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Abstract We analyse the regional variability in observed sea surface height (SSH), sea

surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative

datasets over the period 1993–2011. The analysis focuses on the signature of the ocean

large-scale climate fluctuations driven by the atmospheric forcing and do not address the

mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of

ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability.

We show that the SSH regional variability is dominated by the steric effect (except at high

latitude) and is mainly shaped by ocean heat transport divergences with some contributions

from the surface heat fluxes forcing that can be significant regionally (confirming earlier

results). This is in contrast with the SST regional variability, which is the result of the

compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises

from small departures around this background balance. Bringing together the results of

SSH and SST analyses, we show that SSH and SST bear some common variability. This is

because both SSH and SST variability show significant contributions from the surface heat

fluxes forcing. It is evidenced by the high correlation between SST and buoyancy-forced

SSH almost everywhere in the ocean except at high latitude. OC, which is determined by

phytoplankton biomass, is governed by the availability of light and nutrients that essen-

tially depend on climate fluctuations. For this reason, OC shows significant correlation with
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SST and SSH. We show that the correlation with SST displays the same pattern as the

correlation with SSH with a negative correlation in the tropics and subtropics and a

positive correlation at high latitude. We discuss the reasons for this pattern.

Keywords Sea level � Sea surface temperature � Ocean colour � Ocean heat content �
Climate � ESA Climate Change Initiative � Wind forcing � Buoyancy forcing � ECCO

reanalysis

1 Introduction

Oceans have been routinely monitored from space for more than 30 years now. In 1978,

NASA launched Seasat, TIROS-N and Nimbus-7, the first three satellites dedicated to

ocean observations. Seasat carried five complementary sensors and provided the first

estimates from space of sea surface height (SSH), surface wind stress, sea surface tem-

perature (SST), surface wave field and polar ice extent. Unfortunately, these estimates

covered only a short period because Seasat failed after 105 days in space. TIROS-N lasted

more than 2 years in orbit and produced the first really useful maps of SST. The Nimbus-7

carried the Coastal Zone Colour Scanner (CZCS), which remained operational for seven

and a half years, from October 1978 until June 1986. CZCS was the first satellite sensor

specifically developed to study ocean colour properties. Since then, about a dozen ocean-

observing satellite missions have been launched by several space agencies to monitor

continuously more than 10 essential ocean variables including SSH, ocean currents, tides,

wave height (with radar altimeters), wind speed and direction (with microwave scat-

terometers), SST (with infrared and microwave radiometers), sea surface salinity (with

microwave imaging radiometers with aperture synthesis), ocean colour (with multispectral

imagers) and ocean bottom pressure (with space gravimetry).

In[30 years of measurements, satellite missions have revolutionized our understanding

of the oceans. By providing a global mapping repeated with high temporal resolution, they

have revealed the intense spatio-temporal variability, which characterizes the cycles of the

oceans. This new picture challenged earlier views based on previous sparse measurements

collected from ships and buoys. It spurred oceanographers to make considerable progress

in the understanding of the role of the ocean in the physical (e.g., climate and weather),

chemical (e.g., carbon cycle) and biological (e.g., primary production) processes of the

Earth.

In this paper, we are interested in the role played by the ocean in the climate system. We

revisit the 30-year-long satellite record of ocean observations and summarize what we have

learned from it about the ocean variability at climatic timescales (i.e. interannual to

multidecadal timescales). We take advantage of the satellite archive, which gives an almost

global view of the oceans, to explore the regional ocean variability.

Among all ocean variables remotely sensed from space, SSH, SST and ocean colour

(OC) have long enough continuous records (*20 years or longer) to address the inter-

annual to multidecadal variability in the ocean. For this reason, we focus on these three

variables. We also analyse the hydrographic data (temperature and salinity) obtained from

in situ measurements because these data are covering a large part of the ocean since the

1970s (Rhein et al. 2013; Abraham et al. 2013) and provide highly valuable information to

interpret the signal showed by the other variables. Our objectives are to (1) describe the

Surv Geophys

123



dominant spatio-temporal patterns of nonseasonal SSH, SST and OC variability, (2) dis-

cuss the current state of knowledge regarding the physical mechanisms responsible for

these patterns and (3) explain the covariance at climatic timescales between these spatio-

temporal patterns. The outline of the paper is as follows: Sect. 2 recalls the physical

background governing the SSH, SST and OC variability and explains how this variability

is linked to the atmospheric forcing and the ocean circulation. Section 3 shows the spatio-

temporal patterns of SSH, SST and OC obtained from the satellite archive and uses the

outputs of an ocean reanalysis to unravel the role of the atmospheric forcing and the ocean

circulation in these patterns. In Sect. 3, we also take the opportunity to show how the

patterns in SSH, SST and OC relate to each other and we discuss to what extent the

information in SSH, SST and OC provided by satellites enables us to monitor the mech-

anisms responsible for the ocean variability at climatic timescales. Section 4 summarizes

the paper, reviews the future issues and draws some conclusions.

2 Physical Background

2.1 SSH Variations Deduced from the Pressure Budget of the Water Column

SSHs indicate the level of the top of ocean water columns relative to a defined reference,

which is constant with time; we use in general the mean sea surface as a reference. SSH

variations indicate variations in the volume of water columns and are governed by two

processes: the changes in mass and the changes in density of those water columns. Both

processes can be tracked through vertical pressure changes in the pressure budget.

Mathematically, the pressure budget under the hydrostatic and Boussinesq approximations

can be written as follows (Gill and Niller 1973):

g ¼ 1

q0g
pb � pað Þ þ gst ð1Þ

where g is the SSH, pa is the sea surface atmospheric pressure, pb is the ocean bottom

pressure, q0 is a constant density, g is the acceleration due to gravity and gst is the steric sea

level. gst is given by gst ¼ 1
q0

r
0

�H

qdz in which H is the ocean bottom depth and q the water

density deviation from q0.

The pressure budget breaks down SSH into three signals: (1) a signal which depends on

the atmospheric pressure (i.e. the inverted barometer response, Wunsch and Stammer

1997), (2) a signal which depends on bottom pressure and gravity and (3) a signal which

depends on the water density along the water column. The first signal is isostatic (i.e.

dynamically irrelevant) on climate timescales and thus will not be analysed here. The

second signal represents the mass component in sea level. It arises essentially from changes

in bottom pressure caused by the water mass redistribution by the ocean circulation in

response to the atmospheric forcing. This signal is the dominant component in sea level

changes at high frequencies (for periods\1 months, Forget and Ponte 2015). It is much

smaller at interannual and higher timescales, but it remains sizeable in particular at high

latitudes (see Sect. 3). The mass signal in sea level can arise also from changes in the

gravity field of the Earth (i.e. changes in local g). These changes can be due to ongoing ice

loss in ice sheets, for example, or to the current solid earth response to ice loss in ice sheets

that occurred during the last deglaciation (Tamiseia 2011). However, this component in sea
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level change is significant only at timescales longer than multidecadal timescales and will

not be considered here. The third sea level signal in the pressure budget represents the

steric component in sea level. This signal arises from changes in the sea water density due

to changes in the water column temperature (thermosteric sea level) or salinity (halosteric

sea level). These changes in temperature and salinity are caused by buoyancy forcing at the

surface or redistribution of heat and freshwater within the ocean by the ocean circulation in

response to the atmospheric forcing. The redistribution of heat and freshwater can occur

through advection or diffusion (including diapycnal, isopycnal and convective mixing)

such that steric sea level can be written as follows:

gst ¼ gT þ gS ¼ ga
T þ gd

T þ gBF
T þ ga

S þ gd
S þ gBF

S ð2Þ

where subscripts T and S refer to thermosteric and halosteric sea level and a, d and BF

refer to advection, diffusion and buoyancy forcing (a more detailed explanation of the gst

budget can be found in Piecuch and Ponte 2011). Thermosteric effects (gTÞ dominate steric

sea level variability over most of the ocean (see Sect. 3; Köhl 2014; Forget and Ponte

2015). At interannual and longer timescales, heat advection in the oceans (ga
TÞ plays the

leading role in thermosteric sea level variability nearly everywhere, suggesting that the

heat redistribution in the ocean is nearly adiabatic. However, in many locations at all

latitudes, the air-sea heat flux (gBF
T ) role is sizeable and can reach the same order of

magnitude as the advection term. This is unlike the heat diffusion term which is negligible

almost everywhere (except locally in the Arctic and along the margin of Antarctica close to

deep water formation regions, Forget and Ponte 2015) and thus will be neglected here.

The interannual and longer time-scale variability in steric sea level is predominantly the

result of internal reorganization of water masses in the ocean forced by anomalies in

surface wind stress (Stammer et al. 2013). When this contribution is removed, the

remaining variability is explained by buoyancy forcing anomalies (i.e. surface heat and

freshwater exchanges) and the intrinsic oceanic variability spontaneously generated by the

ocean circulation under the repeated seasonal atmospheric forcing (Penduff et al. 2011;

Sérazin et al. 2015). It is essentially surface heat fluxes anomalies, which explain most of

this residual variability (see Sect. 3). The surface heat fluxes can be written as follows:

gBF
T � e

Qnet

qmlCp

¼ e
Qsh þ Qlh þ Qsw þ Qlw

qmlCp

ð3Þ

where e is the thermal expansion coefficient, qml is the density of the upper ocean mixed

layer and Cp is its heat capacity. Surface heat fluxes are caused by the turbulent energy

fluxes (sum of the sensible heat flux—Qsh—and latent heat flux—Qlh–), which are broadly

proportional to the wind speed, the air-sea temperature and humidity differences. Radiative

fluxes (sum of the downward solar radiative flux—Qsw—and the longwave radiative flux—

Qlw—) are functions of air temperature, humidity and cloudiness.

2.2 SST Variations Deduced from the Heat Budget of the Upper Ocean Mixed
Layer

SST from space closely reflects upper ocean mixed layer temperatures, being within 0.2 �C
of upper ocean mixed layer temperatures, other than where dynamic processes drive near-

surface temperature gradients (Grodsky et al. 2008). It is governed by the processes reg-

ulating the exchange of energy at the sea surface and at the bottom of the mixed layer.
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These processes are both atmospheric (wind stress and buoyancy fluxes) and oceanic (heat

transport by currents, vertical mixing and boundary layer depth influence). Mathematically,

the heat budget can be written as follows (Deser et al. 2010).

oT

ot
¼ Qnet;ml

qCph
þ Ugeo

��!þ Uek
�!� �

� r~T þWe �Wek

h
� T � Tbð Þ ð4Þ

where T is the SST, h is the mixed layer depth, Ugeo
��!

is the geostrophic current velocity, Uek
�!

is the Ekman current velocity, We is the vertical entrainment rate, Wek is the Ekman

pumping velocity and Tb is the temperature at depth that is entrained in the mixed layer.

Ekman and geostrophic currents contribute to the heat budget of the mixed layer through

horizontal advection, while entrainment velocity and Ekman pumping change the SST

through vertical advection. Qnet;ml is the net surface energy flux which enters the mixed

layer. It is the sum of the turbulent energy fluxes, the component of downward solar

radiative flux, which is absorbed within the mixed layer and the longwave radiative flux. In

general, Qnet;ml � Qnet and both terms depend on the same variables: wind speed, air-sea

temperature and humidity difference, cloudiness. However, in regions of clear water and

shallow mixed layer, they can be different because a non-negligible portion of the

downward solar radiative flux penetrates below the mixed layer (see Sect. 3).

Thus, both SSH (through the steric sea level gstÞ and SST have a dependence on the

surface heat fluxes Qnet

qmlCp
. This common dependence is expected to give rise to correlated

variability at interannual and longer timescales, in particular in response to the atmospheric

forcing. In contrast, SST has a different dependency on ocean circulation from SSH: SST

depends on the circulation of the upper mixed layer, while SSH depends on the circulation

of the ocean from the surface down to the bottom (see, for example, Fig. 1d in Piecuch and

Ponte 2011). This will result in different responses of the SST and SSH to the oceanic

circulation and variability at interannual and longer timescales that are not correlated. In

Sect. 3, we will explore with the use of an ocean reanalysis the complex relation which

exists between SSH and SST variability through their common response to surface heat

fluxes.

2.3 Bio-Optics of Ocean Colour

In the global ocean, phytoplankton biomass is essentially governed by the availability of

light and nutrients (locally temperature and concentration of predators, i.e. zooplankton,

also can play a role). A common approach to estimate phytoplankton biomass is to measure

the concentration of chlorophyll (the main pigment in phytoplankton cells), because of the

central role this pigment plays in photosynthesis, because it is produced uniquely by plants,

and because it is easily measured, and can be estimated from satellite ocean colour

observations.

Phytoplankton cells are viable in the upper layer of the ocean, where sufficient light

is available and where recycled nutrients are available, and additional nutrients can be

brought up from the deep oceans through upwelling, wind mixing, advection and other

physical processes. The solar irradiance penetrating the ocean will be attenuated with

depth due to the optical properties of pure seawater itself, and also due to the presence

of particles, in particular phytoplankton cells and the chlorophyll pigment they contain.

Ocean colour is determined by the spectral variance of reflectance, defined as the ratio

of upwelling irradiance (radiant flux per unit surface area, W m-2) at the surface of the

ocean to the downwelling irradiance at the same depth. In satellite applications, it is also
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customary to use the term remote-sensing reflectance for the ratio of upwelling radiance

(radiant flux per unit surface area and unit steradian, W m-2 str-1) to downwelling irra-

diance at the surface. Both irradiance reflectance and remote-sensing reflectance, which

vary with the wavelength of light considered, are functions of absorption (a) and back-

scattering (bb) coefficients of light, which in turn, are affected by the absorption and back-

scattering properties of phytoplankton, which vary with the concentration of phytoplankton

in the water, and also with the type of phytoplankton present. Though other substances,

such as detritus and coloured dissolved organic material contribute to the variability in

ocean colour, it is often assumed, as a first approximation, that phytoplankton may be

treated as the single, independent variable that determines ocean colour in the open ocean.

Remote-sensing reflectance at wavelength k can be written as:

Rrs kð Þ ¼ f a kð Þ; bb kð Þð Þ ð5Þ

where f is a function that increases with back-scattering bb and decreases with absorption

a. The function f also incorporates the effect of the angular structure in the light field on

Rrs. As noted earlier, the absorption and back-scattering coefficients are both functions of

the concentration of phytoplankton in the water, typically measured as the biomass B in

chlorophyll units:

a kð Þ ¼ aw kð Þ þ aB kð Þ þ aY kð Þ þ aX kð Þ ð6Þ

and

bb kð Þ ¼ bbw kð Þ þ bbB kð Þ þ bbX kð Þ ð7Þ

where the subscripts w, B, Y and X stand for pure seawater, chlorophyll concentration,

concentration of coloured dissolved organic matter (sometimes called yellow substance)

and particles in suspension other than phytoplankton, respectively. In the visible domain of

the electromagnetic spectrum, reflectance is a small part of the solar flux that reaches just

below the surface, of the order of 5 %. The rest penetrates into the ocean. The same optical

properties that determine reflectance at the sea surface also dictate the rate of light pen-

etration into the ocean. Inside the water column, the decrease in irradiance level with depth

can be described using an exponential function as

I z; kð Þ ¼ I0 kð Þe�K kð Þz ð8Þ

where I z; kð Þ is irradiance at depth z and wavelength k, I0 kð Þ is incident irradiance (just

below the surface) and K kð Þ is the diffuse vertical attenuation coefficient in m-1 (Kirk

1994). The attenuation coefficient can be expressed as

K kð Þ ¼ g a kð Þ; bb kð Þð Þ ð9Þ

where g is an increasing function of both a and bb.

Because K increases with chlorophyll, phytoplankton-rich waters display a high

attenuation coefficient, and the irradiance will not penetrate as deep as in low chlorophyll

waters. The photic depth (defined as the depth at which irradiance reaches 1 % of I0) is

deeper in clear waters and shallower in waters characterized by a high chlorophyll biomass

(e.g., Edwards et al. 2001).

The energy absorbed at a particular depth yields a local temperature increase with time t

given by (e.g., Lewis et al. 1983)
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oT

ot
¼ 1

q0cp

oI

oz
ð10Þ

where T zð Þ is the temperature change (in �K) of the water due to the heating, cp is the

specific heat capacity (in J kg-1 K-1) and q0 is the density of the water (kg m-3). This

equation does not account for the decrease in downwelling light with depth due to back-

scattering at depth z (which does not contribute to local heating), or for heat gains by

attenuation of upwelling irradiance at that depth (Edwards et al. 2001; Zaneveld et al.

1981).

Since I tends to zero below the photic depth, the heating will be confined to a layer

near the surface in chlorophyll-rich waters whereas, in low chlorophyll waters, the heat

energy will penetrate farther down the water column. In other words, in an oceanic

region where surface chlorophyll concentration is high, the upper ocean layer will be

warmer (and the deeper layer will be cooler) compared with a region where chlorophyll

is absent (e.g., Sathyendranath et al. 1991; Edwards et al. 2001; Wu et al. 2007; Zhai

et al. 2011).

These considerations highlight the relationship between SST and ocean colour: the

optical properties have a modulating influence on the distribution of solar heating with

depth, and hence on SST. Within the mixed layer, it would be reasonable to assume that the

chlorophyll concentration would be uniform and equal to the value at the surface deter-

mined from ocean colour remote sensing. Where the photic depth is significantly deeper

than the mixed layer, the vertical structure in chlorophyll concentration would have to be

taken into account (Lewis et al. 1983).

3 Spatio-Temporal Patterns in SSH, SST and OC and Their Relation

In this section, we analyse the spatio-temporal patterns of SSH, SST and OC obtained

from the satellite archive. To estimate these patterns, we use the ESA Climate Change

Initiative (CCI) project datasets because they have been developed to be the most

homogeneous and stable satellite records at interannual to decadal timescales as possible

(Ablain et al. 2015; Merchant et al. 2014; Sathyendranath et al. 2016). Among SSH, SST

and OC-CCI records, the SSH and SST records cover the same period: 1993–2014. In

the following, we focus our analysis on this period 1993–2014 because it is the longest

period covered by the CCI datasets. In addition to satellite datasets, we use an update of

the analysis of ocean subsurface temperature and salinity by Ishii and Kimoto (2009) to

estimate the steric effect in SSH variability. This analysis is based on temperature and

salinity data from the World Ocean Database and Atlas, the Global Temperature-Salinity

in the tropical Pacific from IRD (l’Institut de Recherche pour le Development, France)

the Centennial in situ Observation-Based Estimates sea surface temperature and Argo

profiling floats data. This in situ measurements record has become almost global since

2006 for the upper 2000 m (Argo array). Before 2006, the historical in situ measure-

ments are sparse (time, space and depth), and they are sparser for salinity than for

temperature profiles. In particular, a large fraction of the deep/abyssal ocean (below

700 m depth before 2006 and below 2000 m depth after 2006) still lacks in in situ

measurements. We also make use of an ocean reanalysis to unravel the role of the

atmospheric forcing and the ocean circulation in the patterns of SSH, SST and OC. The

reanalysis used here is the ECCO (Estimating the Circulation and Climate of the

Ocean)—Production version 4 Release 1 solution (Forget et al. 2015; Forget and Ponte
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2015), hereafter referred to simply as ECCO. This product represents a model solution

that has been constrained to observations (e.g., satellite altimetry, Argo floats and his-

torical hydrography) based on the method of Lagrange multipliers. The optimization is

achieved by making iterative adjustments to the initial conditions, boundary conditions

and internal model parameters (consult Wunsch and Heimbach 2007, for more details on

the general procedure). This solution covers the period 1992–2011. The ocean model

setup is global, including the Arctic, and is fully coupled to an interactive sea ice and

snow model. The spatial grid has a nominal 1-degree horizontal resolution, telescoping to

1/3-degree in the tropics and effectively 40 km in the Arctic, and uses 50 vertical levels.

Initial-guess bulk-formula surface forcing is taken from the Interim European Centre for

Medium-Range Weather Forecasts Reanalysis (ERA-Interim) of Dee et al. (2011) and

iteratively adjusted as outlined above. The model also uses parameterization schemes to

incorporate the effects of geostrophic eddies, vertical mixing and salt plumes (see Forget

et al. 2015, for more details on this solution). We have chosen ECCO v4 because it has

been shown to fit well to observations of SSH (Forget and Ponte 2015), in situ tem-

perature and salinity (Forget et al. 2015), SST (Buckley et al. 2014) as well as other

ocean circulation and climate variables (e.g., Piecuch et al. 2015).

In this paper, we focus on the climate fluctuations of the ocean and we analyse their

signature on the SSH, SST and OC variables. In several regions, such as western

boundary current regions, individual meso-scale eddies can generate substantial vari-

ability in ocean variables and mask the underlying climate fluctuations. To remove this

noise from eddies, we perform a spatio-temporal smoothing on the SST and SSH data

(see Sect. 3.3.2 for OC analysis) which filters out the smaller spatial scales and the

shorter timescales consistently in observations and model. The spatio-temporal

smoothing consists in applying first a 30-day boxcar window and then a spatial

Gaussian filter which removes the variability on scales smaller than 3�. As in Forget

and Ponte (2015), we have chosen 30 days for the temporal smoothing scale because it

corresponds to the longest repeat cycle among observation datasets, and thus it enables

us to get full maps of each observation dataset before performing the spatial smoothing.

For the spatial smoothing scale, we have chosen 3� because it enables us to separate

properly the ocean mesoscale, which relates to the baroclinic Rossby radius of defor-

mation that is of the order of hundreds of km, from the ocean large-scale climate

fluctuations driven by the atmospheric forcing, which are of the order of thousands of

km (Forget and Ponte 2015).

In the following sections, the spatio-temporal patterns of SSH, SST and OC at inter-

annual and decadal timescales are analysed in terms of standard deviation and trend of the

time series. For SSH and SST data, the linear trend over 1993–2011 is estimated simul-

taneously with the seasonal cycle from monthly time series. After removing the trend and

the seasonal cycle, we apply a 13-month Hanning window to remove remaining

intraseasonal signals and then we estimate the standard deviation of the residual time

series. For OC data, the linear trend over 1998–2010 is estimated based on monthly

chlorophyll anomalies

3.1 Sea Level and How it Relates to Ocean Mass, Temperature and Salinity

3.1.1 Regional Variations

SSH observations from the CCI sea level dataset show considerable interannual variability

(Fig. 1a). This variability is maximum within the tropics. Temperature and salinity
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observations have a very sparse coverage in the Arctic and do not allow evaluation of the

steric effect in this region. But, for the rest of the ocean, they show that most of the

interannual variability in sea level is dominated by the interannual variability in steric sea

level (Fig. 1b). This result is confirmed by independent data from space gravimetry over

the period 2004–2014. Indeed, the Gravity Recovery and Climate Experiment (GRACE)

mission, which measures the time varying gravity field of the Earth, provides continuous

estimates of the ocean bottom pressure since 2004. These estimates confirm that ocean

bottom pressure interannual variability is smaller than the steric variability by an order of

magnitude except at high latitudes and in shallow shelf seas ([60�N and\55�S, Piecuch

et al. 2013; Ponte and Piecuch 2014).

At mid and low latitudes, the steric sea level signal is essentially due to temperature

changes (Fig. 1c). Salinity changes play only a local role (Fig. 1d), but this role can be

sizeable in several regions like the Eastern Indian Ocean (Llovel and Lee 2015) or the

North Atlantic (Wunsch et al. 2007; Köhl 2014; Forget and Ponte 2015).

The picture is similar for the trends in sea level as for the standard deviation. They

are largely dominated by the steric effect (Fig. 2a, b). The halosteric effect is much

smaller than the thermosteric effect, but it is sizeable in many regions and should not

be neglected (Fig. 2c, d). Interestingly, in the few regions where the halosteric signal is

sizeable, like in the southern tropical Pacific, its effect tends to compensate the ther-

mosteric effect. Such compensation suggests nearly adiabatic transport of the water

masses in these regions (an example of such adiabatic transport is heaving of the water

column) as suggested by previous authors (e.g., Wunsch et al. 2007; Durack et al.

2014).

Fig. 1 a Standard deviation in SSH (gÞ from the CCI sea level dataset. b–d Standard deviation in, respectively,
steric height (gSteric), thermosteric height (gT Þ and halosteric height (gSÞ from an update of Ishii and Kimoto
(2009). Heights are in mm. Note that thermosteric and halosteric data have large uncertainties in regions where
the in situ temperature and salinity observations are poor like in the southern ocean before 2006
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3.1.2 The Effects of Wind Stress and Surface Buoyancy Fluxes

The ECCO model estimate shows similar patterns in SSH variability and trends as those

obtained from the CCI observations (Figs. 3a, 4a). The ECCO estimate of the ocean

bottom pressure (Figs. 3c, 4c) and of the steric effect (Figs. 3b, 4b) corroborates the notion

that SSH variability and trends are dominated by the steric effect in general. At high

latitudes, in the polar oceans where altimetry data are not available, ECCO also provides

SSH estimates. In these regions, the SSH variability and trends appear to be substantial and

actually dominated by the mass signal (Figs. 3c, 4c). This mass signal in the Arctic and in

the Southern Ocean has been confirmed by GRACE observations since 2004 (Purkey et al.

2014; Makowski et al. 2015). It is the result of the barotropic circulation caused by wind

forcing (Frankcombe et al. 2013; Volkov and Landerer 2013; Volkov 2014; Peralta-Ferriz

et al. 2014; Fukumori et al. 2015; Makowski et al. 2015). In the Arctic, ECCO shows that

the steric effect is actually sizeable and should not be neglected in comparison with the

mass signal. This steric effect has a significant halosteric component coming from the

variability of the freshwater inputs in the Arctic and the sea ice (see Fig. 4 in Köhl 2014,

which suggests that both mixed layer processes and heaving of isopycnals contribute to

interannual halosteric variability in the Arctic). At low and mid latitudes, ECCO confirms

that the sea level variability and trends are almost entirely of thermosteric origin with some

local halosteric effect, which tends to compensate the thermosteric effect as in

observations.

An advantage of reanalyses over observations is that they allow unambiguous identi-

fication of the anomalous forcings, which are responsible for the interannual variability and

the trends in SSH. In this subsection, we use perturbation experiments based on the ECCO

model setup to distinguish the influences of wind stress and buoyancy exchanges on sea

Fig. 2 a Trends over 1993–2011 in SSH (gÞ from the CCI sea level dataset (Ablain et al. 2015). b–d Trends
over 1993–2011 in, respectively, steric height (gSteric), thermosteric height (gTÞ and halosteric height (gSÞ
from an update of Ishii and Kimoto (2009). Trends are in mm/year. Note that thermosteric and halosteric
data have large uncertainties in regions where the in situ temperature and salinity observations are poor like
in the Southern Ocean before 2006
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level. This set of experiments is described more extensively by Forget and Ponte (2015). In

more detail, each member of that set employs different surface boundary conditions. In

each run, a common forcing component was prescribed, which comprised both fully

variable surface buoyancy exchanges and a climatological mean seasonal cycle in wind

stress. What differed between the simulations was that interannual changes in the wind

Fig. 3 a–d Standard deviation in, respectively, SSH (gÞ; thermosteric height (gTÞ, halosteric height (gSÞ
and bottom pressure (pb) from ECCO version 4. Heights are in mm

Fig. 4 a–d Trends over 1993–2011 in, respectively, SSH (gÞ; thermosteric height (gTÞ, halosteric height
(gSÞ and bottom pressure (pb) from ECCO version 4. Trends are in mm/year
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stress were or were not turned off over the global ocean. The difference between these two

experiments (shown in Figs. 5a, 6a) represents the oceanic response to interannual and

decadal wind stress changes; the experiment without interannual or decadal wind stress

changes (but retaining the common forcing component; shown in Figs. 5b, 6b) reflects the

ocean’s adjustment to interannual and decadal changes in buoyancy exchanges as well as

any nonlinear intrinsic changes (cf. Penduff et al. 2011; Piecuch and Ponte 2012)

The perturbation experiments reveal that SSH variability is essentially forced by surface

wind stress anomalies (see Fig. 5a, c and also Stammer et al. 2013; Forget and Ponte

2015). The remainder variability, which is forced by anomalous surface fluxes of buoyancy

along with any nonlinear intrinsic variability (cf. Penduff et al. 2011), is in general sig-

nificantly smaller except in some regions (Fig. 5b, d) such as the region of the Antarctic

circumpolar current (ACC), in the Kuroshio extension, in the Arctic, in the North Atlantic,

in the North Pacific and in the tropical Pacific, confirming earlier results from Thompson

and Ladd (2004), Cabanes et al. (2006) and Piecuch and Ponte (2012, 2013).

In the case of SSH trends over 1993–2011, the perturbation experiments reveal that both

wind stress forcing and buoyancy forcing play a leading role in SSH trends but in different

regions. In the tropics, it is the wind stress anomalies which are responsible for the SSH

trends (Fig. 6a). Indeed, the large positive pattern in the western tropical Pacific has been

associated with a deepening of the thermocline in response to trade wind intensifications,

probably linked to the negative phase of the Pacific decadal oscillation in recent decades

(Timmermann et al. 2010; Merrifield 2011; McGregor et al. 2012; Qiu and Chen 2012;

Meyssignac et al. 2012; Moon and Song 2013; Meehl et al. 2013; Palanisamy et al. 2015).

In the extra tropics, the SSH trends are essentially driven by the buoyancy forcing

(Fig. 6b), while the wind stress forcing contribution is smaller but remains significant in

Fig. 5 Interannual variability in g due to wind stress (a) and to buoyancy forcing (b) from ECCO version 4.
(See the text for the definition of g due to wind stress and to buoyancy forcing). Ratio of the interannual
variability in g due to wind stress (c) and buoyancy forcing (d) over the interannual variability in total g
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several regions (such as the North and South Pacific and the Arctic, see Fig. 6a, b). Note

that the trends in SSH driven by the buoyancy forcing are positive all over the ocean

reflecting the general warming of the ocean. Interestingly, they are maximum in the

subtropical gyres and in the North Atlantic subpolar gyre.

3.2 SST and How it Relates to Sea Level and Ocean Temperature and Salinity

3.2.1 Regional Variations

Interannual variability in SST is presented in Fig. 7 as the standard deviation of de-

seasonalised, de-trended monthly SST anomalies. Very low SST variability at high lati-

tudes in areas of perennial sea ice reflects the damping of variability in SST by the freezing

and melting of that sea ice: in the SST data set, SST is set to the freezing temperature of sea

water where the ocean is ice covered. Variability is greater in areas of seasonal sea ice,

where variations in sea ice extent are reflected also in SST.

In the extra tropics poleward of sea ice, the variability in monthly SST is seen to be

relatively high, typically of order 1 K. Much of the large-scale development of SST

anomalies in the extra tropics is driven by large-scale reorganization of atmospheric cir-

culation anomalies. Atmospheric variability with timescales longer than *10 days is

effective at driving SST anomalies that reflect the temperature of the upper mixed layer,

because of the large thermal inertia of the upper ocean mixed layer (Frankignoul and

Fig. 6 Trends in g between 1993 and 2011 (in mm/year) from ECCO version 4. a Contribution due to wind
stress; b contribution due to buoyancy forcing

Fig. 7 Variability and trends in SST from the CCI dataset (Merchant et al. 2014). a Standard deviation in
K. b Linear trend in over 1993–2011 in K per decade
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Hasselmann 1977; Deser et al. 2003). (Note that, however, SST can respond strongly to

higher frequency atmospheric variability when the depth of the response is shallow, as in

diurnal variability.) The large-scale nature of atmospheric teleconnection patterns is

imprinted upon the SST anomaly field essentially via the surface energy fluxes and Ekman

currents (e.g., Cayan 1992; Marshall et al. 2001; Visbeck et al. 2003). Spatial variations in

mixed layer depth (which themselves reflect the recent history of wind stress) modify the

effective thermal inertial and also play a role in determining the magnitude of the SST

anomalies.

Across much of the tropics, variability in monthly SST is low, \0.5 K. The clear

exception is the equatorial Pacific Ocean, where SST variability [1.5 K is present east-

wards of 180�W, associated with the El Nino Southern Oscillation (ENSO). ENSO is a

coupled mode of variability, in which large-scale atmospheric circulation anomalies

develop in close interaction with the SST variability, in contrast to extratropical anomalies

(e.g., Deser et al. 2010).

Local processes such as upwelling, entrainment and lateral advection also contribute to

SST variability. For example, vertical advection plays a prominent role along the coastal

and equatorial upwelling zones, with variability being wind-driven. Horizontal advection is

important along the western boundary current regions (e.g., the Gulf Stream and Kuroshio

Current). Oceanic processes also play an indirect role in SST variability by affecting the

depth of the upper ocean mixed layer.

The trends in SST over the period are relatively uniform around 0.3 K decade-1 across

much of the Atlantic and Indian Oceans. The North Atlantic, including the Barents Sea, the

sub-Greenland gyre and Labrador Sea, shows a warming trend exceeding 0.5 K decade-1.

Across the Pacific Ocean, the SST trend largely reflects the change in the tendency of the

Pacific Decadal Oscillation over the period (Fig. 7a), as previously noted with respect to

SSH.

3.2.2 The Effect of Surface Heat Fluxes and Ocean Transport

The ECCO model estimate shows generally similar patterns in SST variability as those

obtained from the CCI observations (Fig. 8a), except at mid latitudes and in the Southern

Ocean where it tends to underestimate the SST variability notably in eddy active regions

(in the Kuroshio and Gulf Stream extensions, the Malvinas current and the Agulhas cur-

rent). It shows also generally similar patterns in SST trends (Fig. 9a) except in the North

Atlantic (from the Gulf Stream extension to the Barents sea) and in the eastern part of the

north Pacific where trends are underestimated by a few tenths of K/decade and in the north-

east Indian Ocean and China sea where trends are overestimated by a few tenths of

K/decade.

As for SSH, we use ECCO output to infer the role of surface heat fluxes and ocean

transport divergences in SST variations. We integrate vertically the upper ocean temper-

ature budget (Eq. 7 in Piecuch and Ponte 2012) over a constant climatological mixed layer

depth computed for each grid cell. The role of surface heat fluxes on SST is diagnosed by

calculating the changes in SST due to the surface heat forcing term
Qnet;ml

qCph
. The ocean

transport divergences effect is diagnosed by calculating the changes in SST due to the sum

of the advection and diffusive terms. This form of the upper ocean temperature budget does

not distinguish between Ekman and geostrophic transport contributions as in Eq. (4).

However, it allows the same separation of SST in terms of surface heat forcing and ocean

transport divergences as for steric sea level (Sect. 3.1). In that sense, it allows us to
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compare easily between upper ocean heat and steric sea level budgets, being able to infer

whether surface heat fluxes or ocean transport divergences are more or less important for

upper ocean heat or steric sea level changes.

Both standard deviation patterns in SST due to surface heat flux and ocean transport

divergences are very similar (see Fig S1a, b in the supplementary material). They show

Fig. 8 a Standard deviation in SST from ECCO. b standard deviation in SST due to the surface heat fluxes
(after removing the cancellation part with ocean transport divergences). c Standard deviation in SST due to
the ocean transport divergences (after removing the cancellation part with surface heat fluxes)

Fig. 9 Same as Fig. 8 but for trends
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high variability in the tropics and upwelling regions and low variability at higher latitudes

with a minimum in the Arctic Ocean north of 80�N and in the Southern Ocean. The

amplitudes of both standard deviation maps are also significantly higher than the standard

deviation of the SST map almost everywhere: this is a result of integrating the ocean

temperature budget over time. The effect of surface heat fluxes on SST is opposite to the

effect of ocean transport divergences almost everywhere and they tend to cancel out (see

Fig S1a, b). However, the cancellation of surface heat fluxes effect with ocean transport

divergences effect is not exact and gives rise to SST variability. Figure 8b and c shows the

standard deviation of the residual in SST due to surface heat fluxes and ocean transport,

respectively, after removing the cancellation part (see also Fukumori and Wang 2013).

Figure 8b shows that the interannual variability in SST due to the surface heat flux forcing

is larger almost everywhere except in the tropical Pacific where ocean transport diver-

gences play a similar role to surface heat fluxes in the local SST variability.

The same compensation process between surface heat fluxes and ocean transport

divergences effects on SST occurs at longer timescales. The trend pattern in SST due to

surface heat flux and ocean transport is very similar and tends to cancel out each other (see

Fig. S2a, b in the supplementary material). Trends in SST due to surface heat fluxes are

very large in the tropics and very low in boundary current regions and at high latitudes

(Fig. S2a), while trends in SST due to ocean transport divergences are opposite in the same

regions reflecting that the ocean gains most of the heat in the tropics and transports it to

higher latitudes where it is released to the atmosphere or buried in the deeper layers of the

ocean. However, the effect of surface heat fluxes and ocean transport divergences on SST

trends does not fully cancel out everywhere. Figure 9b, c shows the residual in SST trends

due to excess surface heat fluxes or ocean transport divergences, respectively, after

removing the cancellation part. Figure 9b shows that surface heat fluxes dominate over

ocean transport divergences and explain the SST trends in the tropical Indian Ocean, in the

western tropical Pacific Ocean, in the North Pacific and North Atlantic subtropical gyres. It

also dominates in the North Atlantic subpolar gyre and on the southern edge of the South

Pacific subtropical gyre. In all upwelling regions (California current, Humbolt current and

to a lesser extent in the Benguela current), it is the ocean transport divergences effect

which dominates and explain the SST trends. In the eastern tropical Pacific, in the Indian

and South Pacific subtropical gyres and in the North Atlantic subpolar gyre, it also

dominates. Interestingly enough, the dominance of the ocean transport divergences over

the surface heat fluxes, which explain the negative trends in SST in the California current,

the Humbolt current and the eastern tropical Pacific, is consistent with the increase in cold

deep water entrainment in these regions in response to increasing trade winds associated

with the decreasing Pacific Decadal Oscillation (PDO) over the period 1993–2011.

The case of the western tropical Pacific region where the SST trends are dominated by

surface heat fluxes warrants further discussion. At first sight, this result seems inconsistent

with Fig. 6, which indicates positive SSH trends in this same region due to wind forcing

(see Sect. 3.1.2). But there is a possible interpretation. The time-mean SST budget in the

western tropical Pacific Ocean is a balance between strong increase due to surface heat

fluxes and strong decrease due to ocean transport divergences (see Fig. S2). Over the study

period, well-reported-on wind stress changes act to reduce the magnitude of that back-

ground ocean transport divergence contribution, making it less negative (and resulting in

the steric sea level rise in this area). This results in their being an excess of surface heat

forcing contribution (or deficit of ocean transport divergence contribution), which leads to

the result in Fig. 9 that the western tropical Pacific SST trends are attributed to surface heat

flux forcing.
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3.2.3 Comparison with SSH Variability

At interannual timescales, SSH and SST show a fairly large common variability in the

tropical band and in upwelling regions. Figure 10a shows the correlation map of SST and

SSH detrended interannual time series computed from the CCI observational datasets. The

correlation is higher than 0.7 in most of the tropics, in the California current, the Humbolt

current and in the Canary current. In the Benguela current, the correlation is not significant,

but it is potentially because this narrow coastal current is not well sampled by satellite

altimetry and its variability in SSH is not captured properly by the CCI product (Note that

the correlation is significant and high in the Benguela current in the ECCO estimate which

support this hypothesis—see Fig. 10b). In the extra tropics, the correlation is in general

non-significant except south-east of Greenland and in some local eddies in the Antarctic

circumpolar current, in the Kuroshio extension and in the Gulf Stream. The ECCO estimate

confirms this global picture and shows a similar pattern in the correlation map for SST and

SSH as in the CCI correlation map (see Fig. 10b). The one difference between the ECCO

correlation map and the CCI correlation map is that the ECCO estimate shows actually

significant correlations in large regions of the extra tropics, but these correlations are low

and below 0.6 in general.

To get insights into the cause of the common variability in SSH and SST, we correlate

the detrended interannual time series of SST with the wind-driven SSH response (see

Fig. 10c) and with the buoyancy-forced SSH response (see Fig. 10d). Figure 10c and d

shows that, in general, SST is more closely related to the buoyancy-forced sea level

response than it is to either the total (wind ? buoyancy) sea level or the wind-driven sea

level. In particular, for buoyancy-driven sea level, the average correlation coefficient

between sea level and sea surface temperature is 0.55 and the correlation coefficient is

Fig. 10 Correlation coefficient between SST and SSH for CCI (a), between SST and total SSH for ECCO
(b), between SST and the wind forcing driven SSH (c), between SST and the buoyancy-forced SSH (d).
Only positive correlations are shown because actually no significant negative correlation between SST and
SSH was found
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significant over 68 % of the global ocean. These same numbers for the wind-driven sea

level are 0.25 and 29 %, respectively. And these same numbers are 0.49 and 63 % for the

fully forced (wind ? buoyancy-driven) sea level, respectively. The reason for the high

correlation between SST and buoyancy-forced SSH is that the SST variability is dominated

in most regions of the ocean by the SST response to surface heat fluxes (see Sect. 3.2.2;

Fig. 8b) and that in many regions also surface heat fluxes effects dominate over freshwater

fluxes effects in the buoyancy-forced sea level response. As a result, surface heat fluxes

appear as the main cause for the common variability in SSH and SST. In a few regions, this

statement does not hold. In regions where the freshwater effect on the buoyancy forcing is

dominant over the heat flux effect, like in the Pacific warm pool or in the Arctic region, the

correlation of buoyancy-forced sea level with SST is not significant (see Fig. 10c). In the

tropics and in the upwelling regions, the wind stress is also a cause of sizeable common

variability in SST and SSH along with the surface heat flux (see Fig. 10d). This is because

wind stress variability in the tropics generates at the same time a zonal pressure gradient

and a zonal tilt in the thermocline, which make, respectively, sea level and SST vary in

phase in this region.

The picture is different for trends in SSH and SST. The relationship between SST and

buoyancy-forced sea level is somewhat less clear for trends than it is for interannual to

decadal timescales. For example, the correlation coefficient between the spatial patterns in

SST (Fig. 9a) and SSH (Fig. 2b) is 0.32, between SST and wind-driven SSH (Fig. 6a) is

0.15, and between SST and buoyancy-forced sea level (Fig. 6b) is 0.28. This means that at

long timescales, while SST is more correlated with buoyancy-driven sea level than it is

with wind-driven sea level, SST is even more correlated (but still modestly so) with the

total sea level. This indicates that probably the relationship between SST and buoyancy-

forced sea level is quite complex in general, and probably depends critically on timescale,

among other factors. One striking feature when looking at Figs. 9a and 6b is that, out of the

tropics, the SST pattern seems quite similar to the buoyancy-forced sea level except around

Greenland. Around Greenland, sea level trends are more subdued, while surface temper-

ature trends are more pronounced. This decoupling is potentially due at least in part to

freshwater fluxes and halosteric sea level changes in this region. Indeed, models suggest

that such salinity effects on sea level are important in this region and act to compensate and

offset sea level changes due to temperature effects (i.e. thermosteric height, Köhl 2014). In

the eastern tropical Pacific, the negative SST trends are in phase with the negative SSH

trends which are essentially caused by wind stress. This is consistent with the increasing

trade winds associated with the decreasing PDO since the late 1970s. Another interesting

region is the Arctic (and to a lesser extent the south of the Southern Ocean) where the SST

pattern does not correlate with any sea level pattern. The reason is probably that mass

(bottom pressure) trends probably play an important role in sea level trends as well as the

halosteric effects and hence make the SSH trends independent of the SST trends.

3.3 Ocean Colour and How it Relates to SST and SSH

3.3.1 General Principles

To investigate how ocean colour relates to SST and SSH, we must first understand the

dominant processes driving the biophysical interactions, which include the constraints on

phytoplankton dynamics imposed by the physical environment, and also the feedback

mechanisms by which phytoplankton could modify their environment.

Surv Geophys

123



In the open ocean waters of the tropics and subtropics, light is plentiful all-year round

and phytoplankton biomass increases when nutrients become available in the mixed layer

through various vertical processes, such as wind mixing and upwelling. The transport of

cold waters from depths to the surface, carrying nutrients with them, reduces SST. In such

cases, a decrease in SST can be considered a proxy for nutrient supply. These regions are

therefore characterized by a negative correlation between SST and chlorophyll

concentration.

In contrast, in high latitudes, light availability is the dominant driver: phytoplankton

biomass shows a clear seasonality (tied to the annual solar cycle), and surface nutrients are

generally replenished by deep-mixing in winter. In these regions, the seasonal changes in

light at the sea surface are accompanied by seasonal warming of the waters, such that an

increase in SST may be taken here to be a proxy for increase in available light.

Sea level variations can reflect alterations in ocean circulation and ocean density,

occurring in response to changes in wind forcing, ocean warming and changes in water and

ice mass exchange between the land and the oceans (Church et al. 2013). Some of these

processes form zones of convergence and divergence in the ocean, which are characterized

by enhanced water column stratification and upwelling, respectively. In the tropics and

subtropics, zonal wind stress patterns cause convergence zones and increase sea level

(Palanisamy et al. 2015). Such zones are also characterized by deep thermoclines and low

nutrient availability, which are unfavourable for phytoplankton production (Kahru et al.

2010); a negative correlation between SSH and chlorophyll concentration can be observed

(Turk et al. 2001). In high latitudes, oceanic convergence zones also show an increase in

SSH, but the conditions may still favour phytoplankton production due to enhanced upper

ocean light availability and supply of nutrients from winter mixing. In these regions,

positive correlations can be found between SSH and chlorophyll (e.g., Wilson and Coles

2005; Brewin et al. 2014).

3.3.2 Correlation Analyses Based on CCI Datasets

Ocean colour observations from the OC-CCI dataset show high inter-annual variability

(Fig. 11a) at high latitudes and in coastal upwelling highly productive regions, whereas

low variability is observed in the oligotrophic gyres (where phytoplankton production is

minimum). Trends based on monthly chlorophyll anomalies are shown in Fig. 11b.

Correlation coefficients calculated using monthly means and monthly anomalies over the

period 1998–2010 between chlorophyll (OC-CCI) and sea level (SL-CCI), and between

chlorophyll (OC-CCI) and SST (SST-CCI) are presented in Fig. 12. Although the cor-

relation between chlorophyll and SSH tends to be weaker when compared with that

between chlorophyll and SST, they display similar regional patterns throughout most of

the global oceans. The tropics and subtropics typically show negative correlations (i.e.

chlorophyll is low when SST and SSH are high), whereas the high latitudes typically

show positive correlations (i.e. chlorophyll is high when SST and sea level are high), as

expected from the rationale presented above. In high latitudes, positive correlations

between chlorophyll and SST are weaker when monthly anomalies (representative of

inter-annual variability) are used compared with monthly means (when the seasonality

has not been removed), but they show similar patterns (Fig. 12). The correlation patterns

displayed in the tropics, subtropics and high latitudes are consistent with previous

studies, which have been carried out for different time periods and different satellite

sensors (e.g., Wilson and Coles 2005; Brewin et al. 2012, 2014; Siegel et al. 2013). This

consistency suggests that the patterns are independent of the time period selected for the
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analysis and of differences in chlorophyll-retrieval and atmospheric correction algorithms

used (Brewin et al. 2014; note also that OC-CCI product includes data from three

sensors—SeaWiFS, MODIS and MERIS—which have been processed using SeaDAS—

Fu et al. 1998—and POLYMER atmospheric correction algorithms—Steinmetz et al.

2011—and show a significant increase in data coverage (Sathyendranath and Krasemann

2014; Racault et al. 2015; Sathyendranath et al. 2016).

Fig. 11 a Standard deviation in chlorophyll concentration. b Linear trend in chlorophyll concentration
anomalies calculated over the period 1998–2010. Only the linear regression coefficients, which are
significant at the 95 % confidence level, are shown in colour. Non-significant linear regression coefficients
are in grey

Fig. 12 Relationships between OC and SSH and between OC and SST over the period 1998–2010.
a Correlation analysis between monthly means of chlorophyll concentration and SSH; b Correlation analysis
between monthly means of chlorophyll concentration and SST; c Correlation analysis between monthly
anomalies of chlorophyll concentration and SSH; and d Correlation analysis between monthly anomalies of
chlorophyll concentration and SST. Chlorophyll concentration data are from OC-CCI, SSH data are from
SL-CCI, and SST data are from SST-CCI. Only the correlation coefficients, which are significant at the
95 % confidence level, are shown
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3.3.3 Regional Variations

Other considerations have to be invoked to explain variations superimposed on these large-

scale, latitudinal patterns. Some of these regions are examined more closely below.

3.3.3.1 High Latitude HNLC Regions In certain regions that are known as high nutrient-

low chlorophyll (HNLC) regions (Boyd et al. 2007), some trace nutrients (notably iron)

may remain low, even when other nutrients such as nitrogen, phosphorus and silica are

available, limiting phytoplankton production. In HNLC regions in high latitudes (including

parts of the Pacific and the Southern Ocean), the correlation between chlorophyll and SST

may become weak or negative, indicating that phytoplankton growth is predominantly

limited by nutrient availability rather than light availability. Based on observed relation-

ships between chlorophyll and SST and chlorophyll and SSH, Le Quéré et al. (2002)

estimated that in the Southern Ocean between 40�S and 65�S, 44 % of the total primary

production was predominantly light limited, and 10 % was driven by changes in stratifi-

cation and nitrogen supply, which in turn was associated with changes in SST. The SST-

related changes were higher in the south Atlantic part of the Southern Ocean, accounting

for 30 % of changes in the total primary production. To explain the remaining variability in

biological productivity, the authors also considered changes in atmospheric dust deposi-

tion. However, in this region, atmospheric dust supply tends to remain low, originating

from small dust sources in Argentina, Australia and South Africa (Prospero et al. 2002) and

a weak positive correlation between dust deposition and chlorophyll was found only in the

west Pacific region of the Southern Ocean (Le Quéré et al. 2002). Their study demonstrates

that simple assumptions about light limitation and nutrient (nitrogen and iron) limitation

may not be sufficient to explain fully the observed variations in chlorophyll distribution.

3.3.3.2 Continental Shelves and Coastal Regions In continental shelves and coastal

regions, additional physical processes may also control the supply of nutrient in the

euphotic zone, including coastal upwelling, Ekman pumping and river outflow. In the

eastern subtropical North Atlantic, between 10�N and 25�N, the negative correlation found

between chlorophyll and SSH has been shown to result from an inverse relationship

between SSH and nutricline depth (Pastor et al. 2014). In this region, the changes in

nutricline depth and nutrient supply to the surface are governed primarily by changes in

Ekman pumping (driving vertical advection processes), rather than by changes in

stratification.

Atmospheric dust supply from the North African and Asian deserts, as well as coastal

river discharge can also provide significant sources of nutrient supply for phytoplankton

growth and modify the general latitudinal relationships between chlorophyll and SSH and

between chlorophyll and SST. For instance, in the vicinity of the Amazon and Orinoco

River plumes, positive relationships between chlorophyll and SST and chlorophyll and

SSH are observed (Fig. 12a, b). The chlorophyll concentration and the concentration of

coloured dissolved organic matter are higher in these river plumes than in surrounding

waters (Smith and Demaster 1996; Hu et al. 2004). The location and direction of these river

plumes are influenced by anticyclonic eddies, characteristic of higher SST and SSH, which

are capable of transporting the plumes hundreds of miles offshore (Johns et al. 1990;

Corredor et al. 2004).
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3.3.3.3 Effect of Eddies A prominent feature is shown off Western Australia where there

is a clear positive relationship between chlorophyll and SSH (Fig. 12a, c). In this region,

anticyclonic eddies are thought to entrain shelf waters with regionally high chlorophyll

concentration (Pearce and Griffiths 1991; Moore et al. 2007). These anticyclonic eddies

then propagate westward and higher chlorophyll values are maintained through sub-me-

soscale injection of nutrients into the anticyclonic-eddy boundary (Moore et al. 2007).

3.4 Bio-Optical Heating Influence on SST, Mixed Layer Depth (MLD),
Air-Sea Flux and How it May Affect SSH

The absorption of solar irradiance by phytoplankton cells (described in Sect. 2.3) has been

shown to influence considerably the heating rate of the upper layer of the world oceans.

Using a mixed layer model that incorporates ocean colour observations, Sathyendranath

et al. (1991) examined the effect of light attenuation on surface temperature by comparing

model results forced by a pure-water case, and by a chlorophyll-dependent case. The

authors estimated biologically induced heating of surface temperature could reach a

maximum of up to ?4 �C from August to September in the Arabian Sea, using satellite

data for 1979. Subsequently, several investigators have used three-dimensional ocean

models to study the influence of phytoplankton on SST and MLD at the regional and global

scales (e.g., Nakamoto et al. 2000; Manizza et al. 2005; Wu et al. 2007; Zhai et al. 2011).

As phytoplankton absorb a significant fraction of the incident solar radiation and increase

the temperature in the surface layer, less radiation penetrates to greater depths. The

increased temperature contrast between surface and deep waters can enhance water column

stability and reduce the depth of the mixed layer. For instance, Nakamoto et al. (2000)

reported, in the Arabian Sea, a bio-optical heating of SST up to ?0.6 �C and mixed layer

depth decrease by 20 m. During the Summer season, in the Labrador Sea, Wu et al. (2007)

showed SST changes between -1.0 and ?2.0 �C, and mean MLD difference of 10 m (i.e.

*20–50 % shallower than it would be if phytoplankton were absent). Using a global ocean

model, Manizza et al. (2005) observed temperature differences caused by the absorption of

heat by phytoplankton between -0.2 and ?0.6 �C at mid and high latitudes, with mini-

mum values in winter and maximum values during the spring bloom. In their model results,

the amplitude of the seasonal changes in the water column thermal structure and the MLD

increased from low to high latitudes, with maximum MLD decrease by up to 20 m

observed at 608 in both hemispheres.

Solar radiation and phytoplankton are not the only factor controlling SST and MLD in

the oceans. Additional physical processes such as air-sea heat exchange, wind mixing and

horizontal advection play important roles (see Sect. 3.2). Zhai et al. (2011) demonstrated

increased heat loss from the ocean to the air associated with bio-optical heating of the

upper ocean caused by the presence of phytoplankton in the Gulf of St. Lawrence.

Atmospheric heat gain induced by the presence of phytoplankton has been further

examined in coupled ocean–atmosphere models, which show an amplification of the

seasonal cycle of temperature in the troposphere, modulating the tropical convection

patterns and atmospheric circulation (Shell et al. 2003) and affecting large patterns of

climate variability such as ENSO (Zhang 2015).

The strong influence of the absorption of solar irradiance by phytoplankton cells on the

heating rate of the upper layer of the world oceans suggests that bio-optical heating should

have an influence not only on SST but also on SSH. This hypothesis is further supported by

the fact that SST and buoyancy-forced SSH show large common variability, which is due

to the surface heat forcing (see Sect. 3.2.3).
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4 Conclusions

In this paper, we have analysed the regional variability of observed SSH, SST and OC from

the CCI datasets over the period 1993–2011. We have focused our analysis on the signature

of the ocean large-scale climate fluctuations driven by the atmospheric forcing, and we did

not consider the mesoscale activity, which has been filtered out. We used the ECCO

version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy

fluxes in the ocean climate fluctuations and analyse the associated signatures on the

observed SSH, SST and OC. Our analyses corroborate the findings from past studies on the

role of ocean transport and surface buoyancy fluxes in the SSH variations at interannual to

decadal timescales (Piecuch and Ponte 2011; Piecuch et al. 2013; Fukumori and Wang

2013; Forget and Ponte 2015). They also provide new insights on the role of ocean

transport and surface buoyancy fluxes in the SST variations and on the relation between the

SSH, SST and OC variations at interannual to decadal timescales.

In agreement with previous studies, we show that the variability and trends in observed

SSH over the last two decades are largely dominated by the steric effect except in shallow

shelf seas where the mass effect is of the same order of magnitude as the steric effect and at

high latitudes ([60�N and\55�S) where it dominates over the steric effect. The steric sea

level signal is essentially due to temperature changes. Salinity changes play only a local

role, but this role can be sizeable in several regions, in particular in the North Atlantic, in

the Arctic and in the Southern Ocean. The ECCO reanalysis reveals that the observed steric

sea level variability and trends are essentially forced by surface wind stress anomalies, in

particular in the tropics where the SSH variability and trends are the most intense over the

last two decades. The buoyancy forcing plays also a sizeable role but of smaller amplitude

and more uniformly distributed. In the extra tropics, where the wind stress forcing effect on

SSH is smaller, the buoyancy forcing effect becomes significant and explains a sizeable

part of the SSH variability and trends. In general, on average over the ocean, the buoyancy

forcing effect on SSH trends is positive which reflects the penetration of heat into the ocean

and the global warming of the ocean (Gregory et al. 2001; Suzuki and Ishii 2011). This

result confirms that different reasons explain the global sea level rise from ocean warming

and the regional sea level rise. While the buoyancy fluxes only are responsible for the total

heat that enters the ocean and the associated global mean sea level rise, both ocean

transport divergences caused by wind stress anomalies and the non-uniform buoyancy

forcing (essentially at mid to high latitudes) are responsible for the regional distribution of

the heat within the ocean and thus for the regional sea level departures around the global

mean.

Concerning the SST variability and trends over the last two decades, we show that the

effect of local surface heat fluxes and ocean transport divergences locally is large and

opposite to each other almost everywhere in the ocean. This finding primarily reflects the

nature of the local steady-state SST budget (in our case, integrated over time), wherein

local heat forcing is compensated for and entirely cancelled out by the action of ocean

transport processes. However, the cancellation between local forcing and ocean transports

is not exact, and the residual tendencies are what give rise to the resulting SST variability

and trends. This result gives a unique perspective on the observed SST changes that, to our

knowledge, has not been strongly emphasized elsewhere: almost everywhere, the mixed

layer heat content is approximately in a local steady-state balance with the ocean transport

divergences effect almost entirely compensating the heat fluxes effect; in this context,

observed changes in SST are interpreted as relatively small departures from this
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background steady-state. In terms of interannual variability in SST, the effect of the surface

heat flux forcing is larger than the effect of the ocean transport almost everywhere except

in the tropical Pacific where both play a similar role. In terms of trends in SST, the picture

is not so clear: both effects play a dominant role but in different regions.

Thus, we have provided complementary descriptions of mechanisms responsible for

SSH and SST variability and trends. On the one hand, our exploration of SSH was more

dynamical, focusing on the relevant forcing mechanisms (namely winds or buoyancy),

without pinpointing particular processes (e.g., circulation versus mixing). On the other

hand, our investigation of SST was more kinematical, targeting the underlying physical

processes (e.g., advection or diffusion), without identifying the responsible drivers in all

cases (i.e. wind or buoyancy). These separate analyses put on display the capabilities of the

ocean reanalysis machinery, and how such frameworks can help us understand, in a very

detailed fashion, the nature of oceanic variability and change. In any case, bringing

together the results of our SSH and SST analyses, we can see that SSH and SST bear some

common variability. The main reason is that both SSH and SST variability show significant

contributions from the surface heat fluxes forcing. This is evidenced by the high correlation

between SST and buoyancy-forced SSH almost everywhere except in a few regions where

the freshwater effect on buoyancy-forced SSH is dominant over the heat flux effect, as in

the Pacific warm pool or in the Arctic region. In the tropics and in the upwelling regions,

the wind stress forcing is also a cause of sizeable common variability in SST and SSH

along with the surface heat flux forcing because wind stress variability in the tropics

generate at the same time a zonal pressure gradient and a zonal tilt in the thermocline,

which make, respectively, sea level and SST vary in phase in this region. SSH and SST

bear also some common features in their trend patterns over the last two decades. However,

the picture is more complicated than for the interannual to decadal variability. This

indicates that probably the relationship between SST and buoyancy-forced sea level or

wind forced sea level is quite complex in general, and likely depends critically on time-

scale, among other factors.

OC is a variable that is fundamentally different from SST and SSH because it depends

on biological processes, which are forced by underlying physical processes. The concen-

tration of chlorophyll, the main photosynthetic pigment present in all phytoplankton cells,

can be used as key measure of the phytoplankton population and is a central variable in

models used to estimate primary production (the rate at which phytoplankton produces

organic matter from dissolved inorganic CO2), and export production (approximately 20 %

of net photosynthesis at global scale is exported to the deep ocean, indicating a strong

coupling between biological activity and the oceanic carbon sink, Laws et al. 2000). The

growth of phytoplankton is primarily governed by the availability of light and nutrients,

which in turn depend mostly on climate forcing conditions. Thus, OC variability and trends

bear a strong dependence on climate fluctuations, with implications for the oceanic primary

production and export production, and can show significant correlations with SSH and

SST. Although the correlation between OC and SSH tends to be weaker than between OC

and SST, they display similar regional patterns throughout most of the global oceans. The

tropics and subtropics show negative correlations because in these regions phytoplankton

growth and export production are driven by nutrient availability in the mixed layer. Here,

increases in nutrient availability are mainly driven by vertical entrainment (deeper mixed

layers) and upwelling which influence SST (cooler waters entrained into the mixed layer)

and SSH (surface divergence). At high latitudes, phytoplankton growth and export pro-

duction are primarily driven by light availability. At these latitudes, changes in light at the

sea surface are accompanied by warming of the waters which causes an increase in SST
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and buoyancy-forced sea level and explain the positive correlation between OC, SSH and

SST.

As discussed earlier, phytoplankton can have a feedback effect on climate fluctuations.

The absorption of solar irradiance by phytoplankton pigments tends to increase the heating

rate of surface layers, stabilize the water column and reduce the depth of the mixed layer.

As a result it changes the distribution of the heat and the stratification in the upper ocean.

Furthermore, it has been suggested that temperature might affect primary production and

remineralization differently, and hence modulate biologically mediated air-sea carbon

exchange (Matsumoto 2007). The regional effect of bio-optical feedbacks on SST has been

reported by several studies as noted in Sect. 3.4, but no apparent effects on SSH have been

reported yet. Given the significant influence of the absorption of solar irradiance by

phytoplankton on the heating rate of the upper layer, and the importance of the surface heat

fluxes in the SSH variability, we may speculate that bio-optical heating could influence

SSH variability indirectly. However, it is not a trivial task to evaluate the influence of bio-

optical heating on SSH and, to our knowledge, it has not been undertaken yet. Noting that

localization of solar heating close to the surface would alter air-sea exchange of heat, a

possible starting point for future studies could be to examine the impact of phytoplankton

on the total heat content of the water column, which would impact SSH. The question

remains whether such an impact could be a significant one.
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