Reduced up-regulation of gene expression in response to elevated temperatures in the mid-Atlantic population of Calanus finmarchicus

Smolina, I, Harmer, R, Lindeque, PK and Hoarau, G 2016 Reduced up-regulation of gene expression in response to elevated temperatures in the mid-Atlantic population of Calanus finmarchicus. Journal of Experimental Marine Biology and Ecology, 483. 88-93. https://doi.org/10.1016/j.jembe.2016.09.003

Full text not available from this repository.
Official URL: https://www.sciencedirect.com/science/article/pii/...

Abstract/Summary

Abstract Climate change is affecting numerous species worldwide, including dominant and important copepods of the genus Calanus. Despite the growing body of studies that examine effects of climate change stressors on Calanus species, comparative intraspecific studies are lacking. Importantly, acclimatization and genetic adaptation can modify the stress response, thus leading to a differential response of separated populations to the same stressor. The molecular and physiological responses of a C. finmarchicus population from the mid-Atlantic, with an in situ temperature of 8.5 °C, were investigated under experimental thermal conditions of 0 °C, 5 °C, 10 °C, 15 °C, and 20 °C for durations of 3 h and 6 days. This experimental set-up mirrored previously published experiments conducted on C. finmarchicus at the northern limit of its distribution allowing a comparison between two populations. The greatest physiological response, assessed as fecal pellet production, was seen after 3 h exposure at 10 °C and 15 °C, and after 6 days exposure at 5 °C, 10 °C and 15 °C. Molecular response was assessed by the change in expression of 5 selected genes: hsp70_2, dnaja1, nap 1l1, rps11, and gdh. Only two out of the five genes (gdh and nap1l1) showed significant up-regulation with increased temperature and duration of exposure. These findings differ from the results obtained in the northern population where all 5 genes were differently expressed. Overall, the results suggest population-specific response to temperature in C. finmarchicus, however determining the source of such variation (genetic adaptation or acclimatization) requires more detailed studies.

Item Type: Publication - Article
Additional Keywords: Copepods; Temperature stress; Gene expression; Climate change
Subjects: Biology
Ecology and Environment
Marine Sciences
Divisions: Plymouth Marine Laboratory > Science Areas > Marine Ecology and Biodiversity
Depositing User: Pennie Lindeque
Date made live: 08 Mar 2017 17:24
Last Modified: 25 Apr 2020 09:57
URI: https://plymsea.ac.uk/id/eprint/7253

Actions (login required)

View Item View Item