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Abstract A basin-wide transect of nitrate isotopes (δ15NNO3, δ
18ONO3), across the UK GEOTRACES 40°S

transect in the South Atlantic is presented. This data set is used to investigate Atlantic nutrient cycling
and the communication pathways of nitrogen cycling processes in the global ocean. Intermediate waters
formed in the subantarctic are enriched in δ15NNO3 and δ18ONO3 from partial utilization of nitrate by
phytoplankton and distant denitrification processes, transporting heavy isotope signatures to the subtropical
Atlantic. Water mass modification through the Atlantic is investigated by comparing data from 40°S
(South Atlantic) and 30°N (North Atlantic). This reveals that nitrate in the upper intermediate waters is
regenerated as it transits through the subtropical Atlantic, as evidenced by decreases in δ18ONO3. We
document diazotrophy-producing high N:P particle ratios (18–21:1) for remineralization, which is further
confirmed by a decrease in δ15NNO3 through the subtropical Atlantic. Thesemodifications influence the isotopic
signatures of the North Atlantic Deep Water (NADW) which is subsequently exported from the Atlantic to
the Southern Ocean. This study reveals the dominance of recycling processes and diazotrophy on nitrate
cycling in the Atlantic. These processes provide a source of low δ15NNO3 to the Southern Ocean via the
NADW, to counteract enrichment in δ15NNO3 from water column denitrification in the Indo/Pacific basins.
We hence identify the Southern Ocean as a key hub through which denitrification and N2 fixation communicate
in the ocean through deepwater masses. Therefore, the balancing of the oceanic N budget and isotopic
signatures require time scales of oceanic mixing.

1. Introduction

Nitrate (NO3
�) is an essential nutrient for marine phytoplankton and limits primary production in much of the

global ocean. The supply of NO3
� to the surface ocean therefore has implications on the efficiency of the bio-

logical pump and CO2 regulation. Denitrification and N2 fixation by diazotrophs are the main sink and source
of NO3

� in the ocean and hence exert a predominant control on the ocean NO3
� inventory andmass balance

[Gruber, 2004]. Nevertheless, these processes are spatially separated in the ocean. Water column denitrifica-
tion at globally significant rates occurs in the northern Indian and eastern Pacific Ocean basins. N2 fixation
may occur distributed over the tropics and subtropics and is determined by the availability of excess phos-
phate (P) and iron (Fe) [Deutsch et al., 2007; Moore et al., 2009].

In the South Atlantic, deep waters that originate from the Pacific and Southern Oceans meet with those of
North Atlantic origin. This confluence makes the ideal location to investigate the water mass pathways
through which oceanic N loss and gain communicate by documenting contrasting nutrient properties in
water masses. Of particular significance is the Upper Circumpolar Deep Water (UCDW) which is sourced from
the Antarctic Circumpolar Current (ACC), where deep waters from Atlantic, Pacific, and Indian Ocean basins are
added on its eastward circumpolar circuit [Oudot et al., 1999]. The UCDW has the potential to carry isotopic
signatures of N processing from other ocean basins into the Atlantic basin. The Antarctic Intermediate Water
(AAIW) and Subantarctic ModeWater (SAMW) overlay the UCDW in the Atlantic and are principally formed from
UCDW. In the Atlantic Ocean, they undergomodification at the ocean surface during ventilation and northward
transport [Piola and Georgi, 1982; Sloyan and Rintoul, 2001]. Together these Antarctic intermediate waters set the
baseline nutrient conditions and isotopic signatures which are transferred to the Atlantic thermocline
[Sarmiento et al., 2004]. The Antarctic Bottom Water (AABW) is also sourced from the Southern Ocean and is
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the densest of oceanic water masses [Orsi et al., 1999]. Its formation is centered on the Antarctic continental
margins where Circumpolar Deep Water (CDW) is entrained southward from the ACC, interacting with cold
and dense shelf waters [Naveira Garabato et al., 2002]. The AABW is transported northward into the abyssal
plains of the South Atlantic and feeds Atlantic deepwater formation.

In theAtlantic, thenorthwardflowofAntarctic intermediateandbottomwaters feed the formationof theNorth
Atlantic DeepWater (NADW), which ventilates the global ocean. TheNADWprovides approximately half of the
deepwaters of the global ocean and has higher N:P concentrations compared to SouthernOcean deepwaters
[Gruber and Sarmiento, 1997]. These differences may be attributed to the spatial segregation between denitri-
fication and N2 fixation in the ocean. The Atlantic Ocean is thought to be where N2 fixation may exceed deni-
trification. The negligible N loss may feed a net export of N from the Atlantic Ocean through NADW transport
[Moore et al., 2009]. In contrast, water masses from the ACC such as the UCDW and the associated SAMW and
AAIW have the potential to carry a denitrification signal from the Pacific and Indian Oceans to be modified
during northward transport under the Atlantic thermocline. In this study we use isotopic signatures of NO3

�

in the South Atlantic to investigate the water mass pathways through which the processes of N loss and gain
communicate through the global Meridional Overturning Circulation (MOC). We attempt to further clarify
the degree to which the Atlantic N cycle is internally balanced. This has important implications to the time
scales over which source and sink terms in the global oceanic N budget are balanced and the response time
of the N cycle to anthropogenic perturbations such as the expansion of denitrification zones in response to
global change [Kalvelage et al., 2013;Weber and Deutsch, 2014].

The 15N/14N and 18O/16O of NO3
� are sensitive to biogeochemical cycling and can indicate the origin and

modification of water masses [Sigman et al., 2000]. N and O isotope signatures in NO3
� (δ15NNO3 and

δ18ONO3) can be used as integrative tracers of N cycling processes which may vary temporally and spatially
within the ocean [e.g., Difiore et al., 2006; Rafter et al., 2013]. Isotope ratios are measured relative to a refer-
ence (AIR, Vienna Standard Mean Ocean Water (VSMOW)) and are expressed in a delta notation (δ15N versus
AIR (‰) = (Rsam/Rstd� 1) × 1000 and δ18O versus VSMOW (‰) = (Rsam/Rstd� 1) × 1000). The isotopic effect
(defined here in per mil notation as ε= 15K/14K� 1, where 14K and 15K are the rate coefficients of 14N and
15N) of N cycling processes leaves an isotopic “fingerprint” on NO3

� within water masses. The integrated
nature of isotopic signatures helps to avoid the complexities in upscaling shipboard measurements of
variable N cycling processes and assumptions in modelling estimates [Sigman et al., 2009a].

The average subsurface oceanic δ15NNO3 is close to 5‰ and globally can be interpreted as a balance between
isotopic fractionation during N2 fixation and denitrification [Brandes and Devol, 2002; Sigman et al., 2009a].
Nitrate consumption by phytoplankton acts to enrich the residual pool of NO3

� in 15N, with an isotopic effect
of ~5‰ [Altabet and Francois, 2001]. In the subtropical gyres, NO3

� is fully consumed by phytoplankton;
therefore, uptake and remineralization have minimal effect on subsurface δ15NNO3, as remineralized organic
N should equal the NO3

� source [Sigman et al., 2000]. In the Southern Ocean, NO3
� remains high in surface

waters from low light levels and iron limitation [e.g., Boyd et al., 2007]. Here partial utilization of macronutri-
ents leaves an isotopic imprint in surface waters as NO3

� (higher 15N and 18O with decreasing NO3
�) which is

then transferred to Southern Ocean-sourced intermediate waters as preformed signatures [Sigman et al.,
2000]. In these water masses, changes in the isotopic signatures may indicate the importance of both physical
mixing and biogeochemical changes during water mass formation.

The δ15NNO3 can be indicative of processes far beyond the localized regions of water mass formation or NO3
�

input/output. Nitrate added to the ocean by N2 fixation is not fractionated during atmospheric N2 uptake
[Carpenter et al., 1997]. Therefore, newly fixed N in organic matter has light isotope signatures, comparable
to the dissolved N2 source (~�1 to 0‰) [Brandes and Devol, 2002]. Remineralization of diazotrophic material
adds NO3

� to the water column which is relatively depleted in 15N compared to mean subsurface NO3
�. The

isotope effect of water column denitrification is 20–30‰ [Brandes et al., 1998; Altabet et al., 1999], and N loss
during this process leaves an isotopically enriched imprint on δ15NNO3.

The O isotopes of NO3
� are consumed with a similar isotopic effect to N (15ε= 18ε) for both algal consumption

and denitrification during the process of NO3
� reduction [Granger et al., 2004; Karsh et al., 2012]. Therefore, as

denitrification or NO3
� utilization occurs, δ15NNO3 and δ18ONO3 become increasingly higher along a 1:1

trajectory [DiFiore et al., 2009; Sigman et al., 2009b]. In contrast, the production of NO3
� has different effects
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on δ15NNO3 and δ18ONO3. N atoms are
obtained from the available fixed N pool
at the time of nitrification, the isotopic
values may therefore be highly variable
depending on the internal N cycling
occurring in the water column.
During nitrification, O atoms are
sourced principally from water mole-
cules [Buchwald et al., 2012], which
produces a signature of ~1.1‰ above
the in situ δ18O of seawater [Sigman
et al., 2009a]. The δ18OH2O of seawater
is relatively homogenous, with typical
values for the global ocean between
�0.4 and 0.5‰ [Bigg and Rohling,
2000]. Given the small range of varia-

bility in δ18O of seawater, reflecting mainly salinity in the deep ocean, nitrification produces a relatively
homogenous δ18ONO3 signature [Buchwald et al., 2012]. The newly nitrified δ18ONO3 therefore loses any
previous enrichment from denitrification or partial utilization processes, and the small isotopic range of δ18O
contrasts the variability in δ15N supplied to nitrification. This difference allows their coupled measurement to
isolate the importance of processes such as NO3

� utilization, which fractionates both isotopes equally, and
nitrification processes, which produces distinct signatures [Sigman et al., 2005; Smart et al., 2015].

The difference in the processes that form NO3
� for N and O atoms has led to their dual measurement and the

development of the parameter Δ(15–18) (defined here as δ15NNO3– δ
18ONO3) [Rafter et al., 2013]. Δ(15–18) is

used in NO3
� isotope studies to identify the different sources of remineralized NO3

� [Knapp et al., 2008].
A deviation away from a 1:1 relationship in δ15NNO3 and δ18ONO3, and therefore shift in Δ(15–18), gives
information about how NO3

� was formed. A lowering of Δ(15–18) indicates the addition of low 15N, i.e., by
remineralization of newly fixed organic matter (δ15N=~�1‰, δ18O=~1.1‰) and a high Δ(15–18) can repre-
sent remineralization in NO3

� depleted areas (δ15N =~5‰, δ18O=~1.1‰). This geochemical proxy has been
used to estimate rates of N2 fixation [Knapp et al., 2008], redox recycling processes [Sigman et al., 2005], and N
regeneration over ocean basin scales [Rafter et al., 2013].

In this study, we present a full zonal transect of the δ15NNO3 and δ18ONO3 in the South Atlantic Ocean at 40°S as
part of UK GEOTRACES (Figure 1). This section allows the characterization of the basin-scale import of NO3

�

through the Southern Ocean water masses and the export of NO3
� in the NADW. We use δ15NNO3 and

δ18ONO3 data to disentangle the processes of their formation and modification during transport and the nutrient
biogeochemistry of the Atlantic Ocean. The formation of AABW and intermediate waters are investigated, and
their characterization provides information on their modification in the Atlantic basin. The isotopic effect of
NO3

� regeneration on subsurface water masses during transit in the subtropical Atlantic is investigated by com-
paring δ18ONO3 from this study with previously published data from the Sargasso Sea [Knapp et al., 2008]. Nitrate
isotope signatures of the NADW being exported from the Atlantic basin are compared with deepwater mass
signatures of the Pacific and Indian basins. These data are used to describe the water mass pathways through
which oceanic N loss and gain are communicated through the global Meridional Overturning Circulation (MOC).

2. Methods

Samples were collected on board the Royal Research Ship (RRS) Discovery between October and November
2010 (D357) and the RRS James Cook between December 2011 and February 2012 (JC068) as part of the UK
GEOTRACES 40°S transect (http://www.ukgeotraces.com). On both cruises, samples were collected on an east
to west transect, with full water column sampling at each station. The transect captures collectively the Cape and
Argentine basins of the South Atlantic, allowing full characterization of the water mass structure (Figure 1). The
two cruise legs were intercalibratedwith two repeat stations of the full water column, which showed comparable
nutrient concentrations and isotope abundances (within 1σ) below 500m; seasonal differences were observed
above this depth when comparing the two cruises. Samples in the upper 500m were solely used from JC068

Figure 1. The UK GEOTRACES 40°S transect across the South Atlantic
samples were collected in an EW transect from Cape Town to Montevideo.
Stations sampled from D357 (October to November 2010) are highlighted
in yellow and JC068 (December 2011 to January 2012) are highlighted
in red. Stations 3 and 6 were cross-comparison stations between the
two cruises.
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to overcome seasonal variability. Nitrate plus nitrite concentrations (herein referred to as NO3
�) were

determined using an AA III segmented flow Auto Analyzer (Bran and Luebbe) following standard colori-
metric procedures [Woodward and Rees, 2001]. Clean sample handling and laboratory techniques were
adopted according to Global Ocean Ship-based Hydrographic Investigations Program nutrient protocols
[Hydes et al., 2010], and all samples were analyzed as soon after sampling as possible; no samples were
stored. Salinity, temperature, and depth were measured using a CTD system (Seabird 911+), and salinity
was calibrated onboard with discrete samples using an Autosal 8400B salinometer (Guildline). Dissolved
O2 from the CTD was determined by a Seabird SBE 43 O2 sensor and calibrated using a photometric auto-
mated Winkler titration system [Carritt and Carpenter, 1966].

Water samples for NO3
� isotope analysis were collected from a stainless steel rosette; seawater was filtered

through an online Acropak filter (0.4μm) into HCl clean 60ml Nalgene bottles and frozen at �20°C. Nitrate
δ15N and δ18O were determined by the bacterial conversion of NO3

� to N2O via the denitrifier method using
denitrifier strain Pseudomonas aureofaciens [Sigman et al., 2001; Casciotti et al., 2002; McIlvin and Casciotti,
2011]. Sample analysis was carried out at the Scottish Universities Environmental Research Centre (SUERC)
and The University of Edinburgh following GEOTRACES intercalibration techniques (http://www.geotraces.
org/images/stories/documents/intercalibration/Cookbook.pdf). Isotopic analysis was carried out at SUERC
using a custom-built gas chromatography�isotope ratio mass spectrometry system in line with a VG Prism
III isotope ratio mass spectrometer. Sample analysis at the University of Edinburgh used a Gasbench II
coupled with a Delta + Advantage. On both instruments, isotopic measurements of sample N2O were mea-
sured relative to a reference peak. Absolute measurements of δ15NNO3 and δ18ONO3 were corrected to AIR
and VSMOW, respectively, with the use of international reference standards N3, USGS32, USGS34, and
USGS35 [Böhlke et al., 2003]. One blank and all standards (run in triplicate) were analyzed in every batch
and analytical precision at 1σ for reference material was typically ±0.2‰ for δ15N and ±0.3‰ for δ18O.

The stoichiometric parameter N* is calculated here as NO3
�� 16×PO4

3� [Gruber and Sarmiento, 1997].
Proportions of remineralized and preformed phosphate were calculated using apparent oxygen utilization
(AOU) (AOU= [O2]sat� [O2]observed). These were converted to NO3

� using organic matter respiration stoichiome-
try ([Anderson, 1995], [PO4

3�]remin=1/150×AOU; [PO4
3�]preformed= [PO4

3�]observed� [PO4
3�]remin).

3. Results

The 40°S transect captures the deepwater masses which are transported through the Cape and Argentine
basins (Figure 1); these are identified using the densities and salinities discussed in Stramma and England,
1999 (Table 1). The densest of the water masses at 40°S is the Weddell Sea Deep Water (WSDW), identified
in the Argentine basin with temperatures below 0°C (Figure 2). Overlying this, the Lower Circumpolar Deep
Water (LCDW) formed in the Antarctic Circumpolar Current (ACC) is identified below 3500m by temperatures
between 0 and 1.5°C in the Cape and Argentine basins. TheWSDW and LCDW have similar nutrient properties
and together comprise the Antarctic BottomWater (AABW), with a density of ~28.3 kgm�3 (Figure 3). At 40°S,
the southward flowing NADW has a salinity of 34.8 practical salinity unit (psu); its core has been eroded by
the entrainment of Southern Ocean waters but is still evident on the western boundary with higher sali-
nities (up to 34.9 psu) (Figures 2 and 3). The Upper Circumpolar Deep Water (UCDW), originating from
the ACC, is detectable with a core at a depth of 1250m and a density of 27.6 kgm�3. Above the UCDW,
the less dense Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) have lower sali-
nities and are ventilated in the subantarctic surface. The AAIW is formed at the Subantarctic Front (SAF) and
has a salinity minimum at 750m (~34.2 psu), a consequence of high precipitation rates and sea ice in

Table 1. Water Mass Properties at 40°S in the South Atlantic as Identified by Density [See Stramma and England, 1999]

Water Mass Temperature (°C) Salinity (psu) Density (kgm�3) δ15NNO3 (‰) δ18ONO3 (‰) AOU (μmol kg�1)

AABW 0.7 34.8 28.3 4.8 2.0 131.8
NADW 2.7 34.8 28.0 4.8 2.0 112.7
UCDW 3.1 34.5 27.6 5.4 2.4 140.3
AAIW 4.3 34.3 27.3 5.9 3.0 86.1
SAMW 6.3 34.6 27.1 6.2 3.4 74.3
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formation regions at ~55°S [Talley,
1996]. Overlying the AAIW is the
SAMW which is formed in a deep
winter-mixed layer in the SE Pacific.
These waters enter the Atlantic via the
Drake Passage; at 40°S, the core of this
water mass is at 500m detectable with
a density of ~27.1 kgm�3.

The subsurface waters of the South
Atlantic are well oxygenated with O2

concentrations above ~175μM. The
lowest O2 concentrations and highest
AOU concentrations are found in the
UCDW (Figure 3), which has been
enhanced with remineralized nutrients
from the Pacific and Indian Oceans,
and from its transit within the ACC. In

contrast, the AAIW and SAMW have much lower AOU concentrations, as they are newly formed within the
subantarctic surface. The LCDW and WSDW have high macronutrient concentrations retained from their
formation regions, with NO3

� typically >30μM; their isotopic properties are indistinguishable and therefore
are discussed collectively henceforth as the AABW (Figure 3 and Figure S1 in the supporting information). The
AABW can be identified with δ15NNO3 of 4.8‰± 0.2 and δ18ONO3 of 2.0‰±0.2 (Figure 4). In contrast,
low-nutrient surface waters dilute the NO3

� concentration of NADW during formation (Figure 3). The average
NADW δ15NNO3 and δ18ONO3 are 4.8 ± 0.2‰ and 2.0 ± 0.2‰, respectively; these values are similar to the
underlying AABW but lower than the UCDW (Figure 4).

In the UCDW, δ15NNO3 = 5.4 ± 0.2‰, which is slightly enriched above deep ocean NO3
� signatures. The

δ18ONO3 is also slightly enriched compared to the underlying water masses, with average values of 2.4
± 0.2‰. Enrichment in δ15NNO3 has been identified in previous work [Sigman et al., 2000] and has been
attributed to communication with areas of denitrification. The Atlantic AAIW and the SAMW are both
formed north of the Polar Front in the Pacific Ocean. The AAIW which forms at the Subantarctic Front
(SAF) has high NO3

� concentrations, ~3 μM lower than the UCDW (Figure 3). This decrease in NO3
�

coincides with an enrichment in δ15NNO3 and δ18ONO3 of the AAIW following an isotopic effect of 5‰
for NO3

� utilization (Figure 4). The SAMW at 40°S is within the nutricline at ~500m (Figure 3), demonstrat-
ing variable concentrations, which decrease toward the surface. In Rayleigh space (ln(NO3

�) versus
δ15NNO3/δ

18ONO3, see Figure 4), SAMW δ15NNO3 falls below the utilization trend when compared to the
UCDW and the AAIW. The δ18ONO3 follows a similar trend to δ15NNO3, although δ18ONO3 is less decoupled
from the Rayleigh trend. In the forthcoming sections, the NO3

� isotope signatures in these water masses
will be discussed and the processes by which they originate investigated.

4. Discussion
4.1. Formation of Southern Ocean Water Masses
4.1.1. Antarctic Bottom Water
At 40°S, AABW exhibits a δ15NNO3 of 4.8 ± 0.2‰ and δ18ONO3 of 2.0 ± 0.2‰ (Figure 3). The isotopic signa-
tures are comparable to those reported in the Indian and Pacific sectors of the Southern Ocean
[δ15NNO3=4.8±0.2‰, δ18ONO3=1.8±0.2‰, Sigman et al., 2000, 2009a; Rafter et al., 2013]. Previous studies have
attributed the isotopically lighter signature of Pacific AABW to mixing with NADW [Rafter et al., 2013]. The
δ18ONO3 of NADW at 40°S (2.0‰) is too high to produce the low δ18ONO3 reported in the Southern Ocean
AABW (1.6‰); therefore, these low signatures may be produced by remineralization processes. Recent work
has identified low δ18ONO3 in the Kerguelen Plateau area of the Southern Ocean, which has been attributed to
nitrification [Dehairs et al., 2015]. This may suggest that nitrification processes may be prevalent in some regions
of the Southern Ocean, causing the decreases in δ18ONO3 to lower values in Southern Ocean-sourced deepwater
masses [Rafter et al., 2013; Dehairs et al., 2015].

Figure 2. Temperature versus salinity showing water mass structure at
40°S with symbol color by NO3

�.
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4.1.2. Upper Circumpolar DeepWater
At 40°S, δ15NNO3 and δ18ONO3 are found
to be enriched above typical deep
ocean values to ~5.4‰ and ~2.4‰,
respectively (Table 1 and Figure 5).
These values are comparable to
δ15NNO3 of ~5.5‰ reported for this
water mass in the Pacific/Indian sectors
of the Southern Ocean [Sigman et al.,
2000]. This relatively enriched value of
UCDW over the global ocean average
(~4.8‰) is attributed to the incorpora-
tion of 15N�enriched NO3

� via interac-
tions with ODZs (Oxygen Deficient
Zones) [Sigman et al., 2000], although
slightly lower values of 5‰ and 2‰
for δ15NNO3 and δ18ONO3, respectively,
were also reported in the Pacific UCDW
due to modifications during transport
[Rafter et al., 2013]. The loss of NO3

�

via denitrification leaves an imprint on
δ15NNO3 and δ18ONO3, which is then
transported far from the ODZ where
the process occurred [Sigman et al.,
2000]. Thus, the high δ15NNO3 isotopic
characteristics of the UCDW are inher-
ited from the Pacific and Indian
Oceans, transporting a denitrification
signal into the Atlantic Ocean, which
can be further supported by low O2

and N* concentrations.

The Δ(15–18) of Pacific UCDW has been
measured at 3‰ and appears to be
unaltered by NO3

� utilization and remi-
neralization at the Southern Ocean sur-
face [Rafter et al., 2013]; in this study
the Δ(15–18) is comparable (3‰),
which can further suggest a negligible
effect of nitrification on this isopycnal.
It is expected that sinking organic mat-
ter in NO3

�-rich Southern Ocean surface
waters would add lower δ15NNO3 and
low Δ(15–18) to the underlying water
mass through remineralization. As there
is no observed decrease in Δ(15–18)
during water mass transit from the

Southern Ocean, the effect of remineralization on the overall water mass signature is low in comparison to
the enrichment observed by denitrification in distant regions. This is consistent with the high nutrient
concentrations in the CDW requiring a large amount of remineralized NO3

� to make a significant change
to isotopic signatures.
4.1.3. Antarctic Intermediate Water
At 40°S, NO3

� is found to decrease from the UCDW to the AAIW, which coincides with an increase in δ15NNO3

and δ18ONO3 to 5.9‰ and 3.0‰, respectively (Figure 4 and Table 1). The enrichment in δ15NNO3 and δ18ONO3

Figure 3. Full depth transects across 40°S. Sections of (a) NO3
� in μM,

(b) apparent oxygen utilization (AOU) in μM, AOU= [O2]sat� [O2]

observed, (c) δ
15NNO3 (‰versus AIR), (d) δ18ONO3 (‰versus VSMOW), and

(e) Δ(15–18) (defined as δ15NNO3� δ18ONO3).
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follows an isotopic effect of ~5‰ ,indicating that the NO3
� decrease in this water mass is from the consump-

tion of NO3
� by phytoplankton at the SAZ surface. This suggests that the AAIW is formed principally from the

UCDW and Antarctic Surface Water (AASW) (which is also formed from the UCDW) and partial NO3
� assimila-

tion in the AASW drives increases in both δ15NNO3 and δ18ONO3 along a NO3
� utilization fractionation trend.

These elevations in δ15NNO3 and δ18ONO3 have been observed in the summer SAZ surface [Rafter et al., 2013],
and subsequent winter mixing and formation of the AAIW drive the incorporation of this elevated δ15NNO3

and δ18ONO3 into the AAIW. The Δ(15–18) of AAIW is comparable to the UCDW (2.9‰), which indicates that
isotopically lighter N added by the remineralization of organic matter from the SAZ does not significantly
alter the signature [Rafter et al., 2013].
4.1.4. Subantarctic Mode Water
In contrast to the AAIW, the overlying SAMW falls off the Rayleigh trend of NO3

� consumption, as shown in
Figure 4. The SAMWhas a lower δ15N/NO3

� relationship compared to other Southern Oceanwatermasses, which
has been attributed to mixing with the subtropical thermocline (Table 1 and Figure 4) [Sigman et al., 2000; DiFiore
et al., 2006]. The Atlantic subtropical thermocline has low NO3

� concentrations but also low δ15NNO3 from the
addition of newly fixed N, both of which may delineate the SAMW from the Rayleigh relationship. The δ15NNO3

at 40°S therefore identifies the importance of subtropical waters in the formation of the Atlantic SAMW.

The Δ(15–18) signatures within the Atlantic SAMW are lower than the UCDW by ~0.2‰. Similarly, the Δ(15–18) in
Pacific SAMW is lower than the UCDW and AAIW [Rafter et al., 2013] and has been attributed to the sinking of

Figure 4. The (a) δ15NNO3 and (b) δ18ONO3 plotted against ln(NO3
�) and salinity. Average values for each water mass are

plotted with grey triangles; these are calculated by using the core depth of each water mass at 40°S. (WSDW= 4500m,
LCDW= 4000m, NADW= 2500m, UCDW= 1250m, AAIW= 750m, and SAMW= 500m). (left) Comparison of the isotopic
properties of water masses at 40°S in Rayleigh space. The grey dashed lines mark a fractionation trend (ε) of 5‰. (right)
Changes in isotopic signatures with the salinity of the water mass.
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low-15N organic matter produced in surface waters, where high NO3
� concentrations allow the preferential

consumption of 14N. The subsurface low δ15NNO3 produced from remineralized NO3
� is recycled to the surface

during winter mixing events. This seasonal cycling in which remineralized NO3
� with low δ15N replenishes the

SAMWmay be an important component of intermediate water modification [Rafter et al., 2013]. We suggest that
the Δ(15–18) in Atlantic SAMW results from these remineralization processes and also mixing with the low-
latitude thermocline.

Characterizing the sources of NO3
� within the intermediate waters entering the Atlantic is vital for under-

standing the biogeochemical cycling of NO3
�within the Atlantic basin. These water masses are an important

component of heat and freshwater transport, and their northward transport help to balance the export of the
NADW from the Atlantic basin. The UCDW, which is the base of intermediate water formation, has high
δ15NNO3 from denitrification and low N*, hence importing excess P into the Atlantic. The characterization
of the UCDW, AAIW, and SAMW can be used as a baseline to investigate the regeneration processes within
the upper Atlantic Ocean and the southward export of deep waters from the Atlantic at 40°S in the NADW.

4.2. Modification of Intermediate Waters

In general, enrichments in δ18ONO3 from the processes of partial utilization and denitrification are not
expressed in deep ocean NO3

�. This is because heavy δ18ONO3 signatures inherited from these processes
are lost as NO3

� undergoes biological uptake, regeneration, and nitrification. The subantarctic is one of
the only regions where partial NO3

� utilization by phytoplankton leads to increases in δ18ONO3 in the subsur-
face (Figure 5). At 40°S, δ18ONO3 ranges between 2.4 and 6.6 ‰ within the density range of 27.6 to
26.5 kgm�3 from partial utilization (Figure 6). Nutrient consumption and remineralization of NO3

� during
transit in the low-latitude Atlantic should lead to decreases in δ18ONO3 due to nitrification. The magnitude
of such shifts during water mass transits provides a means for documenting and understanding the efficiency
of nutrient recycling processes [Toggweiler et al., 1991; Jenkins and Doney, 2003; Sigman et al., 2009a].

Figure 5. Depth profiles (0�1500m) of (a) Nitrate (μM), (b) δ15NNO3 (‰versus AIR), (c) δ18ONO3 (‰versus VSMOW), and
(d) Δ(15–18) (defined as δ15NNO3� δ18ONO3). Colors denote salinity (psu). For full water column profile, see Figure S1 in
the supporting information.
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Modification of this signature during transit within the Atlantic can be tracked by comparing δ18ONO3 in water
masses at 40°S with the same density at 30°N [Knapp et al., 2008]. The North Atlantic subtropical water masses
have a lower range of δ18ONO3 of 1.8 to 2.6‰ over the same density range (Figure 6). The δ18ONO3 changes impli-
cate upward mixing and algal consumption converting preformed NO3

� into regenerated NO3
� during passage

through the low-latitude Atlantic. These processes of supply, uptake by phytoplankton, and regeneration lead to
the loss of isotopic enrichment evidenced at 40°S as the intermediate waters circulate in the Atlantic.

The supply of nutrients to the low-latitude thermocline has been investigated in previous work through the
use of respiration stoichiometry [e.g., Kaehler et al., 2010]. The consumption of O2 in the process of respiration
and nutrient production can indicate the extent of nutrient uptake and remineralization. This technique has
limitations as the nutrient stoichiometry of O2:NO3

�:PO4
3� is only assumed. To assess the subtropical cycling

of nutrients, an estimation of the change in the proportion of remineralized: total NO3
� between 40°S and

30°N can be calculated by two separate approaches, using first stoichiometric and second isotopic estimates
(Figure 6). For stoichiometric estimates, preformed and remineralized NO3

� were calculated using AOU
based on oxygen saturation [Garcia and Gordon, 1992] and a nutrient stoichiometry of O2:NO3

�:
PO4

3- =�150:16:1 [Anderson, 1995]. An average remineralized NO3
� of 4.6mmolm�3 was calculated using

Geochemical Ocean Sections Study (GEOSECS) data from 40°S to 30°N between 26.4 and 27.1 kgm�3.

The degree of recycling determined by δ18ONO3 is dependent on the δ18ONO3 of newly nitrified NO3
�

(denoted δ18Onit) produced and is independent of assumed nutrient stoichiometry. As NO3
� is consumed

by phytoplankton, this process acts as an ultimate loss of the O from fixed N. During the process of nitrifica-
tion, δ18O “resets” to lower values of ~1.1‰ plus δ18OH2O [Sigman et al., 2009a]. In the subtropical Atlantic
surface waters, the δ18O of water ranges between 0.3 and 1.5‰ [Bigg and Rohling, 2000]. This would suggest
that the newly nitrified NO3

� produced within the subtropical Atlantic would obtain a δ18Onit of 1.4 to 2.6‰.
To investigate nutrient supply and modification through the subtropics, three conservative estimates of
δ18Onit have been used (1.4, 1.6, and 1.8‰, see Table 2). The recycling efficiency of NO3

� was estimated
by calculating the necessary amount of nitrification required to decrease δ18ONO3 to the measured signature
at 30°N (δ18Omeas = δ18Onit × (X) + δ18Oimported × (1�X)).

Figure 6. Comparison of (a) δ15NNO3, (b) δ
18ONO3, and (c) N* in the density range of 26.5 to 27.5 kg m�3 at 40°S (blue) and 30°N (orange) in the Atlantic basin.

In Figures 6a and 6b, the values from this study at 40°S are compared to data from 30°N [Knapp et al., 2008]. In Figure 6c, N* concentrations are calculated
from GEOSECS data. (d) The concentration of remineralized NO3

� added to the thermocline along isopycnals is calculated at 30°N. The blue circles indicate
the calculation of remineralized NO3

� concentration using apparent oxygen utilization assuming a nutrient remineralization stoichiometry of �150:16:1
(NO3

�
remin = (1/150 × AOU) × 16). Remineralized NO3

� is also estimated by using the modification of δ18ONO3 from 40°S to 30°N. This is calculated by
δ18Omeas = δ18Onit × (X) + δ18Oimported × (1� X). The green, red, and orange crosses indicate the calculated values using δ18Onit values of 1.4‰, 1.6‰, and
1.8‰, respectively. (e) The proportion of NO3

� which has undergone recycling between 40°S and 30°N is calculated by NO3
�
remin/NO3

�
total. (f) The nutrient

stoichiometry of remineralized N:P is calculated by comparing remineralized NO3
� estimates to remineralized PO4

3- (1/150 × AOU). The blue dashed line
shows the 16:1 stoichiometry assumed from nutrient remineralization concomitant with O2 consumption.
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Although both approaches estimate remineralization, it is important to note that the absolute estimates of regen-
erated nitrate can be underestimated as the SAMW/AAIW undergo mixing from the South to the North Atlantic
as can be identified with increases in temperature between these two regions (supporting information). This
mixingwith shallower waters decreases NO3

� concentration and increases oxygen and could decouple the linear
relationship between AOU and nitrate concentrations. In the supporting information, we show that the
relationship between AOU and nitrate concentrations is linear at intermediate depths despite mixing.
Therefore, this artifact should not affect the comparisons made below between the two approaches.

The estimations from the two methods show a large discrepancy in the proportion of remineralized NO3
� at

30°N between a density range of 26.7 and 27.1 kgm�3 (Table 2 and Figure 5). Irrespective of δ18Onit used, the
isotopic estimates suggest that a larger proportion of the NO3

� pool is regenerated compared to the stoi-
chiometric approach (Table 2). In Table 2, the estimates of excess N above the AOU estimates are calculated
for each of the δ18Onit estimates. Here we estimate an increase in remineralized NO3

� of between 0.5 and
1.4mmolm�3 above the AOU estimate of 4.6mmolm�3. Apparent oxygen utilization assumes a ratio of
16:1 for N:P remineralization; however, δ18ONO3-based estimates do not rely on assumed nutrient stoichiome-
try and calculate the amount of NO3

� which has been nitrified from organic matter. The estimate from these
approaches can be reconciled if N:P ratios of regeneration were higher (18–21:1). This reasoning provides a
mechanism for investigating nutrient remineralization stoichiometry, as the decoupling suggests an under-
estimation of N:P using AOU methods. This suggests that the Atlantic organic matter N:P remineralization
stoichiometry, integrated over 40°S–30°N, is higher than Redfield ratios. The excess N above Redfield which
is added to the Atlantic thermocline is estimated between 12 and 30% of NO3

� in this density range (Table 2).

The δ15NNO3 can be used to determine the underlying reasons for higher N:P stoichiometry. If no new N is
added to the water masses in transit, then there should be no change in the δ15N signatures (Figure 6).
The lower δ15NNO3 at 30°N suggests an external source of isotopically light N being added to the water
column. To calculate the required addition of new N to decrease δ15NNO3, we can calculate the proportion
of newly fixed N required at each density (δ15Nmeas = δ15Nnew × (X) + δ15Nimported × (1�X)). This approach
is similar to previous methods of estimating new N addition to the Atlantic via isotope mass balance
[Knapp et al., 2008]. We calculate 12–17% of NO3

� within this density range and added this to subtropical
Atlantic from a source with isotopic composition of �1‰. This estimate of new N addition falls within our
δ18Onit estimates and gives confidence to our assumptions of a considerable input of new N driving a
change in the N:P stoichiometry (Table 2). Using both δ15N and δ18O, we have demonstrated that an
external source of isotopically light N is required to reconcile both the δ15N and δ18O budgets for the
subtropical Atlantic.

A difference in N* of 3.3μM has been calculated between the water masses entering and leaving the Atlantic
basin, which would suggest an Atlantic N:P ratio of 19.3:1 [Moore et al., 2009], and this high N:P stoichiometry
is within our estimates of NO3

� input to the thermocline. A study of NO3
� isotope signatures in the North

Atlantic similarly concluded inputs of new N to the Atlantic thermocline [Knapp et al., 2008]. This study further
concludes that the high N:P stoichiometry and low-δ15N source are added to the thermocline through remi-
neralization. Phytoplankton, other than diazotrophs, cannot produce isotopically light N in the tropics and
subtropics where NO3

� consumption is near complete in surface waters. Integrated over large temporal
and spatial scales, their sinking remains are expected to conform to Redfield stoichiometry. Atmospheric
deposition can be a source of isotopically light N to the surface waters, but it is unlikely to produce high
N:P stoichiometry in sinking particles and during remineralization at depths. This is because N released
from the solubilization of dust at the surface needs to be transported to depth through biological uptake,

Table 2. Estimations of Remineralized NO3
� Using AOU and δ18ONO3 in the Water Density Range of 26.4 to 27.1 kgm�3a

Method δ18Onit (‰)
Remineralized NO3

�

(mmolm�3)
Excess N above Redfield

(mmolm�3) N:P
New N estimate

Using δ18ONO3 (%)

AOU n/a 4.6 n/a 16 n/a
δ18O 1.4 5.1 0.5 17.9 12
δ18O 1.6 5.5 0.9 19.2 20
δ18O 1.8 6.0 1.4 20.8 30

aThe AOU value is compared to various δ18Onit estimates to calculate the N:P stoichiometry and new N estimates.
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sinking, and remineralization and hence is expected to follow Redfield Stoichiometry. Therefore, N2

fixation is the only process which is likely to produce isotopically light N as well as high N:P ratios during
regeneration of sinking detritus at intermediate depths.

In summary, we estimate using δ18O higher concentrations of remineralized NO3
� in the subtropics than

calculate using AOU concentrations. The NO3
� carried through intermediate waters undergoes substantial

recycling in the Atlantic thermocline. In addition, the modification of δ15NNO3 and δ18ONO3 and the inferred high
N:P ratios of regenerated nutrients suggest a significant addition of new N by diazotrophs. This modification of
the subtropical intermediate waters strongly suggests that the high N:P of nutrients is caused by the reminera-
lization of high N:P detritus and that a significant component of this is from new N input by diazotrophs.

4.3. Export of Low δ15N and δ18O Nitrate to the Global Ocean From the Atlantic Basin

The NADW is principally formed from the Southern Ocean water masses which are transported northward
through the South Atlantic feeding NADW formation in the North Atlantic (~21.5 sverdrup (Sv)). The NADW
nutrient properties should therefore reflect the integrated product of NO3

� from the subtropical Atlantic
thermocline and the deepwater sources which supply its formation. This can be investigated by comparing
the NADW to the isotopic signatures of the AABW and intermediate waters. Here we use 16 Sv for the influx of
intermediate waters, 5.5 Sv for the AABW, and 20 Sv for the export of NADW (as used by Moore et al. [2009]
from 30°S in the South Atlantic). From these estimates, the AABW and AAIW comprise approximately 25%
and 75% of the NADW volume, converting to 70% and 30% of the preformed NO3

� component.

Using δ18ONO3 of these water masses at 40°S (intermediate waters = 2.9‰, AABW=2.0‰), we can calculate
the expected δ18ONO3 exported from the Atlantic NADW but ignoring the effects of nutrient recycling within
the Atlantic. This would produce δ18ONO3 of newly formed NADW of ~2.3‰, which is higher than the average
value of 2.0‰ measured at 40°S as it is exported to the Southern Ocean. The process of recycling NO3

�

through the low-latitude Atlantic therefore decreases deepwater δ18ONO3 in the NADW by ~0.3‰. It can
be inferred that the addition of low δ15NNO3 to the low-latitude Atlantic also decreases NADW δ15NNO3. We
estimate that the NADW δ15NNO3 would be 5.1‰ from the mixing of 40°S water mass sources (intermediate
waters = 6.1‰, AABW=4.8‰). Instead, the addition of new N in the low-latitude Atlantic lowers δ15NNO3 of
the upper MOC, thereby decreasing NADW δ15NNO3 to 4.8‰. We therefore can identify the importance of
recycling processes and diazotrophy within the subtropical Atlantic in determining the NO3

� isotopic signa-
tures in the NADW.

Figure 7 provides a global perspective of deepwater mass pathways and the communication between N2

fixation and water column denitrification in the global ocean. Each of the three ocean basins is fed with
NO3

� of relatively high δ15NNO3 and δ18ONO3 through intermediate and mode waters that are ventilated in
the Southern Ocean and have experienced partial biological utilization. These isotopic signatures are modi-
fied by nutrient cycling processes within each of the ocean basins, and the outflowing deep waters reflect
these processes. In this study, we observe modifications in NO3

� isotope signatures within Southern
Ocean intermediate water masses as they move through the low-latitude Atlantic Ocean. The lowering of
δ18ONO3 between 40°S and 30°N indicates an increase in the proportion of remineralized NO3

� in intermedi-
ate waters as they transit the low-latitude Atlantic. As NO3

� is mixed to the surface layer, taken up by phyto-
plankton, and remineralized, there is a fortification of N (relative to P and oxygen consumption and an
increase in N*) in remineralized nutrients added to the water column. Simultaneously, there is a lowering
of δ15NNO3, indicating the addition of new N with lower δ15NNO3. This suggests that organic matter reminer-
alized in the low-latitude Atlantic has a N:P ratio higher than classical Redfield N:P stoichiometry [Redfield,
1958] and lower in δ15NNO3. This we attribute to N2 fixation in the low latitude Atlantic, providing a source
of low δ15NNO3 and excess N which is exported by NADW to the Southern Ocean feeding the global ocean.
Our observations are consistent with recent suggestions that large-scale transport of excess P drives
Atlantic N2 fixation [Straub et al., 2013]. We estimate that this process accounts for 12–30% of NO3

�

(section 4.2) that is added to the subtropical Atlantic above 27.1 kgm�3. N2 fixation in the Atlantic is esti-
mated to only account for ~15% of global N2 fixation [Deutsch et al., 2007;Moore et al., 2009]. Although the
majority of N2 fixation is likely to occur in the Pacific and Indian Oceans, the Atlantic is unique as a source of
excess N to the global ocean exported through the NADW.
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In contrast to the Atlantic waters examined in this study, the Pacific Deep Water (PDW) has higher δ15NNO3

signatures. This reflects the importance of water column denitrification which is prevalent in the large
ODZs of the eastern Pacific. As a consequence, the PDW supplies the Southern Ocean with NO3

� that is
~0.5‰ heavier in δ15NNO3 relative to the NADW, with low N* values indicating an N deficit from denitrification
[Rafter et al., 2013]. Although isotopic studies of the Indian Ocean DeepWater are currently sparse, available data
indicate that δ15NNO3 values of this water mass fall between those of the Pacific and Atlantic (Figure 7). Thus, the
distinct δ15NNO3 properties and nutrient stoichiometry for deepwater export from the three basins at 40°S reflect
the relative degree of imbalance in N2 fixation and denitrification within these basins.

The Southern Ocean acts as a mixer of deep waters with distinct isotopic signatures and nutrient stoichiome-
try (Figure 7). Of particular importance is the UCDW which receives deep waters from all three ocean basins
and as a result exhibits high nutrient concentrations and old 14C ages [England, 1995]. The Atlantic UCDW
retains a signature of denitrification, with high δ15NNO3 and low N*, which is also evident in the SE Pacific sec-
tor of the Southern Ocean (Figure 7) [Sigman et al., 2000]. At 40°S, the UCDW has an initial N* concentration of
�3.6μM at 1500m, suggesting an ~3.6μmol L�1 deficiency in N relative to P. This indicates that neither an
isotopic nor stoichiometric balance is achieved during Southern Ocean mixing processes, but this balance
remains in favor of high δ15NNO3 and excess P. Importantly, this suggests that the export of excess N from
the Atlantic fails to fully compensate for the N deficit in Indo-Pacific deep waters which generate excess P
after mixing in the Southern Ocean. This has important implications for water mass pathways through which
denitrification and N2 fixation are coupled in the ocean and the balancing of marine fixed N inventory.

The UCDW upwells at the Polar Front forming the upper ACC and subsequently feeds intermediate andmode
waters (Figure 7). Mode and intermediate waters sourced from the UCDW are the primary suppliers of nutri-
ents to the subtopics accounting for ~75% of nutrients to subtropical export production [Palter et al., 2010].
Although isotopic signatures of intermediate and mode waters are modified after upwelling through partial
NO3

� utilization and mixing processes in the Southern Ocean (as discussed in section 4.1), they retain the N

Figure 7. A generalized schematic of water mass pathways and communication between regions of denitrification and N2
fixation in the global ocean. The δ15NNO3 in deepwater masses exported out of the ocean basins may reflect the balance
between N2 fixation and water column denitrification (2500m at 40°S; Atlantic = 4.8‰, Indian = 4.9‰, and Pacific = 5.3‰).
In contrast, similar δ18ONO3 in deepwater masses reflect nitrification which resets δ18ONO3 closer to δ18OH2O + 1.1‰.
The Southern Ocean acts as a mixer for these signatures with mean isotopic signatures of δ15NNO3 = 4.7–5.4‰ and
δ18ONO3 = 1.6–2.1‰ [Difiore et al., 2006; Sigman et al., 2009a; Rafter et al., 2013, this study], and the UCDW shows variability
in δ15NNO3 reflecting this mixing process.
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deficit inherited from the UCDW. These Southern Ocean intermediate water masses are globally significant in
supplying excess P to the subtropical thermocline. This preconditions the world’s subtropical surface ocean
to be N limited favoring N2 fixation. This explains why N2 fixation can be supported in all three major ocean
basins and even in the Atlantic, where minimal N loss is occurring locally.

This water mass pathway linking deep waters of the ocean with thermocline waters through the Southern
Ocean suggests that the mass balance in the global N cycle and the near conformity to Redfield ratio can
be only achieved on time scales of ocean circulation (~900 years) [Matsumoto, 2007]. Global atmospheric
N input to the ocean from anthropogenic sources may account for ~1/3 of external fixed N supply, highlight-
ing the significant increases in N supply to the global ocean [Duce et al., 2008]. In addition, expansion of ODZs
due to climate warming is expected to increase ocean denitrification [Bopp et al., 2002; Kalvelage et al., 2013].
Our study suggests that the consequences of such large-scale perturbations to N inputs and outputs will
persist on longer time scales of ocean circulation before the N cycle is balanced, having a global impact on
oceanic N:P stoichiometry.

5. Conclusions

This study presents a comprehensive set of NO3
� isotope data from the South Atlantic, allowing the commu-

nication of N cycling processes between the Atlantic basin and the global ocean to be investigated. The inter-
mediate waters which enter the Atlantic are formed from the UCDW, which carries slightly enriched
signatures from denitrification regions in the Pacific. The AAIW NO3

� isotope properties can be simply
explained by nutrient utilization in surface waters at the Polar Front, and the SAMW is further influenced
by mixing with subtropical waters farther to the north. These water masses transport enriched δ15NNO3

and δ18ONO3 and low-N* waters into the low-latitude Atlantic.

The modification of intermediate waters can be identified by decreases in δ15NNO3 and δ18ONO3 from 40°S to
30°N. Using δ18ONO3 and nutrient stoichiometry, we can identify a fortification in N over P in the intermediate
waters of the subtropical Atlantic. The modification of δ15NNO3 and δ18ONO3 and the inferred high N:P ratios
of regenerated nutrients suggest significant addition of new N by diazotrophs. These modified intermediate
waters supply NADW formation and have low δ15NNO3 and high N:P ratios in comparison to the PDW.

Globally, the export of excess N through NADW fails to fully compensate for the N deficit in the Indo-Pacific
deep waters resulting in the generation excess P after mixing and upwelling in the Southern Ocean. We spec-
ulate that this may drive the observed widespread N limitation and N2 fixation in the world’s ocean as
Southern Ocean-sourced intermediate waters ventilate the thermoclines of the three ocean basins. The water
mass pathway identified here linking areas of N loss to the subtropical thermocline waters routed through
the Southern Ocean suggests that balancing the oceanic N cycle after any large-scale perturbation in sources
and sinks can only be achieved on time scales of ocean circulation.
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