar. Syst., 3, 91–105.
Mitchell, B. G., and O. Holm-Hansen (1991), Bio-optical properties of Antarctic Peninsula waters: Differentiation from temperate ocean

models, Deep Sea Res., Part A, 38, 1009–1028.
Mitchell, B. G., E. A. Brody, O. Holm-Hansen, C. McClain, and J. Bishop (1991), Light limitation of phytoplankton biomass and macronutrient

utilization in the Southern Ocean, Limnol. Oceanogr., 36, 1662–1677.
Moisan, T. A., and B. G. Mitchell (1999), Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation, Limnol. Oce-

anogr., 44(2), 247–258.
Morel, A. (1988), Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters), J. Geophys. Res., 93,

10,749–10,768.
Morel, A., and Y.-H. Ahn (1991), Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oce-

anic waters compared to those of bacterial and algal cells, J. Mar. Res., 49, 177–202.
Morel, A., and A. Bricaud (1981), Theoretical results concerning light absorption in a discrete medium, and application to specific absorp-

tion of phytoplankton, Deep Sea Res., Part A, 28, 1375–1393.
Morel, A., and A. Bricaud (1986), Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results, Can.

Bull. Fish. Aquat. Sci., 214, 521–559.
Morel, A., and B. Gentili (2009a), A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean

color remotely sensed data, Remote Sens. Environ., 113, 998–1011.
Morel, A., and B. Gentili (2009b), The dissolved yellow substance and the shades of blue in the Mediterranean Sea, Biogeosciences, 6,

2625–2636.
Morel, A., and H. Loisel (1998), Apparent optical properties of oceanic waters: Dependence on the molecular scattering contribution, Appl.

Opt., 37, 4765–4776.
Morel, A., and S. Maritorena (2001), Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res., 106, 7163–7180.
Morel, A., and L. Prieur (1977), Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709–722.
Morel, A., H. Claustre, D. Antoine, and B. Gentili (2007a), Natural variability of bio-optical properties in Case 1 waters: Attenuation and reflec-

tance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters, Biogeosciences, 4, 913–925.
Morel, A., Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz (2007b), Examining the consistency of products derived from various

ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach, Remote Sens. Environ., 111, 69–88.
Mueller, J. L., et al. (2003), Radiometric measurements and Data Analysis Protocols, in Ocean Optics Protocols for Satellite Ocean Color Sensor

Validation, Rev. 4 vol. 3, NASA Tech. Mem. 2003–21621, edited by J. L. Mueller, G. S. Fargion, and C. R. McClain, NASA Goddard Space
Flight Cent., Greenbelt, Md.

Nelson, N. B., and J. M. Gauglitz (2016), Optical signatures of dissolved organic matter transformation in the global ocean, Front. Mar. Sci., 2,
118, doi:10.3389/fmars.2015.00118.

Nelson, N. B., D. A. Siegel, C. A. Carlson, and C. M. Swan (2010), Tracing global biogeochemical cycles and meridional overturning circula-
tion using chromophoric dissolved organic matter, Geophys. Res. Lett., 37, L03610, doi:10.1029/2009GL042325.

Nelson, N. B., D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie Jr., and S. Khatiwala (2007), Hydrography of chromophoric dissolved
organic matter in the North Atlantic, Deep Sea Res., Part I, 54, 710–731.

Organelli, E., A. Bricaud, D. Antoine, and A. Matsuoka (2014), Seasonal dynamics of light absorption by Chromophoric Dissolved Organic
Matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site), Deep Sea Res., Part I, 91, 72–85, doi: 10.1016/j.dsr.2014.05.003.

Organelli, E., A. Bricaud, B. Gentili, D. Antoine, and V. Vellucci (2016a), Retrieval of Colored Detrital Matter (CDM) light absorption coeffi-
cients in the Mediterranean Sea using field and satellite ocean color radiometry: Evaluation of bio-optical inversion models, Remote
Sens. Environ., 186, 297–310, doi:10.1016/j.rse.2016.08.028.

Organelli, E., H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci (2016b), A novel
near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: Protocols and performances, J. Atmos.
Oceanic Technol., 33, 937–951, doi:10.1175/JTECH-D-15-0193.1.

Organelli, E., M. Barbieux, H. Claustre, C. Schmechtig, A. Poteau, A. Bricaud, J. Uitz, F. D’Ortenzio, and G. Dall’Olmo (2016c), A global bio-
optical database derived from Biogeochemical Argo float measurements within the layer of interest for field and remote ocean color
applications, SEANOE, France. [Available at http://doi.org/10.17882/47142, accessed 14 Dec.]

P�erez, G. L., M. Gal�ı, S.-J. Royer, H. Sarmento, J. M. Gasol, C. Marras�e, and R. Sim�o (2016), Bio-optical characterization of offshore NW Mediter-
ranean waters: CDOM contribution to the absorption budget and diffuse attenuation of downwelling irradiance, Deep Sea Res., Part I,
114, 111–127.

Prieur, L., and S. Sathyendranath (1981), An optical classification of coastal and oceanic waters based on the specific spectral absorption
curves of phytoplankton pigments, dissolved organic matter, and other particulate materials, Limnol. Oceanogr., 26(4), 671–689.

Proctor, C. W., and C. S. Roesler (2010), New insights on obtaining phytoplankton concentration and composition from in situ multispectral
Chlorophyll fluorescence, Limnol. Oceanogr. Methods, 8, 695–708.

Roesler, C. S., and A. H. Barnard (2013), Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the
absorption line height, Methods Oceanogr., 7, 79–84.

Roesler, C. S., et al. (2017), Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global
analysis of WET Labs ECO sensors, Limnol. Oceanogr. Methods, doi:10.1002/lom3.10185.

Sathyendranath, S., L. Lazzara, and L. Prieur (1987), Variations in the spectral values of specific absorption of phytoplankton, Limnol. Ocean-
ogr., 32, 403–415.

Journal of Geophysical Research: Oceans 10.1002/2016JC012629

ORGANELLI ET AL. WORLD’S OCEAN BIO-OPTICAL ANOMALIES 3563

http://dx.doi.org/10.1029/2009JC005594
http://dx.doi.org/10.1029/2009JC005594
http://dx.doi.org/10.3389/fmars.2015.00118
http://dx.doi.org/10.1029/2009GL042325
http://dx.doi.org/10.1016/j.dsr.2014.05.003
http://dx.doi.org/10.1016/j.rse.2016.08.028
http://dx.doi.org/10.1175/JTECH-D-15-0193.1
http://doi.org/10.17882/47142
http://dx.doi.org/10.1002/lom3.10185


SATLANTIC (2013), Operation manual for the OCR-504, SATLANTIC Operation Manual SAT-DN-00034, Rev. G, 66 pp., Halifax, Nova Scotia,
Canada.

Schmechtig, C., H. Claustre, A. Poteau, and F. D’Ortenzio (2014), Bio-Argo Quality Control Manual for the Chlorophyll-A Concentration, Ifremer,
France. [Available at http://doi.org/10.13155/35385.]

Schmechtig, C., A. Poteau, H. Claustre, F. D’Ortenzio, G. Dall’Olmo, and E. Boss (2016), Processing Bio-Argo Particle Backscattering at the DAC
Level, Ifremer, France. [Available at https://doi.org/10.13155/39459.]

Siegel, D. A., S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser (2002), Global distribution and dynamics of colored dissolved
and detrital organic materials, J. Geophys. Res., 107(C12), 3228, doi:10.1029/2011JC000965.

Sosik, H. M., and B. G. Mitchell (1995), Light absorption by phytoplankton, photosynthetic pigments and detritus in the California Current
System, Deep Sea Res., Part I, 42,1717–1748.

Sosik, H. M., and R. J. Olson (2002), Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late
summer, Deep Sea Res., Part I, 49, 1195–1216.

Stedmon, C. A., and N. B. Nelson (2015), The optical properties of DOM in the ocean, in Biogeochemistry of Marine Dissolved Organic Matter,
2nd ed., edited by D. A. Hansell and C. A. Carlson, pp. 481–508, Academic, San Diego, Calif.

Stramski, D., and D. A. Kiefer (1991), Light scattering by microorganisms in the open ocean, Prog. Oceanogr., 28, 343–383.
Stramski, D., Bricaud, A., and A. Morel (2001), Modeling the inherent optical properties of the ocean based on the detailed composition of

the planktonic community, Appl. Opt., 40, 2929–2945.
Stramski, D., E. Boss, D. Bogucki, and K. J. Voss (2004), The role of seawater constituents in light backscattering in the ocean, Prog. Ocean-

ogr., 61, 27–56.
Suetin, V. S., V. V. Suslin, S. N. Korolev, and A. A. Kucheryavyi (2002), Analysis of variability of the optical properties of water in the Black Sea

in summer 1998 according to the data of a SeaWiFS satellite instrument, Phys. Oceanogr., 12, 331–340, doi:10.1023/A:1021729229168.
Sullivan, J. M., M. A. Twardowski, J. R. V. Zaneveld, and C. C. Moore (2013), Measuring optical backscattering in water, Light Scatt. Rev., 7,

189–224.
Szeto, M., P. J. Werdell, T. S. Moore, and J. W. Campbell (2011), Are the world’s oceans optically different?, J. Geophys. Res., 116, C00H04, doi:

10.1029/2011JC007230.
Tukey, J. W. (1958), Bias and confidence in no-quiet large samples, Ann. Math. Stat., 29, 614–623.
Twardowski, M. S., E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld (2001), A model for estimating bulk refractive

index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,
J. Geophys. Res., 106, 14,129–14,142.

Uitz, J., H. Claustre, F. B. Griffiths, J. Ras, N. Garcia, and V. Sandroni (2009), A phytoplankton class-specific primary production model applied
to the Kerguelen Islands region (Southern Ocean), Deep Sea Res., Part I, 56, 541–560.

Valente, A., et al. (2016), A compilation of global bio-optical in situ data for ocean-colour satellite applications, Earth Syst. Sci. Data, 8,
235–252, doi:10.5194/essd-8-235-2016.

Vidussi, F., H. Claustre, B. Manca, A. Luchetta, and J.-C. Marty (2001), Phytoplankton pigment distribution in relation to the upper thermo-
cline circulation in the Eastern Mediterranean Sea during winter, J. Geophys. Res., 106, 19,939–19,956.

WETLabs (2016), ECO Fluorometers and Scattering Sensors, User manual eco160114, Edition B, 34 pp., Philomath, Oreg.
Wright, S. W., R. L. van den Enden, I. Pearce, A. T. Davidson, F. J. Scott, and K. J. Westwood (2010), Phytoplankton community structure and

stocks in the Southern Ocean (30-808E) determined by CHEMTAX analysis of HPLC pigment signatures, Deep Sea Res., Part II, 57,
758–778.

Xing, X., H. Claustre, S. Blain, F. D’Ortenzio, D. Antoine, J. Ras, and C. Guinet (2012), Quenching correction for in vivo chlorophyll fluores-
cence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),
Limnol. Oceanogr. Methods, 10, 483–495.

Xing, X., H. Claustre, J. Uitz, A. Mignot, A. Poteau, and H. Wang (2014b), Seasonal variations of bio-optical properties and their interrelation-
ships observed by Bio-Argo floats in the subpolar North Atlantic, J. Geophys. Res. Oceans, 119, 7372–7388, doi:10.1002/2014JC010189.

Xing, X., H. Claustre, H. Wang, A. Poteau, and F. D’Ortenzio (2014a), Seasonal dynamics in colored dissolved organic matter in the Mediter-
ranean Sea: Patterns and drivers, Deep Sea Res., Part I, 83, 93–101.

Xing, X., H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. D’Ortenzio (2017), Correction of profiles of in-situ chloro-
phyll fluorometry for the contribution of fluorescence originating from non-algal matter, Limnol. Oceanogr. Methods, 15, 80–93, doi:
10.1002/lom3.10144.

Zaneveld, R., E. Boss, and A. Barnard (2001), Influence of surface waves on measured and modeled irradiance profiles, Appl. Opt., 40,
1442–1449, doi:10.1364/AO.40.001442.

Zhang, X., L. Hu, and M. -X. He (2009), Scattering by pure seawater: Effect of salinity, Opt. Express, 17, 5698–5710.
Zibordi, G., F. M�elin, J.-F. Berthon, and E. Canuti (2013), Assessment of MERIS ocean color data products for European seas, Ocean Sci., 9,

521–533, doi:10.5194/os-9-521-2013.

Journal of Geophysical Research: Oceans 10.1002/2016JC012629

ORGANELLI ET AL. WORLD’S OCEAN BIO-OPTICAL ANOMALIES 3564

http://doi.org/10.13155/35385
https://doi.org/10.13155/39459
http://dx.doi.org/10.1029/2011JC000965
http://dx.doi.org/10.1023/A:1021729229168
http://dx.doi.org/10.1029/2011JC007230
http://dx.doi.org/10.5194/essd-8-235-2016
http://dx.doi.org/10.1002/2014JC010189
http://dx.doi.org/10.1002/lom3.10144
http://dx.doi.org/10.1364/AO.40.001442
http://dx.doi.org/10.5194/os-9-521-2013

	l
	l
	l
	l
	l

