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ScienceDirect
Choanoflagellates are the closest single-celled relatives of

animals and provide fascinating insights into developmental

processes in animals. Two species, the choanoflagellates

Monosiga brevicollis and Salpingoeca rosetta are emerging

as promising model organisms to reveal the evolutionary origin

of key animal innovations. In this review, we highlight how

choanoflagellates are used to study the origin of multicellularity

in animals. The newly available genomic resources and

functional techniques provide important insights into the

function of choanoflagellate pre- and postsynaptic proteins,

cell–cell adhesion and signaling molecules and the evolution

of animal filopodia and thus underscore the relevance of

choanoflagellate models for evolutionary biology, neurobiology

and cell biology research.
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Introduction
‘To understand how animals evolved, we must study

choanoflagellates’ Peter Holland, University of Oxford,

UK [1��].

How multicellular animals evolved from their single cell

progenitors is an important question in biology. In the last

years the study of choanoflagellates has started to answer

this question. It is now well accepted that choanoflagellates

are the closest single-celled relatives of animals, meaning

that they form the sister group to animals (Figure 1a) [2–4].

This important position makes choanoflagellates fascinat-

ing models to study the evolutionary origin of key animal

innovations [5]. Choanoflagellate morphology is well

characterized and their organelle arrangement shows that
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choanoflagellate cells are highly polarized [1��,6]. Choano-

flagellates possess a single posterior flagellum that is

enclosed by a collar composed of microvilli (Figure 1b).

The movement of the flagellum serves two main functions:

to allow motile cells to swim and to create water currents

which trap bacteria to the collar to allow phagocytosis [7,8].

Phagocytosed bacteria are digested in anterior localized

food vacuoles (Figure 1b). The Golgi apparatus with many

associated vesicles is positioned posterior to the prominent

nucleus. Moreover, many choanoflagellates possess anteri-

or filopodia (Figure 1b), which allow for substratum attach-

ment of the cells [1��,9].

In this review, we highlight recent advances in choano-

flagellate phylogeny and critically discuss the latest pro-

gresses made on the establishment of choanoflagellates as

model organisms to understand the origin of multicellulari-

ty in animals. In particular, we emphasize how newly

available genomic resources [3,10], the identification of a

sexual life cycle [11], novel functional techniques like the

development of a forward genetic screen [12��], and the first

successful immunoprecipitation experiments [13�] have

allowed getting insights into the function of choanoflagel-

late pre- and postsynaptic proteins, cell-cell adhesion and

signaling molecules, and the evolution of animal filopodia.

In the future, these newly available resources will also form

the basis for targeted gene activity disruptions.

Phylogeny and morphological diversity of
choanoflagellates
Choanoflagellates comprise a group of aquatic protists

that can be divided into two different taxonomic orders:

Craspedida and Acanthoecida (Figure 1c) [2,14,15].

While the general cell morphology is highly conserved

in all choanoflagellate species (Figure 1b) [1��], striking

differences exist in their extracellular coverings and their

life history stages (Figure 1c). The Craspedida are char-

acterized by an organic extracellular covering, either in

form of a rigid theca or of a glycocalyx [2,15]. Among the

Craspedida, there are unicellular species which can swim

or attach to the substratum (e.g. Monosiga brevicollis).
Many species have additionally the ability to form free

swimming colonies (e.g. Salpingoeca rosetta) or substratum

attached colonies (e.g. Codosiga botrytis) [1��,2]. The

Acanthoecida, on the other hand, are characterized by

an inorganic extracellular covering (basket-shaped lorica

made of silica strips) (Figure 1c) [1��,14]. This order

comprises two families, the nudiform Acanthoecidae

(nudiform: after cell division one of the daughter cells

leaves the lorica naked, e.g. Acanthoeca spectabilis) and the

tectiform Stephanoecidae (tectiform: after cell division
www.sciencedirect.com
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Phylogenetic position, morphology and diversity of choanoflagellates. (a) Choanoflagellates are the closest single-celled relatives of animals [2–4].

White circle: last common ancestor of choanoflagellates and animals. (b) Choanoflagellate morphology and disposition of organelles [1��]. bb,

basal body; mt, mitochondria; fv, food vacuole. (c) Choanoflagellates can be divided into two different taxonomic orders: Craspedida and

Acanthoecida [2,14]. Among the Craspedida, unicellular species, and species with the ability to form free swimming colonies (e.g. Salpingoeca

rosetta) or substratum attached colonies (e.g. Codosiga botrytis) exist. The Acanthoecida are characterized by a basket shaped inorganic covering

(lorica). This order comprises two families, the nudiform Acanthoecidae (e.g. Acanthoeca spectabilis) and the tectiform Stephanoecidae (e.g.

Stephanoeca diplocostata). Choanoflagellate species with a sequenced genome are highlighted in red.
one of the daughter cells is turned upside down and

pushed into already accumulated silica strips, e.g. Stepha-
noeca diplocostata) [1��,2,14]. Multicellular forms with cell-

cell contacts have not been observed for Acanthoecida

[14,16], although some species attach to each other with

their lorica (e.g. Polyoeca dichotoma and Parvicorbicula
socialis) [1��,17,18]. Here, we are focusing on M. brevicollis
and S. rosetta, two species belonging to the Craspedida,

that are emerging as choanoflagellate models.

Surprising insights from M. brevicollis — a
unicellular choanoflagellate
M. brevicollis, a unicellular choanoflagellate can switch

between two different life cycle stages: a sedentary stage

(attached to the substratum) and a motile stage (swim-

mer) (Figure 2a) [2]. The sedentary stage is attached via a

microfibrillar stalk (Figure 2a) [2]. It was the first choano-

flagellate species with a fully sequenced genome [3] (link

to the genome browser: http://genome.jgi.doe.gov/

Monbr1/Monbr1.home.html). The genome of M. brevi-
collis revealed many surprising findings and highlighted

the importance of studying choanoflagellates. For exam-

ple, despite the inability of M. brevicollis to form colonies,

its genome encodes homologs of many proteins critical for

animal cell adhesion and signaling. Two very prominent

examples are the presence of cadherins [3,19] and tyro-

sine kinases [3,20,21] in M. brevicollis, proteins that were
www.sciencedirect.com 
previously thought to be animal specific. In particular, the

presence of cadherins in a unicellular organism generated

much excitement, as these proteins are key components

required for animal cells to stick to each other. The

M. brevicollis genome encodes 23 different cadherins

[19], a very similar number of cadherins can be found

in diverse animal genomes (16 in Amphimedon queenslan-
dica, 16 in Nematostella vectensis, 17 in Drosophila melano-
gaster and 15 in Ciona intestinalis) [22]. While the exact

function of many M. brevicollis cadherins remains to be

investigated, two M. brevicollis cadherins (MBCDH1 and

2) localize to the collar of the choanoflagellate (Figure 2b)

and may mediate the direct interaction with bacterial prey

[19] or intra-collar adhesion (Figure 2c) [9,23].

Tyrosine kinases (TKs) are critical components of signal-

ing cascades that are involved in cell-cell-communication

and other processes important for the establishment of

multicellularity in animals [24]. The M. brevicollis genome

revealed the presence of 128 TKs [3,21], opposed to 90 in

the human genome [25]. Only 7 M. brevicollis TKs are

homologous to animal TKs [21], one of which (Abl2) has

been shown to phosphorylate cellular proteins when

expressed in mammalian cells [26]. The other M. brevicollis
TKs show domain combinations distinct from animal TKs

[3,21], revealing individual diversification of TKs in choa-

noflagellates and animals [21,27]. Subsequent genome
Current Opinion in Genetics & Development 2016, 39:42–47
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Figure 2
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The choanoflagellates Monosiga brevicollis and Salpingoeca rosetta emerge as model organisms. (a) M. brevicollis can switch between two

different life cycle stages: a sedentary stage (attached) and a motile stage (swimmer). (b) Cadherin MBCDH1 and 2 localize to the collar of M.

brevicollis (modified from [19]). (c) Scanning electron micrograph of collar links between microvilli (modified from [23]). (d) Secretory SNARES and

Munc18 localize to the apical membrane of M. brevicollis (modified from [52]). (e) Transmission electron micrograph shows vesicles at the apical

membrane of M. brevicollis (modified from [52]). (f) S. rosetta can switch between five different life cycle stages: a sedentary stage (attached), two

different motile stages: fast swimmers and slow swimmers and two different colonial stages: chain and rosette colonies (modified from [9]). Cells

in colonies are held together by cytoplasmic bridges and extracellular matrix (not shown), and rosette colonies are additionally stabilized by

filopodia (modified from [9]). (g) Transmission electron micrograph reveals a cytoplasmic bridge between two cells in S. rosetta colonies (modified

from [9]). (h) Attached S. rosetta cells possess long basally positioned filopodia (modified from [41]). (i) C-type lectin (asterisk) localizes to the

centre of S. rosetta colonies (modified from [12��]). (j) The postsynaptic protein homolog Homer localizes to the nucleus of S. rosetta (modified

from [13�]). Scale bars: 2 mm in B, 100 nm in C; 2 mm in D; 200 nm in E; 200 nm in G; 1 mm in H; 5 mm in I and J. RIF-1, rosette inducing factor 1.
surveys of other holozoans (group including animals, choa-

noflagellates, filastereans, ichthyosporeans and corallochy-

treans (Figure 1a)) and closely related organisms, revealed

that choanoflagellates are not the only phylum besides

animals with homologs of tyrosine kinases and cadherins
Current Opinion in Genetics & Development 2016, 39:42–47 
[27,28�]. Two Cadherins have been identified in the

filasterean Capsaspora owczarzaki, and two more in Theca-
monas trahens — a non-holozoan flagellate [28�]. TKs are

present across holozoans [27] and were also identified in

T. trahens and in the amoeba Acanthamoeba castellanii [29].
www.sciencedirect.com
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Another big surprise to emerge M. brevicollis genome

analyses was the identification of synaptic proteins

[13�,30–34]. M. brevicollis clearly lacks synapses and neu-

rons, but possesses many critical components for synapse

function known from animals. For example, the M. bre-
vicollis genome encodes for voltage gated calcium chan-

nels that are very similar to the ones found in animal nerve

cells [34], for voltage gated sodium channels important for

generating action potentials in animal nerve cells [31,35]

and also several proteins that animal nerve cells use to

anchor neurotransmitter receptors at the postsynaptic

membrane, so-called postsynaptic scaffolding proteins

like PSD-95, Homer and Shank [32]. In addition, a

neurosecretory apparatus was identified in M. brevicollis
[36]. A conserved set of presynaptic neurosecretory pro-

teins, which are called SNARE and Munc18 proteins and

are key components of the synaptic vesicle release ma-

chinery in neurons, interact in M. brevicollis in the same

way as they do in vertebrates [36]. These proteins localize

to the apical membrane in M. brevicollis and may mediate

the release of molecules from vesicles (Figure 2d, e).

S. rosetta — a colony-forming
choanoflagellate enters the stage
A major step in choanoflagellate research was the intro-

duction of S. rosetta as a model organism. This species is

able to form beautiful colonies, and the complex life cycle

of S. rosetta has now been investigated in detail (Figure 2f)

[9]. S. rosetta possesses a sedentary stage (attached to the

substratum) and at least two different motile stages: fast

swimmers and slow swimmers [9]. Slow swimmers can

differentiate into fast swimmers or attached cells

(Figure 2f). Importantly, slow swimmers also have the

unique ability to form rosette or chain colonies by cell

division. [9,16]. Cells in both types of colonies are held

together by cytoplasmic bridges and extracellular matrix

(ECM) (Figure 2g); whereas rosette colonies are addi-

tionally stabilized by filopodia (Figure 2f) [9]. Rosette

colony formation can be induced by the addition of the

bacterium Algoriphagus machipongonensis to S. rosetta cul-

tures (Figure 2f) [37,38��]. Analysis of the lipid extract of

A. machipongonensis revealed that a specific molecule, a

sulfonolipid called RIF-1 (rosette inducing factor), is

responsible for the induction of colony formation

(Figure 2f) [38��]. RIF-1 synthesized in vitro also induces

colony formation [39], and additional molecules, syner-

gizing with RIF-1 in its colony inducing effect have been

identified [40]. The sequencing of the genome and tran-

scriptome of S. rosetta has further contributed to our

understanding of the putative genome composition of

animal ancestors [10]. Homologs of proteins involved in

cell adhesion and signaling (29 cadherins) and neuropep-

tide signaling were identified [41] (link to the genome

browser: http://www.ncbi.nlm.nih.gov/bioproject/37927:

link to the transcriptome browser http://www.ncbi.nlm.

nih.gov/bioproject/62005). The transcriptome has

assisted in attributing specific genes to the different life
www.sciencedirect.com 
cycle stages of S. rosetta [10]. For example, specific sets of

cadherins and tyrosine kinases are upregulated in colo-

nies, whereas other sets are upregulated in attached cells

only [10].

Moreover, the study of S. rosetta has led to insights into

the origin of animal filopodia, which are thin actin-based

projections and essential organelles for animal cells [41].

Filopodia are present in S. rosetta attached cells and

rosette colonies (Figure 2f) [9,41] and homologs of many

animal filopodial components are encoded in its genome,

for example fascin and myosin X [41]. Fascin in animal

filopodia is known as a critical actin crosslinking protein

[42,43]. In S. rosetta attached cells Fascin localizes to long

basally positioned filopodia and microvilli (Figure 2h)

[41]. Interestingly, the S. rosetta genome encodes for

two Fascin paralogs. Fascin 1 is upregulated in attached

cells, whereas Fascin 2 is upregulated in rosette colonies

[41]. This has important implications, as Fascin 1 could

function in filopodia formation for cell-attachment to

substratum, Fascin 2 on the other hand might function

in filopodia formation for rosette colony formation

(Figure 2f) and thus could directly be involved in colony

formation and/or stabilization in S. rosetta.

S. rosetta has also emerged as model to reconstruct the

ancestral functions of synaptic proteins like Homer, PSD-

95 and CamKII [13�,44,45]. The postsynaptic density

protein Homer, which controls abundance and orientation

of membrane receptors and regulates calcium signaling in

neurons [46], unexpectedly localizes to the nucleus in S.
rosetta (Figure 2j) [13�]. While the domain organization of

S. rosetta Homer is well conserved, as is its ability to

tetramerize, S. rosetta Homer does not interact with its

well-known binding partner Shank, which is encoded in

the S. rosetta genome and expressed throughout all life

history stages [13�]. Instead, it was shown that S. rosetta
Homer directly interacts with Flotillin, a component of

lipid rafts [13�]. Thus, Homer might have originally

functioned in the nucleus through its interaction with

Flotillin and was only later co-opted to act as a scaffolding

protein at the post synaptic density in neurons [13�].

The first genetic screen in choanoflagellates
The presence of sexual reproduction in choanoflagellates

was suggested by earlier studies [9,47–49]. The first direct

evidence of a choanoflagellate sexual life cycle was pro-

vided by Levin and King [11]. These researchers man-

aged to induce and observe a mating process, and showed

that upon changes in the availability of food bacteria, the

ploidy of cells in the culture changes (Figure 2 inset) [11].

Under starving conditions haploid choanoflagellate cells

form morphologically distinct gametes that fuse and

produce diploid cells, while under conditions of constant

food availability (high amount of food bacteria) the cells

undergo meiosis and form haploid cells again (Figure 2

inset) [11].
Current Opinion in Genetics & Development 2016, 39:42–47
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This pioneering work laid the foundation for the first

genetic screen in choanoflagellates. Levin and colleagues

used forward genetics to identify essential genes for S.
rosetta colony formation [12��]. In this approach mutations

were generated by X-ray or EMS exposure, followed by a

phenotypic screen for mutants with defects in rosette

colony formation. The authors isolated different mutants,

one of which they named Rosetteless. This mutant maps

to a C-type lectin, and is absolutely required for rosette

colony formation [12��]. Rosetteless protein localizes to

the centre of S. rosetta colonies (Figure 2i) and may be

important to stabilize connections between cells [12��].
The ability to outcross haploid mutants with haploid wild

type individuals, is extremely helpful in order to show, if

the wild type phenotype can be rescued, verifying its

suggested function and providing evidence for the muta-

tion being recessive or dominant [12��]. Establishing

forward genetics in S. rosetta provides ‘the first link

between genotype and phenotype’ for this group [12��]
and was an important step forward in establishing choa-

noflagellates as model organisms.

Conclusions
Model organisms are widely used in order to understand

key biological processes relevant to medicine, develop-

ment and evolution [50]. Choanoflagellate models are key

to reveal the ancestry of proteins required for animal

multicellularity. The choanoflagellate species M. brevicol-
lis and S. rosetta are easy to culture and have a short

generation time of 6–8 h. Both species have a fully

sequenced genome available [3,10], resources that led

to the identification of gene homologs once considered to

be animal specific. Both choanoflagellate genomes en-

code for many cadherins (cell–cell adhesion molecules)

[3,10] and synaptic proteins [13�,32].

Cadherins are differentially expressed depending on the

life cycle stages of S. rosetta [10]. In the future, it will be

important to investigate the subcellular localization of

additional choanoflagellate cadherins and the general

ability of choanoflagellate cadherins to homo-dimerize

(e.g. investigate if they bind each other and thus be able

to mediate direct cell-cell contact). Moreover, the iden-

tification of intracellular binding partners would reveal

downstream signaling functions of cadherins in choano-

flagellates.

The identification of synaptic proteins in choanoflagel-

lates and the presence of a conserved secretion apparatus

raise intriguing questions: Is the choanoflagellate synaptic

machinery involved in cell-cell communication? What is

the function of choanoflagellate synaptic proteins and

where do they localize in S. rosetta colonies? Do choano-

flagellates produce action potentials [51]? It remains to be

investigated if cell-cell communication is mediated by

secretion of small molecules (Figure 2d) or if cells com-

municate via cytoplasmic bridges (Figure 2g).
Current Opinion in Genetics & Development 2016, 39:42–47 
The available genomic resources and novel functional

techniques highlight the recent progresses made and

showcase the suitability of choanoflagellate models to

answer important questions in evolutionary biology, neu-

robiology and cell biology.
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