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Abstract This paper presents the first decadal reanalysis simulation of the biogeochemistry of the North
West European shelf, along with a full evaluation of its skill, confidence, and value. An error-characterized satel-
lite product for chlorophyll was assimilated into a physical-biogeochemical model of the North East Atlantic,
applying a localized Ensemble Kalman filter. The results showed that the reanalysis improved the model simula-
tion of assimilated chlorophyll in 60% of the study region. Model validation metrics showed that the reanalysis
had skill in matching a large data set of in situ observations for 10 ecosystem variables. Spearman rank correla-
tions were significant and higher than 0.7 for physical-chemical variables (temperature, salinity, and oxygen),
�0.6 for chlorophyll and nutrients (phosphate, nitrate, and silicate), and significant, though lower in value, for
partial pressure of dissolved carbon dioxide (�0.4). The reanalysis captured the magnitude of pH and ammonia
observations, but not their variability. The value of the reanalysis for assessing environmental status and vari-
ability has been exemplified in two case studies. The first shows that between 325,000 and 365,000 km2 of shelf
bottom waters were vulnerable to oxygen deficiency potentially threatening bottom fishes and benthos. The
second application confirmed that the shelf is a net sink of atmospheric carbon dioxide, but the total amount
of uptake varies between 36 and 46 Tg C yr21 at a 90% confidence level. These results indicate that the reanal-
ysis output data set can inform the management of the North West European shelf ecosystem, in relation to
eutrophication, fishery, and variability of the carbon cycle.

1. Introduction

Trends and patterns of biogeochemical variables that are relevant for marine policy and ecosystem under-
standing can be evaluated by merging numerical models and ocean color in extended ‘‘biogeochemical
reanalysis,’’ using a consistent data assimilation algorithm [Lahoz and Schneider, 2014; Gehlen et al., 2015].
Such algorithm corrects the model estimates toward the observations, taking account of the errors in the
model and in the observations [Kalman, 1960]. The resulting estimates of biogeochemical variables are
expected to be more realistic than the estimates obtained separately from modeling and monitoring efforts,
as is well established in environmental disciplines such as atmospheric science [Bengtsson and Shukla, 1988;
Trenberth and Olson, 1988] and ocean physics modeling [Stockdale et al., 1998].

In ocean biogeochemical modeling, the first (quasi)decadal biogeochemical reanalysis estimated the interannual
variability of global primary production in years 1998–2004 by assimilating chlorophyll from SeaWiFS (Sea-viewing
Wide Field-of-view Sensor) into the NASA Ocean Biogeochemical Model (OBM) [Nerger and Gregg, 2007]. A com-
parable variability of primary production was obtained in the reanalysis by Gregg [2008], who in addition
described the spatial patterns of chlorophyll in the global oceans. The reanalysis by Fontana et al. [2013] evaluated
spatial-temporal patterns of chlorophyll and nitrate in the North Atlantic Ocean in years 1998–2006, by assimilat-
ing SeaWiFS chlorophyll into a coupled physical-biogeochemical model. Reanalyses for years 1998–2012, using
chlorophyll observations from SeaWiFS and MODIS and the NASA OBM, evaluated significant declining trends of
chlorophyll in the Northern Hemisphere and Indian Oceans [Gregg and Rousseaux, 2014], and estimated declining
trends of phytoplankton functional groups in part of the global oceans [Rousseaux and Gregg, 2015].

The above works all demonstrated the value of reanalysis for open oceans, but the usefulness of biogeochemi-
cal reanalysis has not been evaluated in extended simulations for shelf-sea ecosystems yet. Shelf-seas are cru-
cial to the earth system, by providing �20% of the marine primary production [Jahnke, 2010], �20% of the
uptake of atmospheric carbon dioxide (CO2) by the oceans [Borges, 2011], and over 90% of the global fish
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catches [Pauly et al., 2002]. These processes and services are impacted by interannual climate variability and
changes in anthropic pressures, implying trends in coastal eutrophication [Cloern, 2001], fluctuations of shelf
uptake of CO2 [Borges, 2011], and expansion of poorly oxygenated shelf floor areas threatening fishes and
benthic communities [Diaz and Rosenberg, 2008; Gilbert et al., 2010; Rabalais et al., 2014]. Marine policy and
research are cooperating in monitoring and modeling biogeochemical variables that are indicators of the status
of shelf ecosystems and that can characterize its long-term variability, such as chlorophyll concentration, dis-
solved oxygen, partial pressure of CO2, and nutrient concentrations [OSPAR, 2013]. Such indicators have been
estimated successfully in previous works by assimilating ocean color into shelf-sea models; however, such simu-
lations were short-termed (i.e., 1 year or shorter) focusing on the skill of daily to weekly operational predictions
[e.g., Teruzzi et al., 2014; Shulman et al., 2013] or on the seasonal cycle of the ecosystems [e.g., Triantafyllou
et al., 2007; Fontana et al., 2010; Ciavatta et al., 2011, 2014; Mattern et al., 2013; Hu et al., 2012; Xiao and Frie-
drichs, 2014a], leaving the reanalysis of the interannual variability of shelf-sea biogeochemistry unexplored.

The overall aim of this work was to provide the first decadal reanalysis of the biogeochemistry of the North
West European shelf-sea. The specific objectives of this paper are: (i) to evaluate the skill and confidence of
the reanalysis and (ii) to exemplify the value of the reanalysis data set to assess the status and interannual
changes of the shelf ecosystem. With this last broad objective in mind, we present two case studies assess-
ing: (a) the vulnerability of the bottom waters of the shelf to oxygen deficiency and b) the interannual vari-
ability of the uptake of atmospheric CO2 by the shelf-sea ecosystem.

To achieve these aim and objectives, we assimilated an error-characterized ocean color product for chlorophyll
[Brewin et al., 2015] into an ecosystem model of the North East Atlantic [Wakelin et al., 2012], upgraded to the
state-of-the-art version of the European Regional Seas Ecosystem Model (ERSEM) [Butensch€on et al., 2015] and
integrated into the Ensemble Kalman filter [Evensen, 1994; Ciavatta et al., 2011]. This assimilation system was
applied in the reanalysis of the biogeochemistry of the North West European (NWE) shelf in the years 1998–
2009. The reanalysis output data set was first skill-evaluated using ocean color data and in situ observations of
10 physical and biogeochemical variables. The data set was then postprocessed to extract information relevant
to the case studies, including the confidence level of the reanalysis estimates. Estimate of confidence is a major
gap in most of the current modeling applications for ecosystem assessment [Hyder et al., 2015; Piroddi et al.,
2015], thus we suggest that it represents an added value of our reanalysis data set for its possible application
in marine policy.

The paper is structured as follows. Section 2 describes the ecosystem model, the setup of the assimilation
algorithm, the data, and the metrics applied for skill evaluation. In section 3, the results are presented and
discussed. The skill of the reanalysis data set is first evaluated with respect to the assimilated ocean color
data (section 3.1), and then using an in situ data set which was not part of the assimilation (section 3.2). The
two case studies are presented in sections 3.3 and 3.4 and concluding remarks and future applications are
pointed out in section 4.

2. Material and Methods

2.1. The Ecosystem Model of the North East Atlantic
The ecosystem dynamics of the North East Atlantic, including the North West European shelf (Figure 1), are
described by a three-dimensional physical-biogeochemical model [Wakelin et al., 2012; Artioli et al., 2012, 2014].

The model consists of three online coupled submodels (see Figure 2): the Proudman Oceanographic Labo-
ratory Coastal Ocean Modelling System (POLCOMS) [Holt and James, 2001], which describes the hydrody-
namics and provides the physical forcing to the pelagic biogeochemical submodel, namely the European
Regional Seas Ecosystem Model (ERSEM) [Baretta et al., 1995; Butensch€on et al., 2015]. The third submodel is
the ERSEM benthic biogeochemical model [Blackford, 1997; Butensch€on et al., 2015]. The submodels are
coupled at the same temporal and spatial resolution as the physical model, to capture the effects of the
three-dimensional hydrodynamics on the biogeochemical cycles [Holt et al., 2004].The grid of the model
spatial domain has horizontal resolution of 1/68 in longitude and 1/98 in latitude, approximating to �12 km
at the latitude of the study region, and it has 42 s coordinate levels in the vertical [Wakelin et al., 2012].
2.1.1. The Physical Submodel: POLCOMS
The physical model POLCOMS [Holt and James, 2001] is a three-dimensional baroclinic, finite-difference, primitive
equation model formulated in spherical-polar coordinates on an Arakawa B-grid. Both temperature and salinity

Journal of Geophysical Research: Oceans 10.1002/2015JC011496

CIAVATTA ET AL. REANALYSIS OF SHELF-SEA BIOGEOCHEMISTRY 1825



are treated as prognostic variables. The
model includes: an advection scheme
with stability and conservation proper-
ties [James, 1996]; a vertical turbulence
model (GOTM) [Burchard et al., 1999];
and calculation of horizontal pressure
gradients.
2.1.2. The Pelagic Biogeochemical
Submodel: ERSEM
The biogeochemical dynamics are
described by the European Regional
Seas Ecosystem Model (ERSEM) [Baretta
et al., 1995], using its state-of-the-art
version presented in Butensch€on et al.
[2015], and applying a configuration
with 51 pelagic variables. ERSEM uses a
functional type approach to model the
dynamics of the low trophic levels of
the ecosystem. Primary producers are
split into four phytoplankton functional
types (PFTs), including three size-based
types (picophytoplankton, nanophyto-

plankon, and microphytoplankton), plus diatoms as silicate users. Each of these PFTs is defined in terms of its
content of chlorophyll, carbon, nitrogen, phosphate, and (for diatoms only) silicate. Three functional types of
zooplankton (mesozooplankton, microzooplankton, and heterotrophic nanoflagellates) prey on the PFTs, bacte-
ria, and particulate organic matter as a function of their size. One bacterial functional type drives the microbial
loop, the production and recycling of dissolved organic matter in labile, semilabile, and recalcitrant forms, and
it drives the regeneration of inorganic nutrients in the water column [Polimene et al., 2006; Hansell, 2013]. In the
functional types, the stoichiometric ratios of nutrients-to-carbon and chlorophyll-to-carbon (in the PFTs) vary
dynamically [Geider et al., 1997; Baretta-Bekker et al., 1997]. The model includes the dynamics of five inorganic
dissolved nutrients (carbon, nitrate, ammonia, phosphate, and silicate) and dissolved oxygen. The model con-
figuration applied here includes a carbonate system module, which regulates air-sea flux of carbon dioxide, as
well as the description of calcite, including its deposition at the seafloor [Artioli et al., 2012; Butensch€on et al.,
2015].

Numerous works demonstrate the skill of ERSEM in representing marine ecosystem processes and repro-
ducing ocean observations. Model validations have used univariate and multivariate analysis [e.g., Allen and
Somerfield, 2009; Saux-Picart et al., 2012; de Mora et al., 2013, 2016] in model applications ranging from zero-
dimensional process studies [e.g., Pinna et al., 2015] to global simulations [Kwiatkowski et al., 2014; de Mora
et al., 2016]. In particular, the state-of-art version applied in this work was flexible and skilled in simulating
multiannual time series of nutrients, chlorophyll, oxygen, particulate organic and dissolved inorganic car-
bon, as well as reproducing emerging properties (phytoplankton stoichiometry and average community
structure) observed in three contrasting sites in coastal, shelf, and open ocean [Butensch€on et al., 2015; de
Mora et al., 2016]. However, the model can have low skill in representing observed phytoplankton succes-
sions (in particular blooms of dinoflagellates) in large-scale shelf-sea applications, due to limitations in the
parameterization of the PFTs [Ciavatta et al., 2011].
2.1.3. The ERSEM Benthic Submodel
The benthic submodel is the ERSEM benthic model [Blackford, 1997], as described in Butensch€on et al.
[2015]. In the configuration applied here, the submodel includes 35 biogeochemical variables, subdivided
into 7 living functional groups (including zoobenthos, aerobic, and anaerobic bacteria), along with particu-
late matter and dissolved organic and inorganic nutrients. The fluxes at the sediment-water interface are
determined by sedimentation and diffusion of inorganic material across the seabed.
2.1.4. Boundary Conditions and Atmospheric Forcing
The oceanic conditions at the open boundaries of the ecosystem model (temperature, salinity, currents, and
sea surface elevation) were extracted for the years 1998–2009 from the GLORYS reanalysis product provided

Figure 1. Bathymetry (m) of the North East Atlantic region represented in the
model domain. The dashed line represents the 200 m isobath delimiting the shelf
region for convention.
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within the EC FP7 project MyOcean [Ferry et al., 2012]. The corresponding conditions for dissolved nutrients
and oxygen were extracted from the 2005 World Ocean Atlas climatology [Garcia et al., 2006a, 2006b], and
for dissolved inorganic carbon (DIC) from the database GLODAP [Key et al., 2004].

The model was forced by daily climatological discharges of freshwater and dissolved nutrients from 250 riv-
ers. Data of water discharge were taken from the Global River Discharge Data Base [V€or€osmarty et al., 1996],
and from data prepared by the UK Centre for Ecology and Hydrology. River nutrient loadings matched
those used by Lenhart et al. [2010], with raw data for the UK, Northern Ireland, Ireland, France, Norway, Den-
mark, and the Baltic processed by the UK Centre for Environment Fisheries and Aquaculture Science, and
raw data for Germany and the Netherlands derived from P€atsch and Lenhart [2004]. In addition, Baltic inflow
was represented as river-inflow [Wakelin et al., 2012]. Atmospheric input of nutrients was derived from the
European Monitoring and Evaluation Programme [Tørseth et al., 2012].

The atmospheric forcing (three-hourly solar irradiance, air temperature, wind velocity, precipitation, humid-
ity, pressure, and cloud cover) was obtained from a regional climate hindcast (years 1989–2009, spatial reso-
lution of 12 km) performed by the Danish Climate Centre, using the regional Climate model HIRHAM5
[Christensen et al., 2006], driven by ERA-interim global reanalysis [Dee et al., 2011].

2.2. The Assimilation System
The assimilation framework uses the system described in full in Ciavatta et al. [2011, 2014], where it was
developed to assimilate ocean color in a similar POLCOMS-ERSEM model configured for the English Chan-
nel. The system uses the Ensemble Kalman filter (EnKF) [Evensen, 1994]. This is a sequential assimilation
method, which starts by randomly sampling an ensemble of N state vectors xaðlÞ

0 (l 5 1, 2, . . ., N) from an ini-
tial probability density function for the model variables. Each ensemble member, i.e., state vector, is propa-
gated in time using the nonlinear model equations during the ‘‘forecast step,’’ that provides the EnKF
‘‘forecasts’’ xf ðlÞ

i .

At time i, the forecast state xf
i and the forecast uncertainty Pf

i are defined from the mean value and the covari-
ance matrix of the N forecasted members. When at time i a vector y0i of observations of the model output yi5

H ½xf ðlÞ
i � becomes available, the assimilation scheme updates (i.e., ‘‘corrects’’) the forecasted states xf ðlÞ

i , in the
EnKF ‘‘analysis’’ step. This step scales the forecast-to-data mismatches, by balancing the uncertainty in the
model (Pf

i ) and in the observations (Ri) and it provides the analyzed ensemble xaðlÞ
i . This ensemble is the initial

Figure 2. Schematic of the ecosystem model coupling the physical submodel POLCOMS and the pelagic and benthic biogeochemical submodels of ERSEM.
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condition used to simulate a new ensemble forecast for time i 1 1, in a sequential procedure that estimates
the evolution of the model variables over the time window spanned by the assimilated observations.

Our assimilation system uses the Evensen [2003] version of the EnKF, which includes localization of the anal-
ysis and perturbation of the assimilated observations [see also Natvik and Evensen, 2003; Hu et al., 2012;
Storto et al., 2013]. Observations and model states are log-transformed prior to the analysis, to guarantee
positivity of the solutions [Janjić et al., 2014], as in the applications by Torres et al., [2006], Nerger and Gregg
[2008], and Ciavatta et al. [2011, 2014].

Importantly, the ensemble method can provide estimates of the uncertainty of the reanalysis product, derived
from the dispersion of the ensemble members around their central value (i.e., the median). In particular, we
used ranked values of the 100 ensemble members (minimum, 5th, 95th, and maximum ensemble value) to
define the confidence levels of the reanalysis estimates (1%, 5%, 95%, and 100% confidence, respectively).
2.2.1. Setup of the Assimilation System
Following Ciavatta et al. [2011], we used the EnKF with an ensemble size of N 5 100 members. To keep the
analysis affordable computationally, the analyzed state vector had to include a maximum of 44 out of the 51
biogeochemical state variables. The remaining seven variables were updated through the model equation
during the simulation runtime (‘‘forecast’’ step) and were selected among those more likely to create instabil-
ities in the long-term reanalysis on the base of previous findings (silicate in dissolved and medium and large
particulate forms [Ciavatta et al., 2011]), and of assimilation tests within this study (semilabile dissolved
organic carbon, dissolved oxygen, alkalinity, and calcite). The radius of the localized analysis was set spatially
variable as a function of the bathymetry [Ciavatta et al., 2011]. In particular, we increased the ‘‘resolution’’ of
the analysis from oceanic toward coastal waters, by setting a radius of 100 km for grid points where the
bathymetry is deeper than 2000 m (i.e., in 35% of the cells of the model grid), 50 km for bathymetry between
50 and 2000 m (51% of the grid), and 25 km for bathymetry shallower than 50 m (14% of the grid).

Model error is accounted for by random perturbations of the model forcing, namely the surface solar irradi-
ance, thus inducing fluctuations in the underwater light field that drives photosynthesis [Torres et al., 2006]
(see Natvik and Evensen [2003] and Simon and Bertino [2009] for comparable approaches). A Gaussian per-
turbation with standard deviation equal to 20% of the irradiance value is added during the model forecast
step. Furthermore, at the first assimilation step of each year, model error is added to all the variables under-
going the analysis, as white noise drawn from a distribution of pseudorandom fields with error equal to
10% of the value of the variables. The error is lowered to 1% for those variables that have relatively high
average values (DIC, ammonia, and small particulate matter), to avoid divergences in the concentrations of
the largest pool in the model [Ciavatta et al., 2011].

The ensemble was initialized by perturbing the output of a hindcast model simulation that started in Janu-
ary 1991 after a 5 year spin-up. The hindcast states for September 1997 were perturbed by using Gaussian
pseudorandom fields with error equal to 30% of the value of the variables. These perturbed states were
used to start the assimilation from the first data available in the ocean color time series. Results of the rean-
alysis and of the simulation without assimilation, namely the ‘‘reference’’ run, are presented for January
1998 to December 2009.

The reanalysis simulation was run on the UK national supercomputing facility ‘‘ARCHER’’, using 7200 com-
puting processors and �9 Mega Allocation Units (MAUs).

2.3. Data
The data of remotely sensed concentration of surface chlorophyll used in the assimilation (Figure 3) were pro-
vided by the Ocean Colour—Climate Change Initiative project of the European Space Agency (ESA’s OC_CCI
product, Version 2.0) [Brewin et al., 2015; Grant et al., 2015; Sathyendranath et al., Creating an ocean-colour time
series for use in climate studies: the experience of the ocean-colour climate change initiative, submitted to
Remote Sensing of Environment, 2016]. This product was created by merging satellite data from sensors MERIS,
MODIS, and SeaWiFS, after shifting the wavelength bands and correcting the bias between the sensors. It con-
sists of a global daily level 3 binned data set provided on a sinusoidal grid at 4 km resolution. It was downloaded
via FTP from http://www.oceancolor.org. As described in Appendix A, here the data set was projected onto the
�12 km model grid, and daily values were merged into 5 day composites centered on the last day of each
month in the years 1998–2009. Importantly, in the assimilation system we made use of per-pixel error statistics
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estimated by OC_CCI through the analysis of match-ups between in situ data and ocean color [Sathyendranath
and Jackson, 2015]. In particular, we computed and assimilated unbiased values of chlorophyll observations,
and we defined the variance of their pseudorandom Gaussian perturbations (section 2.2) by processing per-
pixel root-mean-square deviations provided with the OC_CCI data set (see details in Appendix A, equations (A8)
and (A9)).

The in situ data used to evaluate the reanalysis skill were measured in the North East Atlantic in the years
1998–2009 and were extracted from the Ecosystem Data Online Warehouse of the International Council for
the Exploration of the Sea (http://geo.ices.dk/ [ICES, 2009]) for the following variables: temperature, salinity,
dissolved oxygen, chlorophyll, nitrate, ammonia, phosphate, silicate, and pH. Data of partial pressure of car-
bon dioxide (pCO2) were derived from the Surface Ocean CO2 Atlas (synthesis product, version 2; http://
www.socat.info) [Bakker et al., 2014].

2.4. Skill Metrics
The skill of the reference and reanalysis output (y) in matching the assimilated composites of chlorophyll
concentrations from ocean color (y0c, equation (A10) in Appendix A) was evaluated by computing and com-
paring maps of the root-mean-square deviation (RMSD) and of the Pearson correlation (q) between the
time series of y and y0c at each surface grid point of the model domain. Time series of RMSD between the
spatial distributions of y and y0c at each month of the reanalysis was also computed. The skill of the reanaly-
sis was evaluated for the output of both the forecast and analysis steps of the assimilation algorithm (see
section 2.2 for the definition of these steps).

Figure 3. Chlorophyll data from ocean color assimilated in the reanalysis; (a) average value of the unbiased data in the period 1998–2009
(in concentration units, computed from y0c in equation (A10) in Appendix A); (b) range between the maximum and minimum yearly means;
(c) average value of the percentage standard deviation of the observations (computed as ratio of sc and y0c in equations (A10) and (A11);
(d) numerosity of the assimilated composites at each grid cell of the model domain, in the 144 month long reanalysis. The dashed line rep-
resents the 200 m isobath delimiting the shelf region for convention.
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Quantitative metrics to evaluate the skill of the reanalysis in matching the in situ data were computed using
an open source tool for model validation (https://github.com/bcdev/opec-tools) based on de Mora et al.
[2013]. Daily values of the variables in the reanalysis data set (y) were matched-up point-to-point in space
and time with the observations (o). Parametric statistics were then computed and presented in Taylor and
Target diagrams that show [Taylor, 2001; Jolliff et al., 2009]: Pearson correlation coefficient (q), standard
deviation of the output (r) normalized by the standard deviation of the observations (ro), bias of the out-
put, bias 5 mean(y-o), normalized by ro, unbiased root-mean-square deviation (RMSD’) normalized by ro,
and taken with the algebraic sign of the differences between the standard deviation of the output and the
observations, sign(r2ro). In addition, we computed ‘‘robust’’ skill metrics that are sounder than parametric
metrics when the distribution of the variables is non-Gaussian, because robust metrics are based on the per-
centiles and ranks of the distributions and thus they are less affected by outliers [e.g., Daszykowski et al.,
2007]. Robust metrics were presented in a Target diagram showing [Butensch€on et al., 2015]: the bias com-
puted as the median value of the reanalysis-to-observation mismatch, bias* 5 median (y-o), normalized by
the interquartile range of the observations (IQRo); the unbiased median absolute error,
MAE’ 5 median{abs[y-o-bias*]}, normalized by IQRo, and taken with the algebraic sign of the differences
between the interquartile range of the output and the observations, sign(IQR-IQRo); the Spearman rank cor-
relation coefficient, qs. The latter was used also in the case studies, to compute cross correlation among
time series of variables from the reanalysis; we computed also the significance level p that such correlation
is different from zero, at a confidence level of 99%, that is, p< 0.01.

3. Results and Discussion

3.1. Skill in Matching the Ocean Color Data
In the years 1998–2009, the distribution of chlorophyll observed in the North West European shelf was char-
acterized by sharp gradients from the coastal areas toward the oceanic waters (Figure 3a), and the reanaly-
sis matched this pattern quite closely (Figure 4).

Simulated concentrations were lower than satellite observations in coastal areas, however, the satellite
observations were more uncertain in these regions compared to the open shelf (Figure 3c), due to resus-
pended sediments and colored dissolved organic matter discharged by rivers [Sathyendranath, 2000]. In
oceanic waters, the reanalysis overestimated the observed chlorophyll concentrations because the model
was overestimating nutrients in the boundary ocean regions (see section 3.2). In addition, in the northern
oceanic waters, the skill of the reanalysis was constrained by the relatively low number of data items avail-
able for assimilation (Figure 3d).

Figure 4. (a) Average spatial distribution of chlorophyll concentration from the monthly assimilative analyses, in years 1998–2009; and (b) difference of such distribution with respect to
the average value of the unbiased ocean color data shown in Figure 3a. The dashed line represents the 200 m isobath delimiting the shelf region for convention.
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The reanalysis had skill in matching the assimilated satellite observations (Figure 5). The seasonal cycles of
the observations were captured by the simulation, as demonstrated by the large areas where the correla-
tion coefficient is higher than 0.6. Some low, or even negative, correlations were computed in the northern
basin where observations were sparse, and in coastal areas where observations were more uncertain, limit-
ing the ability of assimilation to correct the model (Figures 3c and 3d). The RMSD between reanalysis and
data is comparable to the chlorophyll concentrations in large parts of the domain, when averaged over the
whole period 1998–2009 (Figure 4a and 5a). Temporal mismatches between simulation and observations
(e.g., misrepresented phytoplankton blooms) contributed to the high RMSD in the coastal areas.

The reanalysis product has a higher skill in matching the ocean color data than the output of the model
without data assimilation, i.e., the model reference run. Importantly, this holds for the 1 month ‘‘forecasts’’
of the assimilation run (i.e., the output before the assimilation step), as well as for the ‘‘analysis’’ (i.e., the out-
put after the assimilation step) (Figure 6). Both the analyses and forecasts decreased the RMSD of the refer-
ence run by at least 1% in �60% of the basin (Figures 6a and 6c). The already high reference correlations
were not changed markedly by the forecasts and analyses, since in both cases changes were smaller than
0.01 in �60% of the basin (Figures 6b and 6d). Improvements of the reference simulation were higher in
magnitude for the analysis than for the forecasts, and the analysis decreased the reference RMSD up to
20% (Figure 6a). In general, improvements were less evident in the coastal areas and in the northern basin,
but here the assimilated data had higher errors and were less numerous, respectively, as mentioned above.

Considering the skill over time, both the assimilative forecast and analysis had lower errors than the refer-
ence simulation throughout most of the reanalysis period (Figure 7). Reduction of the RMSD by assimilation
was in general more frequent in the spring and summer seasons (see for example, summer 2005), while in
winter, changes were often negligible (for example, winter 2005/2006). Noticeable reductions of the RMSD
were obtained in December 2000, 2001, and 2008, but these results were less robust, because in December,
typically only a small amount of data was available for assimilation and skill evaluation, due to cloud cover
and to the low solar zenith angle at the latitudes of the study region in winter. In general, reinitialization at
the analysis step improved the subsequent forecast. However, in some instances, the forecasts were worse
than the reference, and the analysis could only mitigate the deterioration of the simulation (e.g., in spring-
summer 1998). Similar temporal patterns of skill improvement and deterioration were found in the time
series of reference, analysis, and forecast correlations with the ocean color data (not shown).

Improved estimates of the assimilated data were expected from the analysis, and essentially this achieve-
ment indicates that the data assimilation algorithm was implemented correctly [Gregg et al., 2009].

Figure 5. Skill of the reanalysis in simulating the assimilated chlorophyll data: (a) root-mean-square deviation (RMSD); (b) Pearson correlation between monthly time series of simulated
and observed data at each grid point of the model domain, in the period 1998–2009. The dashed line represents the 200 m isobath delimiting the shelf region for convention.
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However, the improved skill from the 1 month forecasts shown in Figures 6 and 7 was not obvious, since
forecasting the not-yet-assimilated data is a challenging task even for state-of-the-art operational systems
[Ford et al., 2012; Teruzzi et al., 2014]. In principle, the reinitialization of the assimilated variable closer to
the data should improve also the forecast of the next available data, with respect to the reference run.
However, reinitialized biogeochemical fields often tend to be ‘‘forgotten’’ and to converge back to the ref-
erence simulation because of the effect of hydrodynamics, forcing, boundaries values, and biogeochemical
processes [Allen et al., 2003; Friedrichs et al., 2006; Teruzzi et al., 2014]. In addition, multivariate analysis can
produce values that are not consistent with the simulated model dynamics, e.g., outlier nutrient values,
thus developing simulation instabilities that can lead the forecast to deteriorate both the assimilated and
unassimilated variables [Gregg et al., 2009; Ciavatta et al., 2011]. These potential shortcomings of assimila-
tion may explain the limited areas of skill deterioration pointed out in Figure 6, such as in the complex
coastal zones.

Figure 6. Differences between the skill of the assimilation and reference runs in simulating the time series of chlorophyll concentrations at each point of the model domain. (a and b)
The differences computed for the assimilative analysis, and (c and d) the differences for the assimilative forecast. (a and c) The percentage differences of the root-mean-square deviations
(RMSDs), normalized by the RMSD of the reference simulation; (b and d) the difference between the correlations computed from the assimilative and reference outputs. The dashed line
represents the 200 m isobath delimiting the shelf region for convention.
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3.2. Skill in Matching the In Situ Data
In general, the reanalysis provided skilled estimates of the in situ physical and biogeochemical data in the North
East Atlantic in the years 1998–2009. The output captured qualitatively the central position and dispersion of
most of the observations, for most of the variables (Figure 8). The reanalysis-to-observation match-ups are well
aligned along the bisector line of the plots for temperature, salinity, and dissolved oxygen, indicating a skilled
representation of both the magnitude and variability of the observations. The match-ups for phosphate, silicate,
and nitrate indicate a general overestimation of nutrients, while the reanalysis underestimated (overestimated)
low (high) pCO2 data. Interestingly, in the plots of nutrients, two areas of elevated data density are distinguish-
able at low and high concentrations, representing the summer and winter conditions, respectively, which in turn
are related to the seasonal cycle of primary production and stratification. This pattern of nutrients is captured by
the reanalysis, though the winter concentrations are overestimated. Match-ups for in situ chlorophyll and ammo-
nia are scattered in the plot, indicating that the high variability of these data was not described by the reanalysis.
Finally, the reanalysis was able to represent the magnitude of the pH data, but not their fluctuations.

The quantitative metrics confirm the high skill of the reanalysis in estimating temperature, salinity, and dis-
solved oxygen (e.g., both the Pearson and Spearman correlations were higher than 0.7) (Figure 9). The skill for
the majority of other variables was relatively high when robust metrics were used (Figure 9c), rather than the
metrics based on the Gaussian assumption (Figures 9a and 9b). A clear example is in situ chlorophyll, which is
much closer to the center in the robust Target diagram (Figure 9c), rather than in the standard Target (Figure
9b). Chlorophyll, phosphate, nitrate, and silicate all reached correlations 0.6 or higher when the Spearman rank
correlation was computed (Figure 9c). Robust metrics make the comparison of the variability of observations
and estimates sounder by using percentiles of the distributions (interquartile and median), which reduce the
impact of outliers. For example, outlier data of nutrients imply that the standard deviations are higher for the
observations than for the reanalysis, leading these variables to stay below the unit radius in the Taylor diagram
in Figure 9a, and on the left side of the Target diagram in Figure 9b; however, nutrients shifted to the right
side of the robust Target diagram in Figure 9c, since the estimates fluctuated more than the data when less
weight is given to the outlier observations. Considering the robust skill metrics, the pCO2 correlation with data
is not negligible (�0.4) and the overestimated variability and the bias are within the range of the errors for the
other variables. The same holds for pH, though the low Spearman correlation confirms that the model captures
the magnitude of this variable, but not its variability.

The skill of the reanalysis for the unassimilated variables in Figure 9 was not significantly different from the skill
of the reference run (not shown). This means, on the one hand, that the model itself performs satisfactorily in
estimating in situ data available in the North East Atlantic. On the other hand, it means that improved ocean
color estimates did not come at the cost of worsening the estimates of the other model variables. This is not
always the case, since ocean color assimilation can cause unrealistic changes in biogeochemical variables which
are not assimilated, reducing the model skill and creating feed-back effects that eventually can blow the simula-
tions [Fontana et al., 2013; Gregg et al., 2009; Ciavatta et al., 2011; Ford et al., 2012; Terruzzi et al., 2014]. In our
application, two factors can have contributed to the low impact of assimilation on the skill metrics for

Figure 7. Differences between the RMSD of the assimilative and reference outputs in estimating the spatial distributions of chlorophyll in the entire North East Atlantic, at each month
of the period 1998–2009 (J is January). The two lines represent the differences of the assimilative forecast (For, circles) and analysis (Ana, crosses) with respect to the reference (Ref).
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unassimilated variables,
namely the location of the in
situ sampling points and the
frequency of the assimilation
of satellite data. Most of the
match-ups with in situ data
occur in coastal case II waters,
where ocean color error is
higher (Figure 3c) and there-
fore assimilative corrections
are smaller than in the open
ocean. This is suggested also
by the sensitivity analysis of an
analogous assimilation system
applied in a subdomain of the
study region [Ciavatta et al.,
2011]. The relatively low
assimilation frequency
imposed by the high com-
putational cost of the multi-
variate ensemble method—
i.e., monthly assimilation,
compared, for example, with
daily assimilation allowed by
the univariate relaxation
method in Rousseaux and
Gregg [2015]—also con-
strained our reanalysis to
impact more strongly on the
skill for unassimilated
variables.

3.3. Case Study I:
Assessment
of Oxygen Deficiency in
Shelf
Bottom Waters
Dissolved oxygen concentra-
tion is an essential climate
variable [Bojinski et al., 2014], a
threat to aquatic life at low
concentrations [Vaquer-Sunyer
and Duarte, 2008], and an
indicator of eutrophication
regulated by international le-
gislation [OSPAR, 2013]. The
first case study demonstrates
that the reanalysis can provide
an error-characterized assess-
ment of this indicator. It shows
that the bottom of the North
West European shelf has large

areas vulnerable to oxygen deficiency (Figure 10), namely the south North Sea, Celtic Sea, Armorican shelf,
coastal zones in Scotland, West Ireland, and English Channel, but we did not identify anoxic situation in any of

Figure 8. Density plots of the reanalysis output (y axis) versus in situ observations (x axis)
measured in the North East Atlantic in the years 1998–2009. The colors represent the density
(i.e., number of overlapping observations) in logarithmic scale (note the different scales for the
variables). N is the total number of match-ups. The notation of the variables in the plot titles is
applied also in Figure 9.
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these cases. In all the above regions, the
reanalysis decadal data set includes at least
one daily value of dissolved oxygen below
the concentration of 6 mg/L, but still above
2 mg/L; these are the thresholds of oxygen
deficiency and anoxia, respectively, defined
by the OSPAR Commission for safeguarding
the ecosystem of North East Atlantic
[OSPAR, 2013].

The extension of the vulnerable area is
noticeably larger if we apply a conserva-
tive criteria of at least 1% confidence on
oxygen deficiency (Figure 10b, red plus
yellow area, �365,000 km2), rather than a
less strict 100% confidence (red area,
�325,000 km2). A 1% confidence means
that just 1 of the 100 ensemble members
estimates daily oxygen below the thresh-
old of 6 mg/L in the bottom layer, while
100% confidence means that all 100 esti-
mate oxygen below 6 mg/L. The more
conservative 1% criterion extends the bor-
ders of the vulnerable regions (see e.g., in
the Celtic Sea), but it includes also areas
otherwise neglected by the assessment,
i.e., in the Northern North Sea. Overall, the
1% ensemble criterion extends the area of
vulnerability by � 40,000 km2, i.e., an area
comparable to the surface of Switzerland.

The simulated absolute minimum values of
oxygen at each day, at any point within the
risk area, have a clear seasonal pattern and
no evident trend in the years 1998–2009
(Figure 11). The lowest values (3.5–4 mg/L)
are typically reached in August/September,
they increase sharply in autumn and return
to not-deficient values in spring. The bot-
tom minima occurred with higher fre-
quency in the Armorican shelf near the
Gironde and Loire estuaries, and in the Ger-
man Bight. The concentrations never
descended below the hypoxia threshold;
however, they reached persistent low val-
ues that were found lethal for some
benthic species, e.g., 4.6 mg/L were found
lethal for some fishes and mollusks in the
review by Vaquer-Sunyer and Duarte [2008].
This low value was reached at both the 1%
and 100% confidence levels (Figure 11).

The location of vulnerable areas identified in Figure 10 matches the global map of hypoxia and eutrophication
areas in Rabalais et al. [2014] (http://www.wri.org/our-work/project/eutrophication-and-hypoxia/interactive-map-
eutrophication-hypoxia) and compares reasonably well with regional studies for the Celtic Sea [O’Boyle and

Figure 9. Skill of the reanalysis in estimating in situ data of 10 physical and
biogeochemical variables observed in North East Atlantic in the years 1998–
2009. Gaussian-base metrics are used in the (a) Taylor and (b) Target dia-
grams, while robust metrics are shown in the (c) Target diagram. The metrics
are defined in section 2.4, the notation of the variables is defined in Figure 8.
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Nolan, 2010], North Sea [Greenwood et al., 2010], and Armorican shelf [Charria et al., 2014]. The latter work
presents a continuous, 2 year long time series of oxygen data that matches well the seasonal pattern
shown in Figure 11. The authors showed that oxygen solubility, seasonal stratification of the water column,
and bacterial remineralization of organic matter are the potential triggers of low bottom oxygen concentra-
tions in the region, particularly in summer [e.g., O’Boyle and Nolan, 2010; Greenwood et al., 2010]. Our sim-
ulation extend these findings to the scale of the whole shelf, since we found highly significant
anticorrelations between the oxygen series in Figure 11 and the daily series of water temperature, bacteria
biomass, and particulate organic carbon simulated at the same bottom locations (Spearman rank correla-
tions qs 5 20.75, 20.59, and 20.63, respectively, p< 0.01). Furthermore, Figure 11 suggests that oxygen
deficiency may occur also in winter months at some shelf locations (e.g., near estuaries). This could not
be directly confirmed by measurements collected in the ICES oxygen data base, where the coverage for
bottom water in winter is far too low to permit the identification of this phenomenon (http://geo.ices.dk/).
Therefore, these findings stimulates increasing the extension, frequency, and seasonal coverage of European
bottom water monitoring for better understanding and predicting oxygen dynamics.

Figure 10. (a) Minimum daily values of dissolved oxygen simulated by the ensemble median at the bottom of the shelf in the years 1998–2009 (bathymetry< 200 m) and (b) map of the
areas vulnerable to oxygen deficiency, i.e., with at least one daily value in 1998–2009 below the threshold of 6 mg L21. In Figure 10b, yellow color represents deficient areas at 1% confi-
dence level (i.e., at least 1 member of the ensemble signals oxygen deficiency), red represents 100% confidence (all the 100 members signal deficiency), and blue the areas of the shelf
with concentration higher than 6 mg L21 at 100% confidence.

Figure 11. Time series of absolute minimum concentration of dissolved oxygen simulated within the vulnerable area shown in Figure 10; yellow and red lines represent the minimum
values at 1% and 100% confidence level, respectively.
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The soundness of the confidence levels shown in Figures 10 and 11 depends on the proved reliability of the
model description of oxygen observations (section 3.2), but also on our arbitrary choices in the setup of the
ensemble simulation, for example, in the initial ensemble conditions for oxygen (section 2.2.1). However, dis-
solved oxygen was neither analyzed nor perturbed systematically in the reanalysis nor were temperature
and salinity, which are the physical drivers of the oxygen solubility in the water column. Thus, the oxygen
spread in the ensemble was propagated by biological processes only, which were perturbed through the
analysis and perturbation of the other model state variables, as well as through the perturbation of the sur-
face irradiance (section 2.2.1). On the one hand, such propagation of the spread implies that the assimilation
system for surface chlorophyll was capable of conveying the assimilated information and the model uncer-
tainty across the simulated trophic structure, and down to the bottom of the water column to affect the sim-
ulation of oxygen at depth. On the other hand, it implies also that the range of the confidence level (i.e., the
spread of oxygen) would be underestimated if the errors we assumed for the other model variables and irra-
diance forcing (i.e., the standard deviations of their perturbations) were underestimated in the first instance.

Besides dissolved oxygen, the reanalysis output also contains data characterizing the spatial-temporal vari-
ability and confidence levels of the other 10 variables linked to biogeochemical indicators listed in Euro-
pean legislation [OSPAR, 2013], including chlorophyll, nutrients, and pH, which are skill assessed in sections
3.1 and 3.2 (see Appendix B for a complete list of the reanalysis output).

Figure 12. Air-sea flux of CO2: (a) average yearly values in 1998–2009 (positive values represent sink, negative values source); (b) interannual variability as range maximum-minimum of
the yearly values; (c) uncertainty as average value of the range between the 95th and 5th percentiles of the ensemble. Map (d) shows the uncertainty in Figure 12c normalized by the
average in Figure 12a. The dashed line represents the 200 m isobath delimiting the shelf region for convention.
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3.4. Case Study II: Assessment of Atmospheric CO2 Uptake by the Shelf Ecosystem
The reanalysis data set can be applied to estimate the interannual variability of the shelf uptake of atmospheric
CO2, and to evaluate the confidence levels for such estimates, as shown in this case study. The North East Atlan-
tic is a net sink of atmospheric CO2 at a high confidence level (Figure 12). The ocean uptake increases from
south to the northern colder waters (from �5 to 15 mol C m22 yr21) and from the coast toward the open
ocean. On the shelf, the uptake is typically lower than 5 mol C m22 yr21 (region delimited by the 200 m isobath
in Figure 12). Weak sources of CO2 to the atmosphere (<1 mol C m22 yr21) were found in the English Channel,
Irish Sea, and near estuaries. The interannual variability of the fluxes was more homogeneous and smaller than
the interannual means, in general (Figure 12b). However, variability and means were comparable in the Irish Sea
and English Channel, indicating that these areas can switch from being weak sinks [Kitidis et al., 2012] to weak
sources of CO2 in some years, as a consequence of interannual fluctuations of the ecosystem dynamics (e.g., pri-
mary production) and forcing (e.g., water temperature) [Marrec et al., 2015; Borges and Frankignoulle, 2003]. The
uncertainty in the fluxes was in general lower than their average values, indicating that the reanalysis is suitable
for assessing flux directions, i.e., defining sink or source zones, at a 90% confidence level. However, in some
zones, uncertainty and fluxes were comparable low, for example, in the English Channel, south North Sea, and
Norwegian coast (Figure 12d). These areas should be considered flux-neutral at 90% confidence, like the English
Channel that was already classified a ‘‘not-significant-sink’’ by Borges and Frankignoulle [2003].

The overall annual uptake of carbon dioxide in the shelf region was 41 Tg C yr21 on average in the period 1998–
2009, but this value has an uncertainty of 65 Tg C yr21 (i.e., �25% of the average), at 90% confidence level, and
with an interannual variability of �20% (Figure 13 and Table 1). These estimates are coherent with previous litera-
ture findings (Table 1). An estimate of the average obtained with a comparable model, but referred to the years
1989–2004, lies within the range found in this study [Wakelin et al., 2012]. Our average value was higher than the
ones provided for the North Sea only [Thomas et al., 2005] and for the European shelf-seas altogether [Borges
et al., 2006], but they overlap with the uncertainty range in the Gulf of Biscay [Chen and Borges, 2009].

The interannual variability of the yearly uptake of CO2 ranged between 35 and 44 Tg C yr21 (Table 1 and
Figure 13), and we found it was related to the interannual variability of the gross primary production (Spear-
man rank correlation qs 5 0.72, p< 0.01), rather than to the interannual fluctuations of sea surface tempera-
ture (not-significant rank correlation). These results agree with Wakelin et al. [2012], who suggested that
biological processes exert a stronger effect than temperature on the air-sea flux of CO2 in the study region.

Our estimate of the uncertainty of the total flux (65 Tg C yr21, i.e., 25% of the average) appears sound, consider-
ing that it is coherent with the error assessed for pCO2 observations (percentage RMSD 5�20%, section 3.2),
and it is comparable in percentage to the range of uncertainty estimated by Thomas et al., 2005 (�22%, Table 1).
The estimated uncertainty of the flux is arguably linked to the uncertainty of primary production (see above rank
correlation), which is however constrained rather directly by the corrections of ocean color assimilation. In addi-
tion, the estimated uncertainty of the flux was larger than the arbitrary perturbations imposed on dissolved
organic carbon (DIC) in the assimilative initialization (1%, section 2.2.1), suggesting that the subjective initial per-
turbation of DIC did not strongly constrain the estimated uncertainty of its flux at the atmosphere interface. Our
estimate of the uncertainty of the CO2 flux is limited by not accounting for the error in the unperturbed tempera-
ture and salinity, which however are simulated skillfully by the model system (section 3.2).

Figure 13. Interannual variability and confidence of the yearly sink of atmospheric CO2 in the North West European shelf (bathymetry shal-
lower than 200 m); the grey band represents the range between the 95th and 5th percentiles of the reanalysis ensemble.
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The provision of sound estimates of the uncertainty of carbon fluxes based on assimilative ensemble simulations is
an added value of the reanalysis with respect to the reference simulation. The relatively large range of uncertainty
estimated here calls for the development and assimilation of ocean color products with higher accuracy for type-2
shelf-sea waters, so that the reanalyzed air-sea fluxes of carbon dioxide can be constrained more strongly. The
assimilation of optical data from ocean color could help, because such data have a lower error than chlorophyll in
shelf-seas, and they can constrain directly a larger number of variables that are optically active and contribute to car-
bon fluxes, such as particulate and colored dissolved organic matter [Ciavatta et al., 2014]. Further promising options
include assimilating size-class chlorophyll to better constrain variables and fluxes linked to different PFTs (see the 1-
dimensional simulations by Xiao and Friedrichs [2014b]), as well as assimilating pCO2 data in shelf-sea ecosystem
models. The latter approach arguably improved the estimation of the air-sea flux of CO2 in an annual simulation of
the global ocean biogeochemistry in the work by While et al. [2012].

The reanalysis data set contains values and confidence ranges of a large number of biogeochemical fluxes
which are useful to investigate nutrient cycles and ecosystem processes in the North West European shelf-
sea (see the list in Appendix B).

4. Conclusions

The reanalysis of the North East Atlantic biogeochemistry provided a unique decadal data set that has consider-
able skill in approximating ocean observations, and that can enhance the understanding and management of
the North West European shelf ecosystem, in relation to eutrophication and fluctuations of the carbon cycle.

Importantly, the reanalysis comes with confidence levels that quantify the uncertainty of the biogeochemi-
cal estimates. The crucial implications of this supplementary information were evident in two case studies,
where we assessed that:

1. An area as large as 325,000 km2 was vulnerable to oxygen deficiency at the bottom of the North West
European shelf, but additional 40,000 km2 are included when using a strict 1% confidence criteria.

2. The North West European shelf is a net sink of atmospheric CO2, but our simulated uptake can range
between 36 and 46 Tg C yr21, when applying a 90% confidence level for the estimates.

The confidence levels provided here are an added value of the reanalysis with respect to the model out-
put alone, because estimates of reliability are much needed for model applications in marine policy
[Hyder et al., 2015]. For example, provision of percentile confidence level is required for eutrophication
indicators inferred from monitoring programs [OSPAR, 2013], but quantification of uncertainty is a crucial
gap when such indicators are estimated through model simulations [Piroddi et al., 2015]. The ensemble-
based reanalysis presented here can help with tackling this gap in our knowledge of the North West Euro-
pean shelf, and the same methodological approach can be applied with other shelf-sea models running
on adequate high-performance computing facilities. Further insights into the confidence in simulated
ecosystem indicators and biogeochemical fluxes—including the contribution of uncertainty in hydrody-
namics not accounted for here—can be achieved using an ensemble of different biogeochemical models
[Lenhart et al., 2010; Skogen et al., 2014; Anav et al., 2013]. The use of our reanalysis in such a type of

Table 1. Air-Sea Fluxes of CO2 in the North West European Shelf, Ranges of Their Interannual Variability and Uncertaintya

mol C m22 yr21 Tg C yr21 References

Average 2.8 41 This work
39.6 Same domain as this work [Wakelin et al., 2012]

1.38 North Sea only [Thomas et al., 2005]
1.9 European shelf-seas altogether[Borges et al., 2006]

Interannual range 2.4–3.0 35–44 This workb

37.2–42 Standard deviation 2.4 Tg C yr21 [Wakelin et al., 2012]
Uncertainty range 2.4–3.1 36–46 This workc

1.7–2.91 Gulf of Biscay [Chen and Borges, 2009]
1.2–1.5 North Sea only [Thomas et al., 2005]

aThe total fluxes were computed for the shelf region with bathymetry shallower than 200 m represented in Figure 12 (1.2 3 106

km2). Positive values indicate sinking. Previous reference values are reported for comparison.
bRange between the maximum and minimum annual values.
cAverage value of the annual ranges between the 95th and 5th percentiles.
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ensemble, as well as the assimilation of ocean color size-class chlorophyll for operational reanalyses of
shelf ecosystems, is subject of our ongoing work within the Marine Environment Monitoring Service of
the European Copernicus Program.

Finally, to our knowledge, this is the first reanalysis that is taking advantage of the by-pixel estimates of the
errors of the assimilated ocean color product, decreasing the level of subjectivity often applied in biogeo-
chemical data assimilation [Ciavatta et al., 2014]. However, the product we used was derived primarily for
case-I waters. We expect that further advantages for biogeochemical reanalysis in shelf-seas will derive
from the availability of long-term, integrated products for case-I and II waters, e.g., from the current efforts
of the Ocean Colour Climate Change Initiative of the European Space Agency.

The reanalysis product presented in this paper is available for download and applications at the data portal
http://portal.ecosystem-modelling.pml.ac.uk.

Appendix A: Setup of the Assimilated Observations and Errors

Daily OC_CCI data of chlorophyll concentration at 4 km resolution were unbiased, scaled onto the model
grid (1/68 in longitude, and 1/98 in latitude, section 2.1) and merged in 5 day composites following the pro-
cedure described in this section. Bias and RMSD of the OC_CCI data are provided in base-10 logarithm,
while chlorophyll data are provided as concentrations in mg m23 [Grant et al., 2015]. Therefore, in the rean-
alysis, central and dispersion parameters of the data distributions were back-and-forward transformed from
concentration units to natural logarithm, which is used in the analysis step of assimilation (section 2.2).

Given the chlorophyll concentration at pixel p, and day t (yp,t), and base-10 logarithmic values of the bias
(d10,p,t) and mean-square-deviation D2

10,p,t, we approximated per-pixel values of the base-10 logarithm of
the standard deviation of the data as [Grant et al., 2015]:

r10;p;t5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD2

10;p;t2d2
10;p;tj

q
(A1)

Assuming that yp,t represents the mean value of the lognormal distribution of chlorophyll [e.g., Campbell,
1995], the mean value of the log-transformed distribution (l10,p,t) was calculated [Mood et al., 1974, equa-
tion 39; Campbell, 1995]:

l10;p;t5log10 yp;t
� �

21=2 � r2
10;p;t � loge 10ð Þ (A2)

And the bias-corrected value l010;p;t was computed:

l010;p;t5l10;p;t1d10;p;t (A3)

taking account of the OC_CCI convention of negative values of bias d10;p;t < 0
� �

for ocean color overesti-
mating actual concentrations [Grant et al., 2015].

The unbiased, scaled, 5 day composite at each model grid cell c, l010;c , was computed by averaging in space
and time the bias-corrected data:
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1

T � N
�
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XN

p51
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Where T 5 5 is the number of days, while the number of pixels included in a cell of the model grid is N, which
varies in space and time depending on the coordinates of the cell and the number of missing observations.

Similarly, the RMSD and bias of the cell composite were computed [Grant et al., 2015]:
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And the standard deviation of the cell composite was approximated [Grant et al., 2015]:
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r10;c5
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We changed the base of the mean and variance of the distributions to natural logarithm by using mathe-
matical properties [Campbell, 1995]:

l0e;c5l010;c � loge 10ð Þ (A8)

r2
e;c5r2

10;c � loge 10ð Þ½ �2 (A9)

These parameters were used in the analysis step of assimilation to compute pseudorandom Gaussian distri-
butions of the observations (section 2.2). In addition, the mean value (y0c) and standard deviation (sc) of the
unbiased lognormal distribution of chlorophyll, in concentration units, were obtained from the logarithmic
mean and variance in equations (A8) and (A9), by using mathematical properties of lognormal distributions
[Mood et al., 1974, equation 39]:
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These are the parameters used in the presentation of the assimilated data in Figure 3.

Appendix B: The Reanalysis Data Set

The reanalysis data set is available in digital files produced in Network Common Data Form (NetCDF) ver-
sion 4 (http://www.unidata.ucar.edu), following the standard convention ‘‘Climate and Forecast’’ meta-

Table B1. List of Pelagic Variables and Fluxes Available as Daily Means in the Reanalysis Output Filesa

Notation Unit Description Indicators

netPP t C d21 Net primary production X
pCO2w latm Partial pressure of CO2 in water
pH unitless pH X
P1c mg C m23 Diatoms carbon X
P2c mg C m23 Nanophytoplankon carbon X
P3c mg C m23 Picophytoplankton carbon X
P4c mg C m23 Microphytoplankton carbon X
Chl1 mg m23 Diatoms chlorophyll X
Chl2 mg m23 Nanophytoplankon chlorophyll X
Chl3 mg m23 Picophytoplankton chlorophyll X
Chl4 mg m23 Microphytoplankton chlorophyll X
N3n mmol m23 Nitrate X
N4n mmol m23 Ammonium X
N1p mmol m23 Phosphate X
N5s mmol m23 Silicate X
O2o mmol m23 Oxygen X
EIR W m22 Irradiance
B1c mg C m23 Bacteria carbon X
Z4c mg C m23 Mesozooplankton carbon
Z5c mg C m23 Microzooplankton carbon
Z6c mg C m23 Heterotrophic nanoflagellates carbon
R1c1R2c1R3c mg C m23 Dissolved Organic Carbon (DOC)
R4c1R6C1R8c mg C m23 Particulate Organic Carbon (POC) X
L2c mg C m23 Calcite
ETW 8C Water temperature X
x1X psu Salinity
rholocal kg m23 Sea water density
nuv m2 s21 Vertical turbulent diffusivity
oChl mg Total chlorophyll averaged over the optical depth X
opticalDepth m Optical depth
fairmg mg C m22 Air-sea flux of CO2

aThe last column points out variables linked to ecosystem indicators specified by the OSPAR Convention [OSPAR, 2013], by the
Marine Strategy Framework Directive (MSFD, Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008),
and by the Water Framework Directive (WFD, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000).
Data of grid cell dimensions are also provided to convert the units of variables and fluxes.
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Table B3. List of Benthic Variables and Fluxes Available as Daily Means in the Reanalysis Output Filesa

Notation Unit Description

bL2c mg C m22 Calcite
Y2c mg C m22 Deposit feeders, carbon
Y3c mg C m22 Suspension/filter feeders, carbon
Y4c mg C m22 Meiobenthos carbon
H1c mg C m22 Aerobic bacteria carbon
H2c mg C m22 Anaerobic bacteria carbon
Q1c mg C m22 Dissolved detrital carbon
Q6c mg C m22 Slowly degradable carbon
Q7c mg C m22 Available refractory carbon
K1p mmol m22 Benthic phosphate
K3n mmol m22 Benthic nitrate
K4n mmol m22 Benthic ammonium
K5s mmol m22 Benthic silicate
G2o mmol m22 Benthic oxygen
G3c mmol C m22 Benthic carbon dioxide
G4n mmol N m22 Benthic nitrogen dioxide
Q17c mg C m22 Buried refractory carbon

aData of grid cell dimensions are also provided to convert the units of variables and fluxes.

Table B2. List of Pelagic Variables and Fluxes Available as Monthly Means in the Reanalysis Output Filesa

Notation Unit Description

grossPP t C d21 Photosynthesis (gross primary production)
PResp t C d21 Phytoplankton respiration
ZResp t C d21 Zooplankton respiration
BResp t C d21 Bacterial respiration
TotA mmol kg21 Total alkalinity
bioalk mmol kg21 Bioalkalinity
O3c mmol m23 Dissolved organic carbon (DIC)
R1c mg C m23 Labile dissolved organic carbon (DOC)
R2c1R3c mg C m23 Recalcitrant DOC
R4c mg C m23 Small size particulate organic carbon (POC)
R6c mg C m23 Medium size POC
R8c mg C m23 Large size POC
P1n mmol N m23 Diatoms nitrogen
P2n mmol N m23 Nanophytoplankon nitrogen
P3n mmol N m23 Picophytoplankton nitrogen
P4n mmol N m23 Microphytoplankton nitrogen
P1p mmol P m23 Diatoms phosphate
P2p mmol P m23 Nanophytoplankon phosphate
P3p mmol P m23 Picophytoplankton phosphate
P4p mmol P m23 Microphytoplankton phosphate
P1s mmol Si m23 Diatoms silicate
BGE unitless Bacterial growth efficiency
B1n mmol N m23 Bacteria nitrogen
B1p mmol P m23 Bacteria phosphate
netB1 t C d21 Bacterial production
fPXZXc t C d21 Zooplankton predation on phytoplankton
fBXZXc t C d21 Zooplankton predation on bacteria
fRXZXc t C d21 Zooplankton predation on particulate matter
fPXRPc t C d21 Phytoplankton excretion and mortality to POC
fZXRPc t C d21 Zooplankton excretion and mortality to POC
fPXRDc t C d21 Phytoplankton excretion to DOC
fZXRDc t C d21 Zooplankton excretion to DOC
fBXRDc t C d21 Bacteria mortality DOC
fRPBXc t C d21 POC uptake by bacteria
fN1PXp mmol P d21 Phosphate uptake by phytoplankton
fN3PXn mmol N d21 Nitrate uptake by phytoplankton
fN4PXn mmol N d21 Ammonium uptake by phytoplankton
fN5PXs mmol Si d21 Silicate uptake by phytoplankton
fB1N1p mmol P d21 Phosphate production by bacteria
fB1NIn mmol N d21 Ammonium production by bacteria
CProd t C d21 Net pelagic production (Photosynthesis—pelagic respiration)
fRDBXc t C d21 Bacteria uptake of DOC
calc mg C m23 d21 Net calcification

aData of grid cell dimensions are also provided to convert the units of variables and fluxes.
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data CF-1.6 (http://cfconventions.
org/). Separated files contain differ-
ent statistics of the reanalysis
ensemble (median, mean, 5th per-
centile, 95th percentile, minimum,
and maximum), for daily and
monthly means of pelagic and
benthic variables and fluxes listed in
Tables B1–B4. An extensive descrip-
tion of such model variables and

fluxes was provided by Butensch€on et al. [2015]. The full reanalysis data set has a size of �12 Tb. A subset
of the regridded data set can be visualized, processed, and downloaded at the data portal http://portal.
ecosystem-modelling.pml.ac.uk, while the full data set is available on request to the corresponding
author.
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