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Abstract: In the near future, the oceans will be subjected to a massive development of 

marine infrastructures, including offshore wind, tidal and wave energy farms and 

constructions for marine aquaculture. The development of these facilities will unavoidably 

exert environmental pressures on marine ecosystems. It is therefore crucial that the economic 

costs, the use of marine space and the environmental impacts of these activities remain within 

acceptable limits. Moreover, the installation of arrays of wave energy devices is still far from 

being economically feasible due to many combined aspects, such as immature technologies 

for energy conversion, local energy storage and moorings. Therefore, multi-purpose 

solutions combining renewable energy from the sea (wind, wave, tide), aquaculture and 

transportation facilities can be considered as a challenging, yet advantageous, way to boost 

blue growth. This would be due to the sharing of the costs of installation and using the 

produced energy locally to feed the different functionalities and optimizing marine spatial 

planning. This paper focuses on the synergies that may be produced by a multi-purpose 

offshore installation in a relatively calm sea, i.e., the Northern Adriatic Sea, Italy, and 

specifically offshore Venice. It analyzes the combination of aquaculture, energy production 

from wind and waves, and energy storage or transfer. Alternative solutions are evaluated 

based on specific criteria, including the maturity of the technology, the environmental 

impact, the induced risks and the costs. Based on expert judgment, the alternatives are ranked 

and a preliminary layout of the selected multi-purpose installation for the case study is 

proposed, to further allow the exploitation of the synergies among different functionalities. 

Keywords: marine renewable energy; aquaculture; energy storage/transfer; multi-purpose 

offshore platforms; sustainability 

 

1. Introduction 

Europe’s 89,000 km coastline along two oceans and four seas strongly influences the lifestyle, wealth, 

and public wellbeing of its citizens. 

The maritime economy accounts for as much as 5% of the total European economic activity, leading 

to almost 40% the Europe Union’s (EU’s) Gross Domestic Product (GDP). European fisheries and 

aquaculture employ 0.7 million people and generate more than 30 billion Euros a year. European 

aquaculture alone has an annual production of 2.5 million tons. Components derived from marine 

organisms through biotechnology are already being used in food, pharmaceutical, cosmetic and chemical 

industries. Ninety percent of the EU’s external, and 40 percent of its internal trade are carried out by 

maritime transport, with 1200 ports, managing 3.5 billion tons of goods, and 350 million passengers per year. 

The unexploited potential of the marine ecosystem is very large, since it is estimated that more than 

90% of the marine biodiversity remains unexplored, offering a huge potential for discovery of new 

species and applications derived from biotechnologies, which is foreseen to generate 10% annual growth 

for this sector [1]. 

The potential for marine energy is also still far from being realized and used. Offshore, together with 

onshore, wind energy could deliver, competitively, 2600 TWh of energy, which represents up to 20% of 
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the total demand for electricity in Europe [2]. Wave, tidal and thermal energy could provide a substantial 

contribution to the renewable energy production of many European countries. However, costs are still 

high, especially for immature technology, i.e., wave energy extraction, due to the limited energy 

conversion efficiency, unreliable moorings, and survivability of the devices [3,4]. 

At the same time, these human activities are causing environmental and ecological changes of global 

significance. Europe ranks first among the regions whose coastal ecosystems are most threatened by 

degradation, with the 86% of its coasts at either high or moderate risk [5]. Over the centuries, land 

reclamation, coastal development, overfishing and pollution have caused dramatic loss of European 

wetlands, seagrass meadows, shellfish beds, biogenic reefs and other productive and diverse coastal 

habitats [6], while the remaining habitats face increasing pressures from urban sprawl, commercial 

exploitation and climatic instabilities. 

Wind turbines, off shore terminals, pipelines, motorways at sea and fish farms are going to occupy 

more and more marine space in the future. The development of these activities and the competition for 

limited coastal and marine space poses great challenges to the fragmented approach of maritime affair 

management. There is therefore an urgent need to increase awareness among private and public bodies 

and to provide policy makers with knowledge and tools to optimize the design and the location of these 

activities, thus preserving ecosystem services, whilst aiming to keep up with the ever increasing global 

food and energy demand, which is forecasted to rise 50% by 2030. 

Within this context, the “Innovative Multi-purpose offshore platforms: planning, design & operation” 

FP 7 MERMAID project [7] is developing concepts for next generation offshore platforms, including 

energy extraction, aquaculture and transportation. Other recently ended FP 7 projects (“Modular multi-

use deep water offshore platform harnessing and servicing Mediterranean, Subtropical and Tropical 

marine and maritime resources”, TROPOS, [8]; “Development of a Wind-Wave Power Open-Sea 

Platform Equipped for Hydrogen Generation with Support for Multiple Users of Energy”, H2Ocean, [9]) 

also investigated similar concepts. 

Some research already exists on the synergies achievable by combining wind and wave energy 

installation (ORECCA project [10,11]). The co-location might lead to a common regulatory framework 

for a better coordinated maritime spatial planning and a simplified licensing procedure. Technological 

advantages might include enhanced energy yields, smoothed power output, common grid infrastructure 

and substructure or foundations, shared logistics, operation and maintenance. The combined use of wave 

and wind field data and numerical models allowed to demonstrate the improved power production in 

both terms of continuity and magnitude in real case studies, a. o. in France [12], California [13],  

Denmark [14], Spain [15], Germany [16], and Ireland [17]. These studies also underlined the 

significance of shadow effects and interactions among devices, suggesting the need to target the 

optimized layout, based on the local wave climate. 

Currently, there are only a few studies dealing with co-location of aquaculture and wind farms [18–21]. 

This paper aims to demonstrate the potential synergies in terms of resources exploitation, space 

optimization and mitigation of environmental impacts that can be achieved by considering the integration 

of different uses in a Multi-purpose offshore Platform (MUP) at a given offshore site. It makes use and 

integrates some of the outcomes of the ongoing MERMAID project, through their application to a case 

study in the Mediterranean Sea, addressing the following more specific questions. 
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• What is the knowledge base necessary to develop a MUP? 

• How can different conceptual MUP alternatives be examined and ranked? 

• How far can synergies among different uses affect the design and decision making process for 

an offshore installation? 

The paper structure is as follows. Section 2 describes the site where the hypothetical offshore 

installation would be placed, including the climate and the environmental conditions, the legal 

constraints and incentives, and the perception of local communities. Section 3 analyses the potential of 

single-purpose installations for the exploitation of renewable energy from wind and waves and of 

aquaculture. The possibility of transferring energy to the grid or to construct a stand-alone solution, in 

the case where different uses are combined together, is examined. Section 4 is a first attempt of an 

environmental impact assessment, taking into account the proposed uses of the installation in  

Section 3. In Section 5, a multi-criteria procedure [22] is applied to select and rank different conceptual 

design alternatives. Some indications regarding the best configuration of the layout for the selected 

schemes are also given. Finally, some conclusions about the synergies that can be obtained by integrating 

different uses are drawn in Section 6. 

2. Description of the Site 

This Section provides the meteorological, oceanographic, environmental, social and economic 

conditions and constraints for the hypothetical design of the offshore installation. Section 2.1 synthesizes 

the location and the main challenges of the site. The meteorological and oceanographic conditions, 

including the typical and extreme wind and wave climate, are reported in Section 2.2. The environmental 

characteristics and the main habitats and species (including transient marine mammals) populating the 

area are described in Section 2.3. Legal constraints and incentives regulating offshore installations, and 

specifically the exploitation of aquaculture and renewable energies, at European, National and local 

levels are summarized in Section 2.4. The opinions of stakeholders participating in focus groups are the 

subject of Section 2.5. 

2.1. Features of the Site 

The selected area for this hypothetical installation is the Northern Adriatic Sea, East of Italy, and 

specifically offshore Venice coastline. The area is characterized by the following challenging features: 

• it is one of the areas with the lowest marine renewable energy potential in the Mediterranean, and 

therefore a single purpose installation aiming at energy exploitation only would be ineffective; 

• the area is already largely developed, with potential conflict of uses due to the presence of harbors, 

commercial and touristic maritime routes, and fisheries; 

• the Northern Adriatic is already severely affected by multiple anthropogenic pressures (including 

existing oil and gas platforms), which combined with increasing climatic instabilities, can 

exacerbate nonlinear responses of ecosystems to further human impacts and limit their recovery 

capacity; and 

• the vicinity of the city of Venice increases the social sensitivity to the construction of new marine 

infrastructures. 
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The hypothetical multi-use platform is placed nearby the Acqua Alta platform (Coordinates:  

latitude: 45°18′51″ North; longitude: 12°30′30″ East), a research platform at 16 m depth held by  

the Italian National Research Centre [23]. 

The Acqua Alta platform has collected met-ocean and physical information since it was built in 1970, 

including measurements of: wind (two levels), air temperature, air humidity, solar radiation, rain, waves 

(directional), tide, and sea temperature (two levels). There are also underwater cameras that allow 

monitoring the fish species present nearby the platform. These data have allowed a careful evaluation of 

the site. 

The platform is located in Regione Veneto, 16 km off the coastline of Venice (Figure 1), in one of 

the most developed and wealthy Regions in Italy (e.g., 26,455 euro GDP per capita; 6% unemployment 

rate; 36% graduate; and 10% post-graduate education). The area is of renowned cultural, technical and 

industrial interest due to the presence of the city of Venice and to the challenges imposed by extreme 

flood events to the harbor and City of Venice, and its tourist and industrial activities. 

In this area, the interest in wave energy production has recently increased, leading to two pilot 

installations of point absorbers in Venice Lagoon co-funded by the Venice Municipality: the GIANT in 

Giudecca canal (patent 2007, estimated power production: 3–5 kW/module, [24] ) and the WEMpower 

in Certosa island (patent 2011, estimated power production: 35 MW/module, [25]). 

 

Figure 1. Location of the site and bathymetry of the area. 

Most significant environmental characteristics of the area include 

• micro-tidal environment (tidal range < 2 m); 

• semi-enclosed basin with an average slope of 0.35 m/km and an average depth of 40 m; 

• high seasonal variability, sharp stratification and very high productivity rates;  

• peculiar biogeography and hydrology; 

• high population density and tourism; and 
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• high levels of eutrophication, pollution, and development of coastal and marine infrastructures, 

a. o. presence of 100 offshore gas platforms in sedimentary environments (~10–120 m) in the 

Northern Adriatic Sea. 

2.2. Met-Ocean Conditions and Renewable Energy Potential 

The wind and wave measurements, collected at the Acqua Alta Tower, cover most of the period from 

1987 up to 2007. 

The mean annual wind and wave regimes are represented in Figure 2 by means of the 

frequency/direction/intensity diagram (i.e., rose diagram). Both mean wind velocities, Vw, and 

significant wave heights, Hs, clearly show two main directions from the North East (Bora, between 0°N 

and 85°N) and from the South East (Scirocco, between 105°N and 175°N), being the Bora direction 

dominant both in intensity and frequency. 

  

Figure 2. Mean annual wind (to the left) and wave (to the right) regime (rose diagram), 

based on measurements at the Acqua Alta platform in the periods 1992–2007 and  

1987–2007, respectively. 

The values of Vw range between 3 and 4 m/s at 25 m height, with a corresponding estimated  

Vw = 4.54 m/s at 100 m height. The available resource appears to be quite limited, as Orecca FP7  

project [10] established a minimum threshold value of 6 m/s at hub height for the exploitation of offshore 

wind energy at a given site. 

Table 1 synthesizes the typical yearly wave climate by assigning the percentage frequency to the 

combinations of wave heights and periods. The maximum measured value of Hs is slightly higher than 

4 m and the calm period is close to 40% (if one considers as calm, the wave conditions characterized by 

the significant wave height Hs < 0.25 m). This is consistent with the wave features of the Northern 

Adriatic Sea, i.e., enclosed basin with relatively small fetches. 
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Table 1. Typical yearly wave climate, summarizing the percentage frequency (reported in 

each cell) of different combinations of peak wave periods Tp (ranges of Tp reported in the 

first column) and wave heights Hs (ranges of Hs reported in the first row). 

Tp (s)\ 

Hs (m) 
0–0.25 0.25–0.5 0.5–1 1–1.5 1.5–2 2–2.5 2.5–3 3–4 4–5 5–7 % 

0–1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 

1–2 0.990 0.449 0.004 0.000 0.000 0.000 0.000 0.00 0.00 0.00 1.44 

2–3 10.243 5.417 0.326 0.010 0.000 0.002 0.000 0.00 0.00 0.00 16.00 

3–4 15.566 14.178 5.944 0.200 0.008 0.008 0.000 0.00 0.00 0.00 35.91 

4–5 5.954 6.666 9.455 2.683 0.273 0.055 0.014 0.00 0.00 0.00 25.10 

5–6 2.404 2.248 3.454 2.553 1.375 0.473 0.029 0.00 0.00 0.00 12.54 

6–7 1.045 0.930 1.543 1.088 0.626 0.363 0.204 0.02 0.00 0.00 5.82 

7–8 0.398 0.355 0.471 0.426 0.284 0.163 0.043 0.02 0.00 0.00 2.16 

8–9 0.149 0.127 0.116 0.084 0.086 0.037 0.010 0.01 0.00 0.00 0.63 

9–10 0.067 0.033 0.037 0.016 0.027 0.014 0.006 0.01 0.00 0.00 0.21 

10–12 0.06 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.14 

12–14 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.05 

14–16 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

%  36.90 30.42 21.37 7.09 2.71 1.12 0.31 0.07 0.00 0.00 100.00 

The wave energy resource can be assessed from Table 1 by calculating the available energy power 

per unit of wave front, Pw, according to the following equation that is suited to intermediate depths: 

gsw cgHP 2

16

1 ρ=  (1) 

where ρ is the sea water density, g is the acceleration due to gravity, and cg is the local celerity of the 

wave group. 

The mean available annual wave power is around 1.1 kW/m and therefore around an order of 

magnitude lower with respect to the typical existing installations. 

To design a MUP, also survivability conditions have to be assessed. Both for wind and waves, the 

Peak Over Threshold (POT) method was used, by assuming the threshold values Vw = 20.0 m/s and  

Hs = 2.5 m that ensure carrying out the analysis on homogeneous and statistically independent datasets. 

Three Probability Density Functions (PDFs) were adopted to obtain the design parameter as a function 

of the return period, namely the Gumbel, Frechet and Generalized Extreme Value (GEV) distributions. 

Table 2 provides the design values of Hs and Vw as a function of the return period. 

The GEV and the Frechet distribution better fit the empirical observations of Hs and Vw, respectively. 

2.3. Environment and Biota 

The North Adriatic is a shallow, semi-enclosed, basin with an average slope of 0.35 m/km and an 

average depth of 40 m. The bottom is a mixture of sand and mud, deepening gently towards the  

Southeast with a 1 m/km slope. These bathymetric characteristics lead to peculiar circulation patterns, 

high seasonal variability, sharp stratification and very high productivity rates [26]. The general 

circulation is cyclonic (counter-clockwise), highly variable with seasons, mainly driven by the prevalent 
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winds (NE and SE, see Section 2.2) and by river discharge [27]. The most significant contribution is 

from the Po River, with an annual mean flow rate of 1700 m3/s [28]. 

Table 2. Estimate of the significant wind velocity as a function of the return period TR. 

TR 
(years) 

Vw (m/s) 
Gumbel 

Vw (m/s) 
Frechet 

Vw (m/s) 
GEV 

Hs (m) 
Gumbel 

Hs (m)  
Frechet 

Hs (m) 
GEV 

1.1 22.29 22.24 22.17 2.56 2.58 2.58 
10 24.93 25.03 25.32 3.32 3.31 3.31 
20 25.71 25.91 26.44 3.5 3.51 3.51 
30 26.16 26.44 27.14 3.6 3.62 3.63 
50 26.73 27.11 28.07 3.73 3.78 3.78 

100 27.50 28.06 29.44 3.9 3.99 3.99 
150 27.95 28.63 30.30 4 4.12 4.12 
200 28.27 29.03 30.93 4.07 4.22 4.22 

The Po river plume largely affects the deposition of sediments and causes a reduction in salinity from 

freshwater discharge [26,29]. Owing to river runoff and oceanographic conditions, the region also 

exhibits a decreasing trend of nutrient concentration and production from North to South and from West 

to East [30], see the mean concentration of Chlorophyll-a in Figure 3. 

 

Figure 3. Estimated geophysical parameters from MEdium Resolution Immaging 

Spectrometer (MERIS) sensor onboard ENVironmental SATelite (ENVISAT) satellite for 

the period 2002–2012. To the left: Average Chlorophyll-a concentration (g·m−3). To the 

right: Total Suspended Matter concentration (g·m−3). Main cities and rivers are shown on 

landside (grey area). 
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Seaward, the black star shows the location of the Acqua Alta platform. The bathymetric contours 

represent 10 m gradients. 

Prevailing winds and circulation patterns affect the transport and distribution of the plume [28,29] 

showed that the plume is generally confined to the North of Ravenna. There are also regional 

environmental discontinuities along an inshore-offshore axis, related to differences in depth,  

wave-induced shear stress, sediment deposits and human impacts [29,31]. In particular, a high 

contribution of wave-induced shear stress in shallow water was found inshore of the 20 m isobaths, 

leading to high re-suspension of sediments at shallow depths [29]. This can also be appreciated in  

Figure 3, showing the mean concentration of Total Suspended Matter. Higher concentrations are visible 

in spatial patterns which reflect the effect of intense wind stress, sediment re-suspension inshore of the 

20 m isobaths, basin circulation and rivers runoff. 

Information on habitat distribution is scattered. Bottoms are prevailingly sedimentary, comprising 

mainly mud, with a mean fraction of coarser sediments (>63 µm) generally lower than 8%. Sites to the 

North tend to show a higher content of organic matter compared to sites to the South at similar depths. 

There are also differences between shallow (<20 m) and deep (>20 m) sites: the latter are characterized 

by a greater content of organic matter, and a lower content of coarse sediment (>63 µm), while the 

former have a greater proportion of sand. 

Macrofaunal assemblages at shallow sites comprise mainly amphipods (Ampelisca spp.) and bivalves 

(Nucula nucleus, Corbula gibba, Mysella bidentata), with a lower presence of polychaetes  

(Lumbrineris spp. and unidentified Paraonidae). Assemblages at deeper sites have higher species 

diversity, and are characterized by greater abundances of polychaete worms (Sternapsis scutata, 

unidentified Cirratulidae and Polycirrus cf. haematodes). Sites to the North (which are under the direct 

influence of the Po river plume) tend to be characterized by higher average abundances of bivalves  

(Abra nitida, Abra albra), amphipods (Ampelisca spp.), and polychaetes (Polycirrus cf. haematodes, 

Polydora flava, unidentified Cirratulidae and unidentified Paraonidae) compared to Southern sites. 

Sparse coralligenous rocky outcrops (locally named Tegnùe), also occur in the region, between 10 

and 40 m depth, ranging in size from few to 1000 s·m2, and with elevations of 1 to 4 m above surrounding 

sediments [32]. These rocky outcrops are biogenic reef built predominantly by calcareous algae and 

characterized by highly diverse assemblages, mainly comprising filter feeders (sponges, colonial 

ascidians and cnidarians), endobiotic organisms and fish fauna. 

The Northern Adriatic Sea is a strategic area for marine vertebrate conservation, sheltering important 

seabird populations [33]. The area also includes important populations of endangered marine mammals, 

turtles and elasmobranchs [34–36]. The common bottlenose dolphin (Tursiops truncatus) is the most 

frequently recorded mammal of the Northern Adriatic cetacean fauna, while the short-beaked common 

dolphin (Delphinus delphis) is nowadays very rare [35]. The area is also a feeding and wintering area of 

extreme importance for the loggerhead turtle (Caretta caretta). 

In the Northern Adriatic Sea, human pressure on the coast has been historically intense [37], and 

environmental problems are varied and severe, including: erosion and land subsidence (both natural and 

human-induced); development of urban, industrial and tourist infrastructures (including the presence of 

>100 offshore gas platforms); transformation and loss of native habitats and assemblages; eutrophication 

and spread of exotic species; overfishing (including the use of impacting techniques such as trawling 
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and hydraulic dredging) and aquaculture; extraction of offshore relict sand for beaches; and dumping of 

harbor-dredged material. 

2.4. Current Policy, Management and Planning Strategies 

Within the European framework (in particular, about social and environmental issues) and the 

National framework (in particular, about incentives and subsidies), the Legislative Decree No. 112 of 

1998 on Regional Responsibility for Maritime State Property transfers to peripheral regional agencies 

all the functions related to the maritime State property (i.e., within 12 Maritime Miles).  

Therefore, the site falls within the legislation of the Veneto Region. The Regional Law No. 11 of 

2001 implements the Legislative Decree No. 112 of 1998, and the Deliberation of the Regional 

Government No. 454 of 2002 specifies referring to peripheral offices of Genio Civile for concession 

demands for using the maritime State property. 

2.4.1. Aquaculture 

The Legislative Decree No. 154 of 2004, Art. 12 (7) on the Modernization of the Fisheries and 

Aquaculture Sectors states that: “As for marine aquaculture carried out in coastal areas with essential 

ecological relevance for the conservation of biodiversity and of biological resources, with impacts on 

the maritime fishery such as ponds, lagoons, marshes (Comacchio, Delta del Po, Venice lagoon, Marano 

lagoon and Grado lagoon), peculiar dispositions are set up to control for environmental impact and to 

avoid water pollution”. Next, the Legislative Decree No. 11954 of 2010, Art. 4 (1) on the Production of 

Marine Animals and Algae by Biological Aquaculture states that “in order to reduce impacts on the sea 

bed and on surrounding sea water, current must be greater than 0.02 m/s on average per year and sea 

depth must be greater than 20 m”. 

Therefore, based on these conditions, the site location has to be moved further offshore with respect 

to the existing Acqua Alta Tower. 

However, again, the Legislative Decree No. 154 of 2004, Art. 10 (1) states that “Regions set up 

consulting local commissions” and the Legislative Decree No. 11954 of 2010, Art. 2 (1) states that 

“Regions are in charge of authorization for aquaculture activities”. Therefore, as for types of aquaculture, 

a hypothetical installation could develop organic and conventional aquaculture activities, either algae or 

sea bass, with similar ex-ante and ex-post controls on environmental issues by the peripheral offices of 

Genio Civile, together with the Consulting Regional Commissions. 

Indeed, all types of aquaculture will have to refer to the same EU legislation (710/2009; 1005/2008; 

889/2008; 834/2007), to the same control agencies (i.e., regional authorities for sustainable management) 

and to the same EU principles implemented by national legislation (Legislative Decree No. 11954 of 

2010, Art. 1 (1); Legislative Decree No. 226 of 2001 on the Guidelines and Organization of Fisheries 

and Aquaculture Sectors). 

The maximum size of aquaculture plants was increased from the maximum limit of 2600 ha up to 3% 

first by the Deliberation of the Regional Government No. 2948 of 2007 on Integrative Dispositions about 

Maritime State Property Concession Release for Fish and Aquaculture Activities. Then the size was 

further increased up to 10% in 2008 and finally the limitation was cancelled in 2009, by introducing  

ex-ante assessments at the macro-system level, such as: 
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• environmental sustainability of impacts on marine ecosystems, by taking into account the fishery 

relying on coastal resources; 
• optimal location of plants, by considering the alternative uses of the maritime State property (e.g., 

production activities, infrastructure, services, environmental protection, etc.) within a planning 

approach involving the whole coastal area; and 
• impacts of increased production on prices, employment and profitability of aquaculture activities. 

Note that the Legislative Decree No. 4 of 2012, Art.7 (1) on Dispositions for Reorganization of 

Normative Framework on Fisheries and Aquaculture introduces fines and temporary suspension up to 

permanent withdrawal of concessions, in order to preserve marine biological resources as well as to 

prevent, discourage and eliminate illegal, undeclared or unregulated fishery. 

As for incentives, for insurance, within EU Regulation No. 1263 of 1999 on the Financial Instrument 

for Fisheries Guidance and the Legislative Decree No. 100 of 2005 on Further Provisions for the 

Modernization of the Fisheries and Aquaculture Sectors, in order to favor insurance contracts covering 

structural risks linked to natural events, meteorological conditions and prices fluctuations, states that “up 

to 80% of insurance premium can be refunded by the State” if specific conditions are met. As for 

subsidies, for investments, within EU Regulation No. 2792 of 1999 on Community Structural Assistance 

in the Fisheries Sector and the Deliberation of the Regional Government No. 3316 of 2007 on Subsidies 

for Fish and Aquaculture Activities states that “up to 50% of expenditures can be reimbursed by the 

Region”, if specific conditions are met. 

2.4.2. Renewable Energy 

As for sizes and locations, the Circular Letter No. 40 of 2012 by the General Direction of the Ministry 

of Infrastructures and Transports on Offshore Plants for Energy Production from Renewable Resources, 

actually focused on wind plants, states that “authorisation for construction and operation is issued by the 

Ministry of Infrastructures and Transports”. 

The Legislative Decree No. 28 of 2011 on Incentives for Energy from Renewable Sources, which 

implements the Directive No. 28 of 2009 on the Promotion of the Use of Energy from Renewable 

Sources, ensures 0.34 € per kWh for all plants smaller than 5 MW producing energy from marine 

renewable sources. There is no national or regional legislation on subsidies. 

2.4.3. Current Practices 

There are no current experiences of offshore fish or energy farms in Veneto—actually, in Italy, an 

offshore marine renewable energy plant does not exist. However, a sea-bass pilot project was developed 

by the Veneto Region, in 2008–2010, in Porto Tolle (RO), in order to test the technical, economic, and 

environmental sustainability of a bio-production. The plant production was about 18000 fish and its size 

was 300 m2. The results of this pilot project highlighted large exploitation potential, however the pilot 

was completed without further development. 
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2.5. Social Perception and Constraints 

The development of a hypothetical MUP installation has been discussed with relevant stakeholders 

in the area: energy companies, technical consultants, regional and local authorities, managers, private 

companies and associations as well as NGOs. An overview of the stakeholder composition is shown in 

Figure 4. First, a session was organized to invite all relevant stakeholders to express their general 

understanding of MUP concepts and their viewpoint about applicability to the site. Later on, all the 

stakeholders were asked to fill in a questionnaire. Details about the way this participatory approach to 

the design was organized can be found in the companion papers [38,39], and in MERMAID [7]. 

 

Figure 4. Composition of the stakeholders involved in the focus groups. 

The more popular answers provided by the stakeholders regarding their goals for participating in the 

MUP design process, and the requirements are summarized in Figure 5. The stakeholders were asked to 

give multiple-choice answers and to rank each answer with a weight from 1 to 5. The answers were 

grouped under these three main sectors: Society, Economy and Environment. The weights for each of 

the three sectors were then derived from the normalization procedure suggested by [40] for each 

stakeholder, and then, as average values for the whole group of stakeholders, leading to the following 

final weights: Society = 25%, Economy = 27%, and Environment = 48%. 

Overall, the concept of MUPs is considered an interesting demonstration activity useful for boosting 

synergies among private and public institutions, to use marine resources in a responsible way, with an 

ultimate goal of exploring the potentials of new solutions for energy harvesting in the mid-term and at 

preserving ecosystem services in the long run. 

For the stakeholders a key prerequisite for a MUP installation is the set-up of a participatory and 

multidisciplinary design process based on clear responsibilities and cooperation amongst users. 

Specifically, the energy companies and technical consultants mentioned two additional social and 

economic pre-requisites: the access to targeted educational programs for training MUP managers and 

the need of financially attractive arrangements to execute the plans. 
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Figure 5. Most popular goals (top) and requirements (bottom) selected by the stakeholders 

for participating to the MUP development. 

The stakeholders also pointed out the following potential constraints that require specific attention 

and further discussion during the design phase. 

• Conflict of uses. The exact location of the MUP should be determined as the best compromise 

considering the potential conflicts with maritime routes, and particularly with the new port to be 

built offshore Venice. Moreover, the exploitation of new technologies for fishery activities is 

seen as potentially detrimental to the current fishery sector. 

• Governmental regulations. Specific regulations for the exploitation of marine renewable energy 

are not yet available and therefore the permits for the use of offshore areas take a very long time 

to be issued. 

• Environmental impact. A detailed assessment of the impacts on the ecosystems and on ecosystem 

services induced by the operation of the MUP should be carried out. The construction type, 

materials and requirements, the type and frequency of maintenance, and the transportation 

to/from the MUP are still not defined and therefore do not allow making a realistic impact assessment. 
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• Financial feasibility. The technological challenge is high and at present there are no funds and 

incentives to support such an ambitious project by industry. The uncertainty about the real costs 

for design, development and installation is very high as well as the real benefits and return time 

of the investment. 

3. Potential of Single Purpose Installations 

This Section investigates the different design concepts that can be considered for single-use offshore 

installation at the site, i.e., renewable energy from wind (Section 3.1) and waves (Section 3.2) and 

aquaculture, specifically fish farming (Section 3.3). These concepts are examined as single-purpose and 

multi-purpose solutions (see Section 5), and are designed for energy production and transfer or as stand-

alone solutions, with energy partially used to sustain the platform itself (Section 3.4). 

In all the following subsections, the single-use platforms are designed based on the same starting 

assumption of occupied marine space, i.e., a maximum size for the offshore installation that does not 

exceed 1 km2. 

3.1. Wind Energy Exploitation 

Two options have been considered, large wind, referring to a multi megawatt, utility scale offshore 

wind farm built with the precise aim of being connected to the mainland, in order to sell electricity; and 

mini wind, with the main aim of supplying local offshore loads. 

3.1.1. Large Wind Turbines 

The reference turbine for calculations is the Vestas V112, which is characterized by a 112 m rotor 

diameter and by a rated power of 3.3 MW. By assuming the hub height equal to 100 m, the estimated 

productivity at the site is less than 1000 equivalent hours; leading to a capacity factor around 11% and a 

production of 0.96 GWh/year per installed MW. Those numbers are, from an investor point of view, not 

attractive, even for on-shore installations, where the impact of foundation, grid connection, installation 

and operational and maintenance (O&M) costs are significantly lower. 

In case of a wind farm, a further productivity decrease for each machine in the range of 10% to 20% 

has to be expected due to wake effects. The larger the distance among turbines, the lower the wake 

effects on productivity, the lower the wake induced fatigue loads, and the higher the energy losses across 

cables. However, it also has to be taken into account that the turbine water depth might change by 

increasing the distance among the machines, and therefore the installation and foundation costs, as well 

as the visual impact of the farm. Moreover, the extension of the wind farm area may increase the potential 

conflicts with other uses and does not support the optimization of marine spatial planning.  

In this site, a spacing of seven rotor diameters [41], leading to a distance of around 800 m among each 

wind generator, is assumed to be the basic case, see the layout in Figure 6. By neglecting the wake effects 

and cable losses: 

• a single 800 × 800 m cell, made up of four turbines (black circles in Figure 6), covering  

0.64 km2, would produce 12.7 GWh/year;  
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• an extended matrix of nine machines (see additional five machines in dark grey in Figure 6) 

would cover 2.54 km2 and produce 28.5 GWh/y; and 

• an array of 16 machines (see additional seven machines in light grey in Figure 6) would cover  

5.76 km2 and produce 50.7 GWh/y, and so on, neglecting wake effects. 

 

Figure 6. Proposed reference layout for the large wind farm. Circles represent wind  

turbines: black = single 800 × 800 m cell; dark grey = extended matrix 2.54 km2;  

light grey = total array 5.76 km2. 

From the analysis of met-ocean conditions in Section 2.2, it is clearly demonstrated that the most 

promising winds for energy production come from the Bora and the Scirocco sectors, approximately 

perpendicular to each other, the first one being much more energetic. A detailed assessment of wakes is 

needed to provide the reference orientation of the wind farm with respect to prevailing wind directions, 

also depending on how many wind generators would be installed at the site. With the aim of minimizing 

wakes, a slightly skewed layout should be considered. 

3.1.2. Mini-Wind 

A site that is not attractive for utility scale wind is even less attractive for mini-wind technology, due 

to higher specific costs per unit power installed, increased wind turbulence and lower wind resource 

available when decreasing hub height. 

The Bergey EXCEL 10 wind turbine is selected due to the certified power curve and to its horizontal 

axis, generally providing a higher annual energy production in comparison with vertical axis turbines of 

the same rated power. 

Using the logarithmic Prandtl model to estimate the wind speed at a hub height of about 25 m, the 

calculated mean wind speed is around 4.06 m/s. The calculations lead to less than 800 equivalent hours, 

around 9% capacity factor, a very low value even if compared with traditional on-shore installations. 

Mini-wind turbines are mostly installed as single turbines. Occasionally, a single row of turbines 

might be found, perpendicularly, to the prevailing wind direction. Due to reduced resources at low hub 

heights, wakes would dramatically affect the investment. 
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For the Acqua Alta hypothetical platform, a single line of mini-wind turbines is recommended, placed 

perpendicularly to the Bora direction. In this case, the distance between turbines could be reduced to 

four diameters. The Excel10 has a diameter of 7 m, so that a distance of around 30 m is envisaged. A 

slight offset angle with respect to a perfect facing of Bora winds (Figure 7) might avoid production losses 

by Scirocco winds to be repeated a number of times depending on the wave energy installation adopted, 

as the mini-wind needs to be supported by another marine infrastructure. 

 

Figure 7. Layout and orientation of mini-wind turbines. 

3.1.3. Synthesis for Wind Energy Harvesting 

The results of the analyses are resumed in Table 3. Per each installed MW, large wind would produce 

0.96 GWh/y, while mini-wind would produce 0.74 GWh/year. 

The main conclusion is that there is no margin for wind energy alone to be deployed at the site for 

energy production and sale. No detailed modeling is necessary to conclude that the lack of resource 

would strongly affect the business plan of any wind installation, since the simplified calculations carried 

out so far are quite optimistic as wake effects, cable losses and machine unavailability would only lower 

the capacity factor. 

Table 3. Synthesis of estimated yearly power production for large and mini-wind installations. 

 Large Wind Mini-Wind 

Hub height [m] 100 25 
Mean wind speed [m/s] 4.54 4.06 

Capacity Factor 11% 9% 
Equivalent Hours [h/y] 960 745 

Reference turbine Vestas V112 3.3 MW Bergey EXCEL10 
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3.2. Wave Energy Harvesting 

This subsection analyzes first a floating and then a fixed installation. In both cases, the mild wave 

climate requires the design of a large array of Wave Energy Converters (WECs) to support a sufficient 

level of energy production. 

3.2.1. Floating Devices: DEXA 

The DEXA device is a Wave Activated Body (WAB) type. It consists of two rigid pontoons with a 

hinge in between, which allows each pontoon to pivot in relation to the other (Figure 8). The draft is 

such that, at rest, the free water surface passes in correspondence of the axis of the four buoyant  

cylinders [42]. The Power Take-Off (PTO) system consists of a low-pressure power transmission 

technology and is placed close to the center of the system, in order to maximize the stabilization force. 

  

Figure 8. DEXA concept (left) and rendering of DEXA wave energy farm [42] (right). 

This device has been selected mainly for the following reasons. 

• Preliminary tests showed that it is very effective [43,44] for a device length to wave length ratio 

close to 1.00; this aspect allows to also produce energy when the sea conditions are not extreme, 

such as in the Mediterranean site. 

• It is a floating WEC and so it adapts to sea level changes. 

• It has a low visual impact since it is floating without highly emerged parts. 

However, the DEXA device has some limitations, among them:  

• the low efficiency (not higher than 30%);  

• the wide mutual distance required between devices due to the mooring systems and the device 

motions; and 

• the non-modularity, which leads to higher construction costs, more difficult maintenance and 

replacement operations. 

The power production at the site is estimated on the basis of small-scale physical tests [45] that 

allowed the following efficiency (η) trend to be derived:  

η = −0.615(l/Lp)2 + 1.3163(l/Lp) − 0.3566 2

where l is the long-shore device length and Lp is the peak wave length. 
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The efficiency is maximum for l/Lp around 1.0, therefore the design of the device is carried out by 

assuming l/Lp = 1, where Lp is derived from a weighted average based on wave frequency of the values 

of Lp associated to the wave conditions summarized in Table 1, Section 2.2.  

By calculating the average value of Lp = 30.4 m, the device length l is assumed to be equal to 30 m, 

and therefore the device width b is imposed equal to 15 m, in order to keep the aspect ratio similar to the 

proposed Danish prototype and at the same time optimize stability with the squared shaped pontoons. 

For each sea state, the power produced by the device is calculated as  

P = ΣiPWi b ηi fi (3)

where PWi is the available wave power following Equation (1); b is the device width, and f is the yearly 

probability of wave occurrence. By assuming that there is no efficiency loss due to device re-orientation 

under oblique waves, each device produces about 77 MWh/year. 

If one considers a basic module of five staggered devices (as in Figure 9), a power production around 

0.4 GWh/year can be achieved. 

To make the wave farm more competitive, the following configuration is proposed. 

• CALM mooring system for each WEC to allow a prompt device re-orientation following the 

incoming wave direction. 

• Gaps width equal to 7l in long-shore and to 3l in cross-shore in order to avoid collisions between 

near devices during their re-orientation. 

• The wave farm will be composed of six lines of devices and, therefore, by a total number of  

30 devices, leading to an average annual power production of 2.3 GWh/year. 

• The occupied marine space for the whole farm will be 1350 m (long-shore) × 720 m (cross-shore), 

i.e., 0.97 km2. The wave farm will therefore consist of six modules: three modules placed in the 

long-shore and two modules in the cross-shore direction.  

It is worthy to remark that: 

• the evaluation of the power production has been derived based only on hydraulic efficiency; 

• the assumption of perfect re-orientation without any energy losses has been made; and 

• the proposed wave farm will use several mooring chains/lines that can lead to possible problems 

for the ships performing maintenance operations. 
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Figure 9. Layout of the proposed wave farm of DEXA wave energy converters (six lines in 

cross-shore direction, six device in long-shore direction). A single module with five staggered 

devices is represented by the black dotted line; the wave farm consists of six modules. 

3.2.2. Fixed System: Wave Star 

The Wave Star machine draws energy from wave power with floats that rise and fall with the up and 

down motion of waves [46]. The floats are attached by arms to a platform, which includes all the 

electrical and mechanical parts. The platform stands on legs secured to the sea floor and it is sufficiently 

high above the water surface, so even the highest waves cannot reach the structure (see Figure 10). 

  

Figure 10. (left) the principle of operation of the Wave Star; (right) a Wave Star prototype 

(with only two floaters) installed at Hanstholm (DK). 

The motion of the floats is transferred via hydraulics to the rotation of a generator, producing 

electricity. The Wave Star is designed with multiple arms (each one with a length at least equal to the 

main wave length) in order to optimize the power production regardless of the incoming wave direction.
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This device has been selected mainly for the following reasons: 

• it is at an advanced state of progress, since it is already grid connected; 

• it is a point absorber, therefore it is particularly suited to this site, where the energy is associated 

with two different main wave directions; 

• it is proven to also produce energy in a milder climate (Hs > 0.5 m); and 

• it can be combined with other uses, for example by integrating the supporting piles with offshore 

wind piles and the platform with micro-wind turbines. 

The Wave Star device has some limitations, among them:  

• the fixed foundations may lead to higher environmental impacts, may produce liquefaction 

problems and are usually expensive;  

• the adaptability to sea level changes is related to the platform height with respect to the mean sea 

level, including storm surges; and 

• the emerged parts lead to a locally non-negligible visual impact. 

The WaveStar is supposed to be placed on 20–25 m depth and composed of arms, up to 80 m long 

with 10 floaters on both sides of each arm. Each floater has a diameter of 10 m. 

The power prediction is based on the results of numerical simulations available in the literature [47]. 

From these tests, the efficiency (η) trend was derived first as function of HS  

η1 = 0.2612•(HS) − 0.1306 0 < HS < 1 m (4)

η1 = 0.0191•(HS) + 0.1139 1 < HS < 5 m (5)

then, also, the effect of the wave period Tp was included by keeping constant the wave height  

η2 = −0.0278•(Tp) + 0.4529 HS = 2.5 m, 4 < Tp < 12s (6)

The overall efficiency ηTOT trend used in the calculations reported below is 

ηTOT = η1•η2 (7)

For each sea state (Table 1 in Section 2.2), the power produced by the device is calculated as  

P = ΣiPWi D ηTOTi fi (8)

where PWi is the available wave power following Equation (1); D is the floater diameter; and f is the 

yearly probability of wave occurrence. Each floater produces around 10 MWh/year. 

Based on the experimental report, the Wave Star power production performance is affected by: 

• the gap width between near floaters; specifically, the greater the gap width, the lower the 

reduction of power production between one floater and the subsequent one; 

• the number of the subsequent floaters for each side of the arm—the maximum number of 

investigated floaters was five; and 

• the angle between the arm and the direction of incoming waves—specifically, the larger this 

angle, the greater the power production. 
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Therefore the layout for the WaveStar module includes: 

• five floaters for each side of the arm, i.e., 10 floaters for each arm; 

• the gap width between the floater equal to 5 m, i.e., to half the floater diameter; and 

• three arms with the central arm oriented at 100°N and an angle of 120° between them—based on 

the two conditions above, each arm is about 80 m long and 8 to 15 m wide (to allow the placement 

of the 5 m diameter piles and the access to the instrumentation). 

The average yearly power production is then estimated under the following assumptions: 

• power reduction due to arm inclination with respect to the incoming waves: 50% for the central 

arm, since the angle between the directions is characterized by higher energy density (70° and 

130°), and the arm (100°) is only about 30°, with a similar reduction of 10% for the other two 

arms; and 

• same efficiency for the all floaters along an arm. 

For the basic module of three arms (Figure 11), a power production of around 0.6 GWh/year  

is obtained. 

To make the wave farm more competitive, the following configuration is proposed. 

• The gap width between two module equals the arm length (80 m), both in long-shore and in  

cross-shore direction to allow maintenance operation and possibly implementation of combined 

fish-farming options. 

• The wave farm is composed of 15 modules (five modules long-shore and three modules in  

cross-shore), for a total power production of 9 GWh/year. 

• The occupied marine space will be 1200 m (long-shore) × 720 m (cross-shore), i.e., 0.86 km2. 

 

Figure 11. Layout of the proposed wave farm of WaveStar wave energy converters, 

composed of 15 modules. Each module (in the dotted box) consists of three arms with five 

floaters for each side. 
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It is worthy to remark that: 

• the evaluation of the power production has been derived based on hydraulic efficiency only; 

• the assumption of negligible losses of incident wave energy along the arm has been made; and 

• the proposed wave farm will need many foundation piles. 

3.3. Aquaculture Development 

The Mediterranean Sea accommodates the largest part of aquaculture production of Mediterranean  

sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus auratus) for over 30 years now. The 

conditions in the Mediterranean are favorable for both species and there is long experience in growing 

them at the commercial level. Additionally, there is ever increasing demand on the global market for 

these fish. Yet, fish health issues arising in coastal areas and lagoons, along with the existing strong 

conflict for space by many users in coastal areas, have stirred interest in moving aquaculture further 

offshore. The longer travelling time to offshore sites makes the combination with other activities, such 

as energy converters more cost-effective. 

To assess the Acqua Alta site for its sea bass and sea bream farming potential, three different scenarios 

based on different environmental conditions (temperature, salinity and biochemical parameters) were 

analyzed for each species. The scenarios considered the production of average marketable size (~350 gr) 

fish starting for both species with stocking of juveniles of average weight of 2 g, in March, June  

or September. 

The results for the Acqua Alta site are reported in Table 4 and compared with the equivalent  

on-growing periods for sea bass and sea bream farming in a benchmark case in the Southeastern 

Mediterranean in Table 5. Due to environmental conditions, fish farming at the Acqua Alta site will 

require a significantly longer time than the Southeastern Mediterranean site, and will therefore be a less 

cost-effective investment. 

Table 4. On-growing periods for sea bass and sea bream farming in the Acqua Alta site. 

Northern Adriatic Temperatures      

 
Juvenile 

Stocking Month 

Mean Start 

Weight (grams) 

Growing  

Period (months) 

Mean Final  

Weight (grams) 

Food  

Conversion Ratio 

Water  

Temperature (°C) 

Mean STDEV 

Sea Bass 

March 9 18 358 1.40 18.6 3.5 

June 2 25 365 1.86 18.3 3.4 

Sept 2 24 367 1.56 18.3 3.5 

Sea 

Bream 

March 11 19 385 1.63 18.8 3.5 

June 2 25 365 2.11 18.3 3.4 

Sept 2 24 367 1.76 18.3 3.5 
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Table 5. On-growing periods for sea bass and sea bream farming in a reference site  

in the Southeastern Mediterranean. 

South-Eastern Mediterranean Temperatures      

 
Juvenile  

Stocking Month 

Mean Start  

Weight (grams) 

Growing  

Period (months) 

Mean Final  

Weight (grams) 

Food  

Conversion Ratio 

Water  

Temperature (°C) 

Mean STDEV 

Sea Bass 

March 9 13 363 1.12 21.8 3.9 

June 2 14 372 1.06 22.6 3.9 

Sept 2 14 358 0.96 22.4 3.7 

Sea Bream 

March 11 11 360 1.07 22.5 3.8 

June 2 14 365 1.22 22.6 3.9 

Sept 2 14 367 1.08 22.4 3.7 

Basic requirements that have to be considered for establishing and operating a sea bass/sea bream fish 

farm at any site are the following. 

• To secure good fish health, the bottom depth has to be around three times the depth of the nets 

of the sea cages. This allows for adequate renewal of the water around the cages and proper 

dispersal of the material that tends to accumulate underneath the cages. Therefore, in the case of 

a net depth of at least 9 m, the total depth of the site should equal 27 m. 

• Individual cages must be at least 8 m apart, to allow sufficient circulation of clean water between 

and within cages. 

In our model installation, the fish farm is designed to support a hypothetical 2000 ton annual 

production capacity. The following specific design issues are suggested:  

• 56 sea cages of 32 m diameter; 

• rectangular spacing around each cage of about 40 m side length, allowing for operations that need 

to take place at each cage and for good circulation of water among cages; 

• three cage parks consisting of parallel rows of sea cages, for better handling and more  

efficient production; 

• automatic feeding systems, which are effective up to ~300–400 m distance and therefore 

determine the position of the furthest cage; 

• feed storage space able to accommodate 150 tons of feed at any time as this allows for a frequency 

of transportation of feed from land to the offshore platform once every four days; 

• space between neighboring parks, according to legislation, must be at least 100 m, this also allows 

unobstructed sailing of the harvesting vessel as well as other vessels; 

• mooring chains of about three times the water depth, i.e., 50 m long; and 

• the use of mooring devices to secure each cage. 

The design layout comprehensive of all these indications is shown in Figure 12. 



Sustainability 2015, 7 6827 

 

 

 

Figure 12. Layout proposed for the fish farm. 

3.4. Offshore Energy Storage and/or Transmission Systems 

Based on the design concepts outlined in Sections 3.1–3.3, this subsection explores the possibility of 

connecting the offshore installation to the shore, or building it as a stand-alone solution in case the 

selected design scheme is targeted, or at least include marine renewable energy extraction.  

In the presence of a limited energy resource, the offshore wind connection represents the major cost, 

so that it might be impossible to recover the capital costs in a reasonable amount of time. In this frame, 

considering also the vicinity to “Tegnùe”, a stand-alone configuration, i.e., not connected via subsea 

cables to the mainland, can be particularly suited. 

Potential advantages of the stand-alone configuration are the following. 

• The avoidance of substation and export cables, with consequent reduction in the environmental 

impact on the sea bottom, and of the overall cost, which may also benefit from margins of 

reduction from array cables, depending on the extension of the MUP. 

• Boost of blue-growth, by using renewable energy instead of diesel fuel and therefore fostering a 

greener process; in this case, of course, the renewable production actually results into avoided 

expenses rather than into active incomes (no energy is sold to the grid), assuming that the 
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renewable energy substitutes conventional diesel engines potentially located on the offshore 

MUP. A reference cost for the energy produced by diesel engines on Italian islands not 

interconnected with mainland ranges between 180 and 300 €/MWh. 

On the other hand, an appropriate energy storage system to manage the power balance of the MUP is 

needed, since wind, wave and tidal energy devices produce a variable and not fully predictable amount 

of electric energy and introduce it into the local energy system. In order for the system to be stable, the 

power consumption of all the local loads deriving from aquaculture operations, lighting and any other 

offshore use must be equal to the energy generation. The energy flux across the energy storage will be 

bi-directional, i.e., the stored energy will be accumulated or released depending on the actual conditions 

at the site. 

In order to keep the electrical system stable, a power quality management system is required to 

provide all the services necessary to sustain voltage and frequency, such as primary, secondary and 

tertiary reserve and voltage regulation. The identification of the most suitable storage technology has to 

take into account the capability of the storage system itself to provide all of these services, for the needed 

amount of time. A detailed assessment is therefore needed in terms of: 

• aquaculture power consumption at the site and typical uses across the day, considering the fish 

feeding system, the platform crane, the ice producing machines to kill fish and deliver them to 

the shore, the electric boats and floating vehicles, the lighting and ancillary services as 

communication, data acquisition, and heat pumps, among others; and 

• time-series-based renewable energy power production, whose analysis will provide information 

on the most suitable technology in terms of Power and Energy capacity and suitability to cover a 

specific amount of power cycles. 

It has to be noted that the storage system and other MUPs electrical components should be located on 

the same platform hosting aquaculture fish food and feeding system. 

In case the MUP is connected to the grid, the connection might be based on MV, HVAC or HVDC, 

according to the installed capacity and distance to shore. While the exact size of the MUP still has to be 

identified, it can already be derived from the estimated power capacity (<100 MW) and the distance 

from shore (<100 km) that this MUP will fall into the MVAC category. An offshore substation will 

collect array cables from different devices and subsequently export power, including switchgears, 

control apparatus, compensation of reactive power, etc. 

A HV substation on the mainland will be required to obtain enough capacity for energy transport. 

Based on the minimum water depth (>27 m) needed for aquaculture, the distance to the closest HV 

substation will be of the order of 35 km (Chioggia). If the installation includes wind and/or wave energy 

devices only, it may still be realized in proximity to the existing Acqua Alta Tower and therefore 22 km 

of MV connection will be needed. 

4. Preliminary Considerations on Environmental Impact 

Based on the design concepts outlined in Section 3, a preliminary environmental impact assessment 

is performed here, highlighting the key issues that should be considered when dealing with installation 

for wind and wave energy extraction (Section 4.1), and for fish farming (Section 4.2). 
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4.1. Wind and Wave Farms 

The construction of marine infrastructures, including MUPs, typically involves the replacement of 

natural, most often sedimentary, substrata with harder surfaces of stone, concrete, asphalt, metal wood 

or other artificial material [48]. These habitat modifications damage the seabed, associated recipient 

habitats and assemblages. They also alter the distribution of a number of hard-bottom species, which 

thrive on anthropogenic surfaces, and change marine seascapes and species connectivity at regional 

scales [48]. The impacts from the sprawl of artificial structures into the sea have recently been reviewed 

by [49], who identified four main categories of impacts: (1) direct physical disturbance; (2) addition of 

artificial habitat; (3) indirect physical disturbance; and (4) noise and light pollution. 

Physical disturbances arise from the addition or removal of artificial materials during construction 

and decommissioning, respectively [49]. For example, it has been estimated that about 12.5 m2 of seabed 

can be lost in the footprint of a 4 m diameter offshore turbine with 10 m scour protection. In the UK, a 

total projected loss up to 8600 km2 of seabed by 2020 as a consequence of offshore development has 

been calculated [50]. Dredging during construction can displace 1539–2356 m3 sediment per turbine into 

the water column [51], and removal of underwater scaffolding increases turbidity, which can negatively 

affect marine plants and animals [52]. During their operation, artificial structures can alter water flow, 

sediment deposition and topography, with subsequent larger-scale effects to infaunal assemblages and 

productivity [53]. The extent of the disturbed area will depend on the sediment type, device type, water 

depth, anchoring depth of device foundations into the seabed, and surrounding flow regimes [53].  

The constructions built in replacement of the natural habitats lost have been increasingly viewed as 

an opportunity for habitat enhancement, providing local benefits associated to hard substrata where none 

previously existed, or potential refugia for rare or threatened native rocky species [54,50]. At the same 

time, the ecological value of artificial structures as habitats for native species is very much debated [49,55]. 

In the Northern Adriatic Sea, more than 190 km of human-made structures (comprising piers, 

breakwaters, groyns and over 100 offshore gas platforms) have largely modified marine seascapes at 

regional scales [6], introducing over 2 km2 of artificial hard surfaces that have disproportionally 

facilitated the colonization of Non-Indigenous Species (hereafter NIS), and rocky reef species otherwise 

rare or absent in such sedimentary environments [55]. The long-term and regional consequences of these 

extensive habitats modifications, and the possibility of mitigating these impacts by incorporating 

ecological principles in the design of marine infrastructures are the subject of increasing debate [56,57,49]. 

The epibenthic communities that grow on artificial structures are largely shaped by the distinctive 

structural and environmental conditions intrinsic to artificial structures and renewable energy extraction [53]. 

Marine infrastructures offer atypical substrates for benthic assemblages in terms of orientation, exposure, 

size, shape, slope, surface composition and texture [48,56,58], all of which are known to affect the 

recruitment, survival and growth of a variety of species. Artificial structures are characterized by 

unnaturally high levels of disturbance from both natural (e.g., storms, sediment scour) and anthropogenic 

(e.g., harvesting, trampling, maintenance works) sources. These disturbances damage the native 

assemblages, and offer prolonged availability of unoccupied space or other resources that favor the 

establishment of species with opportunistic and invasive traits [59]. Experiments have also revealed 

considerable differences in community composition between floating and fixed structures, related to 

such features as the presence or absence of intertidal and “swash” zones and varying levels of exposure 
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to light [49]. As such, we expect floating wave energy devices to harbor considerably different 

communities, compared with fixed energy structures, although there has been little research to date 

focused on such structural differences. 

As a consequence, one of the greatest risks at the Aqcua Alta site is the facilitated expansion of NIS 

in relation to MUPs expansion. The risk is amplified in the study area because the Lagoon of Venice, 

with its crowded recreational and commercial harbors, as well as flourishing mariculture activity, is the 

Italian locality with the highest number of marine aliens [60]. 

Recent work done within the MERMAID project has demonstrated that the proliferation of marine 

infrastructures has disproportionally favored NIS over native species along 500 km of the Northern 

Adriatic coastline, affecting their spread at regional scales [55]. At the same time, the likelihood of 

recruitment of NIS on artificial hard structures could be limited by using materials or coatings that 

prevent settlement of fouling [61], by favoring the design of fixed surfaces rather than floating ones [49], 

by using design options that favor colonization by native species and by minimizing disturbances [57]. 

For example, ecologically informed repair schedules of artificial structures in the study region have been 

shown to limit the spread of non-indigenous species by favoring a quicker recovery of the native ones [59]. 

Recent attempts at a variety of artificial structures along the Northern Adriatic coastline have also been 

done to actively garden ecologically relevant habitat forming species, to contemporaneously enhance 

native species, and deter non-indigenous ones [62]. 

Other impacts can arise at all engineering stages as a consequence of artificial light on platforms and 

vessels [63], noise and vibration during foundation construction, pile driving, cable laying, seismic 

surveys, wind farm operation and boating [52], contamination from oil and lubricant spills, from the 

antifouling paintings used for the floating parts of the energy devices and around vessel berths [49], and 

from collision and entrapment of marine mammals and birds. Night lighting and operational lights on 

offshore structures can disorient birds and lead to elevated mortality among migratory species [64]. 

These effects could be relatively limited at the Acqua Alta site, as the migrating birds in this region use 

the coastal zone more intensively than offshore areas. Far more concerning are the effects from the noise 

and vibrations, which can reach levels that dramatically affect fish and invertebrate eggs, larvae and 

embryos, ultimately causing their mortality [65,66], and are associated with auditory injuries and 

disorientation in marine mammals with effects up to 50 km away [67]. 

Other cumulative or unforeseen non-linear responses could also arise from interactions among energy 

installations, aquaculture, and other environmental and anthropogenic impacts in the system, as well as 

from the developments at increasing densities of installations [68], either amplifying or mitigating some 

effects of offshore platforms. For example, trawling is known to modify deep benthic systems, causing 

reduced species abundances and changes in species composition, with an increase in deposit feeders and 

a decrease in suspension feeders with increasing fishing pressure [69]. 

In the Northern Adriatic Sea commercial trawling is so intensive [70] that the system is considered to 

have entered a “fished state”, sensu [71], where additional disturbances may no longer lead to clear 

responses in assemblage structure. Offshore structures provide some degree of refuge from trawling 

activities [72], because safety regulations prevent navigating closer than a distance of between 200 m 

and 1000 m from offshore platforms (Art. 28 del D.P.R. 886/79), which could potentially compensate 

other negative effects of structures on the benthos.  
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4.2. Fish Farming 

Experimental work in the Mediterranean Sea has shown that the impacts of fish farming of sea bass 

and sea bream can vary greatly depending on the hydrography of the site, stocking density, or the feed 

type, and that these effects can be significantly reduced by careful site selection, control of stock density, 

improved feed formulation and integrated culture with macroalgae, filter-feeders and deposit-feeders [73]. 

For integrated culture to be successful, there must be synchronization between the growing cycles of the 

cultured species [74], therefore site environmental and hydrological conditions at the site, coupled with 

species life history cycles, play a crucial role. 

Some of the most important documented effects of aquaculture comprise increase in organic matter 

contents and compositional changes of the sediment below fish cages, alteration of inorganic and organic 

chemistry of farm water and sediments, alteration of abundance, biomass and biodiversity of micro, meio 

and macro benthic communities and modification of distributional patterns of phytoplankton and micro-

zooplankton abundance and production [75–78]. Although large-scale modification of the trophic status 

(i.e., nutrient concentrations and phytoplankton biomass) of marine areas has been described as a 

consequence of fish farming [75], most of the described impacts are confined to within 25 m up to 1 km 

distance [79,80]. A site might be classified as undisturbed based on physico-chemical parameters, but 

estimates of biological or ecological effects, for example the Marine Biotic Index, tend to increase the 

size of the impacted areas [81]. 

Chemical inputs and residues originate mainly from fish feed (Zn, Cd) and anti-fouling chemicals 

(Cu) [82]; their effects can vary from causing changes in swimming, burrowing and general behavior as 

well as causing death, depending on concentration and target species [83]. Local accumulation of 

antibacterial medications in the deeper sediments under cages can also have long-term adverse effects 

on ecosystem functions, by affecting the microbes/bacteria, which are responsible for the decomposition 

of organic matter and mineralization of nutrients [84]. 

Wild fish populations also occur around cages, increasing the fish abundance and diversity and 

altering the community composition of a site [85–87]. Wild fish species consume processed fish [88], 

pellets, parasites of cultured fish and bio-fouling species [89,90]. A waste feed diet can affect metabolic 

pathways and gene coding expression, as well as depress the predatory behavior of wild fish near cages [91]. 

On an ecosystem level, a change in diet of relevant fish fauna can lead to alterations in the system trophic 

state, affecting community structure and species abundance via top-down cascading effects [86]. 

There is currently a strong interest in developing mitigation strategies and best practice codes for 

sustainable aquaculture. Long-term studies at fish farming sites where all operations were conducted 

following the legislative specifications and the code of conduct for responsible development of 

aquaculture have generally shown limited environmental changes around or under the sea cages [79,92]. 

However, even when the overall impact on benthic macro-invertebrate assemblages is small, a general 

shift towards a prevailing abundance of tolerant species is observed under cages [92–94], as well as 

changes in community structure as a result of toxicity and bioaccumulation of chemicals [82]. The 

introduction of pathogens, alien species, and new genetic strains produced by escaped fish mating with 

wild fish also raise growing environmental and ecological concerns [95]. 
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5. Multi-Purpose Solutions: Selection of the Most Promising Concept 

This Section applies an objective procedure for the evaluation of different design concepts at the study 

site and presents the preliminary design of the most promising MUP. The procedure—whose details can 

be found in [22]—consists of: a pre-screening phase, to assess the feasibility of the single purpose 

installations, and a ranking phase, where the MUPs performance is scored based on selected criteria and 

sub-criteria that account for technological and non-technological issues relevant to installation, operation 

and maintenance. The methodological process is synthesized and the conceptual design alternatives are 

selected based on the pre-screening phase and on the data presented in Section 3 (Section 5.1). The 

application of the ranking procedure to the alternative design concepts is then described and the most 

promising concept is selected (Section 5.2). Some design considerations to maximize the synergy of the 

selected MUP are finally drawn (Section 5.3). 

5.1. Brief Description of the Procedure and Selection of the Alternative Design Concepts 

In the first step, the potential uses of the platforms are investigated, considering key technical 

feasibility criteria, and related threshold values where applicable, see the summary in Table 6. 

In the case of offshore wind and tidal energy, where the technology is more mature and assessments 

from previous research projects [96] are available, the “go/no-go” option is determined on the basis of 

the average yearly value of wind and tidal velocity. For wave energy, a threshold value is not available, 

however single purpose installations have been carried out so far in sufficiently energetic seas only, i.e., 

where the mean annual potential is not lower than 10 kW/m. 

For aquaculture the “go/no-go” decision is complex, since it is first necessary to collect time series 

of key environmental parameters such as temperature, salinity and nutrients in the water column, both 

on a mean (at least monthly) basis and accounting for seasonal variability (over at least one year of data). 

Based on these data, the first step is to identify if there is the potential for any commercial species. If 

this is the case, then estimates of the installation viability can be made after assessing the time required 

for stocks to grow to a commercially valuable size and the basic farm module for a sufficient  

production level. 
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Table 6. Criteria and sub-criteria for the identification of the uses, and for the selection  

of the optimal portfolio of uses, in the case of a Multi-Purpose Offshore Installation.  

To be continued. 

Step 1- Feasibility Assessment 
Criteria Type of judgment 
Renewable energy potential  
Wind 
Wave 
Tide 

Yes/no 
Wind: >6 m/s on average for offshore plants, after ORECCA, 2011 
Wave: no specific threshold available  
Tide: 2.5 m/s mean spring peak based on DECC, 2010 

Aquaculture potential  
Yes/no—if yes specification of  

• what (sea-weeds, fish farm, etc.) 
• minimum installation requirements (depth, space, etc.) 

Step 2—Ranking 
Criteria  Type of judgment 

Exploitation potential 

Score 1 (highest)…5 (lowest) 
Renewable energy potential (to be repeated for wind, wave and tide): 

• Maturity of technology 
• Reliability 
• Performance 

Aquaculture potential: 
• Existing practice in the area 
• Technological challenges 
• Performance 

Innovation 
Score 1 (highest)…5 (lowest) 
Technological Innovation: 
Synergy with other uses:  

Environmental impact 

Score 1 (lowest)…5 (highest) 
Use of marine space 

• Wind piles/devices dimension 
• Size of energy farm 
• Size of aquaculture farm 

Foundation type 
Materials 
Impact on the coast 
Inclusion of exposed components/parts 
Noise /Vibration 
Aesthetic impact 
Local energy storage/use 
Maintenance 

• Transportation 
• Fouling 
• Material durability 
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Table 6. Cont. 

Criteria  Type of judgment 
Risks Score 1 (lowest) 5 (highest) 

Structural failure 
• Modular or single/ rigid structure 
• Geotechnical failure 
• Moorings 

Power failure 
• Power take off/feeding 
• Local energy storage/use 

Pollution 

Costs Score 1 (lowest)…5 (highest) 
Installation depth 
Installation type 

• Complexity 
• Moorings 

Power extraction and storage 
• Power take off type 
• Local energy storage/use 

Installation/maintenance requirements 
• Accessibility 
• Materials 

Transportation 
• Installation 
• Operation 

In the Acqua Alta site, none of the conditions required for the feasibility of the single purpose 

installations is achieved: 

• the average value of the wind speed Vw is 4.5 m/s < 6 m/s; 

• the yearly available wave energy power is about 1 kW/m << 10 kW/m; and 

• there are successful current practices for fish farming, and the demand for the sea bass- and sea 

bream-selected farming species is high, however the sea bass and sea bream growing period is 

not competitive with benchmark sites (see Tables 4 and 5). 

A single-purpose offshore installation at the Acqua Alta site will not be further investigated, because 

only the combination of different uses in the area, i.e., a MUP solution, makes an offshore installation 

feasible. Different combinations of MUP are assessed: 

• fixed or floating wave energy devices, either combined with wind production or not, since the 

local stakeholders mainly have experience and interest in wave energy (see Section 3.2); 

• offshore large wind or micro-wind, the latter being possible only when integrated with the fixed 

wave energy devices (see Section 3.1); and 

• aquaculture, which will be combined with all the other different uses (see Section 3.3).  

A detailed cost-benefit analysis is beyond the scopes of the present contribution; rather we explore 

different design concepts for MUPs, which are summarized in Table 7. 
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5.2. Ranking the Alternative Design Concepts 

In the second step, the selected MUPs are evaluated against selected criteria that have to be 

comprehensive of the design, installation, operation and maintenance, i.e., of the performance and impact 

during the project life cycle. Multi-criteria frameworks are commonly used for the assessment of 

environmental impacts [97,98], for the selection of the optimal installation site [96,99], and to find the 

most suitable energy converter at a given area [22]. Experts with different backgrounds have to define 

the criteria to be addressed and a related score method to provide a robust tool for comparative analysis 

of alternatives. 

Table 7. Synthesis of the multi-purpose concepts to be explored. 

Name 
Wave Wind 

Fish Farm 
Electricity Connection 

WaveStar DEXA Large Mini StandAlone Connected to Grid 

MUP 1 X  X X X X  
MUP 2 X  X X X  X 
MUP 3 X   X X X  
MUP 4 X   X X  X 
MUP 5 X  X  X X  
MUP 6 X  X  X  X 
MUP 7 X    X X  
MUP 8 X    X  X 
MUP 9  X X  X X  

MUP 10  X X  X  X 
MUP 11  X   X X  
MUP 12  X   X  X 

Five key criteria (Innovation, Exploitation Potential, Environmental Impact, Risks, Costs) were 

selected, and for each criterion, specific sub-criteria were identified to facilitate expert judgment (Table 6). 

The experts/users of the methodology provided scores for each sub-criterion, then the score of each 

criterion was determined as the un-weighted mean of the scores of the sub-criteria. The decision not to 

include weights was taken to exclude any somewhat subjective relevance assigned to technological, 

economic and environmental issues depending on the expertise of the different experts/stakeholders. 

Indeed the discussion about scores and weights is still open within the scientific community (for instance, 

within the Ocean Energy Europe Association), where their values are periodically updated with the 

upcoming technological advances in the field. Weights should be ideally assigned by stakeholders to 

better reflect the social, economic and environmental site characteristics [100]. 

Among the five criteria, two are “measurements” of benefits (i.e., the Exploitation potential and the 

Innovation) while the other three are “measurements” of impacts. The scores range from 1 to 5, where  

1 = best solution, lowest impact, best performance, etc.; and 5 = worst solution, highest impact, worst 

performance, etc. The resulting scores for each MUP concept are given in Table 8. The explanation of 

these scores is provided in the following paragraphs. 

The ranking was performed by ordering the MUPs from the most successful (lowest score) to the 

least successful (highest score). A further development of this methodology can be the inclusion of 
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weights for each criteria depending on the background of the users completing the evaluation procedure 

or on the relevance assigned by local stakeholders to the different criteria (see Section 2.5). 

5.2.1. Innovation 

Technological Innovation. In the case of wind energy and aquaculture, the installation is based mainly 

on existing technologies, even if the practices are not consolidated in the area. The installation of a large 

array of WECs is a significant step in technological innovation, at both the national and global levels. A 

score equal to 1 is assigned to the case where all the uses are combined (large- and mini-wind, waves, 

aquaculture) in a stand-alone solution. The technological innovation is estimated to be lower with 

decreasing number of uses, so that 1 point is added for each missing use, and when the platform is 

connected to the grid, therefore 1 point is added also to all grid-connected solutions. 

Synergy with other uses. The score is decreasing with the addition of further uses, with the score equal 

to 1 assigned when waves, wind and aquaculture are combined together. The score increases by 1 point 

for each missing use and by 0.5 points when the platform is connected to the grid, since this solution 

leads to a lower level of interaction among the different uses. 

Table 8. Ranking of the multi-purpose concepts based on expert judgment. To be continued. 

Criteria  Type of judgment MUP 1 MUP 2 MUP 3 MUP 4 MUP 5 MUP 6 

Innovation 
Score: 1.00 1.75 1.25 2.25 1.50 2.25 
·    Technological Innovation: 1 2 1 2.5 1.5 2.5 
·     Synergy with other uses: 1 1.5 1.5 2 1.5 2 

Exploitation 
potential 

Score: 2.11 2.11 2.56 2.56 1.89 1.89 
·     Renewable energy potential (wind): 1.67 1.67 3.00 3.00 1.00 1.00 

·      Maturity of technology 2 2 2 2 1 1 
·      Reliability: 2 2 2 2 1 1 
·      Performance: 1 1 5 5 1 1 

·     Renewable energy potential (wave): 2.67 2.67 2.67 2.67 2.67 2.67 
·      Maturity of technology 3 3 3 3 3 3 
·      Reliability: 2 2 2 2 2 2 
·      Performance: 3 3 3 3 3 3 

·     Aquaculture potential (fish farming): 2.00 2.00 2.00 2.00 2.00 2.00 
·      Existing practice in the area: 2 2 2 2 2 2 
·      Technological challenges: 1 1 1 1 1 1 
·     Performance: 3 3 3 3 3 3 

Environmental 
impact 

Score: 3.70 3.93 2.93 3.26 3.59 3.81 
·      Use of marine space: 4.33 4.33 3.67 3.67 4.33 4.33 

·      Wind piles/devices dimension 4 4 3 3 4 4 
·      Size of energy farm: 4 4 3 3 4 4 
·      Size of aquaculture farm: 5 5 5 5 5 5 

·      Foundation type 5 5 3 3 5 5 
·      Materials 3 3 3 3 3 3 
·      Impact on the coast: 2 2 2 2 2 2 
·      Inclusion of exposed 
components/parts: 

4 4 4 4 3 3 

·      Noise /Vibration: 4 4 3 3 4 4 
·      Aesthetic impact: 5 5 3 3 5 5 
·      Local energy storage/use: 3 5 2 5 3 5 
·      Maintenance: 3.00 3.00 2.67 2.67 3.00 3.00 

·      Transportation: 4 4 3 3 4 4 
·      Fouling: 2 2 2 2 2 2 
·      Material durability:  3 3 3 3 3 3 
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Table 8. Cont. 

Criteria  Type of judgment MUP 1 MUP 2 MUP 3 MUP 4 MUP 5 MUP 6 

Risk 

Score: 2.83 3.17 2.72 3.06 2.78 3.11 
·      Structural failure: 3.50 3.50 3.17 3.17 3.33 3.33 

·     Modular or single/ rigid structure: 3.5 3.5 3.5 3.5 3 3 
·      Geotechnical failure 

(liquefaction): 
5 5 4 4 5 5 

·      Moorings:  2 2 2 2 2 2 
·     Power failure: 2.00 3.00 2.00 3.00 2.00 3.00 

·      Power take off/feeding: 2 2 2 2 2 2 
·      Local energy storage/use: 2 4 2 4 2 4 

·      Pollution:  3 3 3 3 3 3 

Costs 

Score: 3.25 3.50 3.05 3.30 3.15 3.40 
·      Installation depth: 3 3 3 3 3 3 
·      Installation type: 2.50 2.50 2.50 2.50 2.50 2.50 

·      Complexity: 3 3 3 3 3 3 
·      Moorings: 2 2 2 2 2 2 

·      Power extraction and storage: 3.50 4.50 3.25 4.25 3.25 4.25 
·      Power take off type: 4 4 3.5 3.5 3.5 3.5 
·      Local energy storage/use: 3 5 3 5 3 5 

·      Installation/Maintenance requirements: 3.00 3.00 2.75 2.75 3.00 3.00 

·      Accessibility: 2 2 2 2 2 2 
·      Materials: 4 4 3.5 3.5 4 4 

·      Transportation: 4.25 4.50 3.75 4.00 4.00 4.25 
·      Installation: 4.5 5 3.5 4 4 4.5 
·      Operation: 4 4 4 4 4 4 

 Total (using equal weights) 12.90 14.45 12.50 14.42 12.91 14.46 
Criteria  Type of judgment MUP 7 MUP 8 MUP 9 MUP 10 MUP 11 MUP 12 

Innovation 
Score: 2.50 3.25 1.5 2.25 2.25 3 
·    Technological Innovation: 3 4 1.5 2.5 2.5 3.5 
·     Synergy with other uses: 2 2.5 1.5 2 2 2.5 

Exploitation 
potential 

Score: 3.22 3.22 2.22 2.22 3.56 3.56 
·     Renewable energy potential (wind): 5.00 5.00 1.00 1.00 5.00 5.00 

·      Maturity of technology 5 5 1 1 5 5 
·      Reliability: 5 5 1 1 5 5 
·     Performance: 5 5 1 1 5 5 

·     Renewable energy potential (wave): 2.67 2.67 3.67 3.67 3.67 3.67 
·      Maturity of technology 3 3 4 4 4 4 
·      Reliability: 2 2 3 3 3 3 
·     Performance: 3 3 4 4 4 4 

·     Aquaculture potential (fish farming): 2.00 2.00 2.00 2.00 2.00 2.00 
·      Existing practice in the area: 2 2 2 2 2 2 
·      Technological challenges: 1 1 1 1 1 1 
·     Performance: 3 3 3 3 3 3 

Environmental 
impact 

Score: 2.70 3.04 3.56 3.78 2.65 2.98 
·      Use of marine space: 3.67 3.67 4.33 4.33 3.50 3.50 

·      Wind piles/devices dimension 3 3 4 4 2.5 2.5 
·      Size of energy farm: 3 3 4 4 3 3 
·      Size of aquaculture farm: 5 5 5 5 5 5 

·      Foundation type 3 3 4 4 2 2 
·      Materials 3 3 4 4 4 4 
·      Impact on the coast: 2 2 2 2 2 2 
·      Inclusion of exposed 
components/parts: 

3 3 3 3 3 3 

·      Noise /Vibration: 2 2 4 4 2 2 
·      Aesthetic impact: 3 3 4 4 2 2 
·      Local energy storage/use: 2 5 3 5 2 5 
·      Maintenance: 2.67 2.67 3.67 3.67 3.33 3.33 

·      Transportation: 3 3 4 4 3 3 
·      Fouling: 2 2 3 3 3 3 
·      Material durability:  3 3 4 4 4 4 
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Table 8. Cont. 

Criteria  Type of judgment MUP 7 MUP 8 MUP 9 MUP 10 MUP 11 MUP 12 

Risk 

Score: 2.67 3.00 3.94 4.28 3.83 4.17 
·      Structural failure: 3.00 3.00 4.33 4.33 4.00 4.00 

·     Modular or single/ rigid structure: 3 3 4 4 4 4 
·      Geotechnical failure 

(liquefaction): 
4 4 4 4 3 3 

·      Moorings:  2 2 5 5 5 5 
·     Power failure: 2.00 3.00 3.50 4.50 3.50 4.50 

·      Power take off/feeding: 2 2 5 5 5 5 
·      Local energy storage/use: 2 4 2 4 2 4 

·      Pollution:  3 3 4 4 4 4 

Costs 

Score: 2.90 3.15 3.75 4.00 3.50 3.75 
·      Installation depth: 3 3 3 3 3 3 
·      Installation type: 2.50 2.50 4.50 4.50 4.50 4.50 

·      Complexity: 3 3 4 4 4 4 
·      Moorings: 2 2 5 5 5 5 

·      Power extraction and storage: 3.00 4.00 3.75 4.75 3.50 4.50 
·      Power take off type: 3 3 4.5 4.5 4 4 
·      Local energy storage/use: 3 5 3 5 3 5 

·      Installation/Maintenance requirements: 2.50 2.50 3.50 3.50 3.00 3.00 

·      Accessibility: 2 2 3 3 3 3 
·      Materials: 3 3 4 4 3 3 

·      Transportation: 3.50 3.75 4.00 4.25 3.50 3.75 
·      Installation: 3 3.5 4 4.5 3 3.5 
·      Operation: 4 4 4 4 4 4 

 Total (using equal weights) 13.99 15.66 14.97 16.53 15.79 17.45 

Technological Innovation. In the case of wind energy and aquaculture, the installation is based mainly 

on existing technologies, even if the practices are not consolidated in the area. The installation of a large 

array of WECs is a significant step in technological innovation, at both the national and global levels. A 

score equal to 1 is assigned to the case where all the uses are combined (large- and mini-wind, waves, 

aquaculture) in a stand-alone solution. The technological innovation is estimated to be lower with 

decreasing number of uses, so that 1 point is added for each missing use, and when the platform is 

connected to the grid, therefore 1 point is added also to all grid-connected solutions. 

Synergy with other uses. The score is decreasing with the addition of further uses, with the score equal 

to 1 assigned when waves, wind and aquaculture are combined together. The score increases by 1 point 

for each missing use and by 0.5 points when the platform is connected to the grid, since this solution 

leads to a lower level of interaction among the different uses. 

5.2.2. Exploitation Potential 

In the assessment of wind potential, both the maturity of technology and the reliability are scored 1 

when the widely applied VESTAS V-112 turbines are selected, while a score equal to 2 is assigned to 

the mini-wind, due to the narrower application and higher failure potential. In the case where both large- 

and mini-wind are included, the latter dominates the overall scores. Regarding performance, a score 

equal to 1 is assigned when large wind is present, due to its high energy production (one order of 

magnitude higher) when compared with the other renewable energy sources at the site, while for  

micro-wind alone, the score equals to 5, due to the mild climate conditions at the site and low  

conversion efficiency. 
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For wave potential, the maturity of technology is still modest, especially when regarding the proper 

moorings and PTO design. Additionally, the number of physical and numerical modeling studies, the 

testing of the devices at prototype scale, the number of working hours connected to the grid and the 

reported failures, play a significant role in the evaluation of their reliability and performance. Therefore, 

the scores assigned to the WaveStar (maturity = 3, reliability = 2, performance = 3) are always (1 point) 

lower than the ones attributed to the more immature DEXA device. Just like for wind installations, the 

performance score is strongly affected by the mild climate at the site. 

Aquaculture farms of similar type are already present in Italy and the characteristics of the site do not 

require the introduction of any specific and novel feature, the technological challenges are considered to 

be associated to the lowest score of 1. However, since the only existing pilot plant was completed without 

seeking any further developments, a score equal to 2 is assigned to the existing practice. Based on the 

site characteristics and production from similar single use installation, the production of sea bass and sea 

bream is non-optimal compared to other Mediterranean sites with higher temperature and currents, 

leading to a performance score equal to 3. 

When considering the Exploitation Potential, the connection to the grid does not play any role, since 

the scores relate only to the rough preliminary evaluation of the expected production of the MUP. 

Moreover, the score equal to 5 is automatically assigned to the use that is not included in the MUP  

under evaluation. 

5.2.3. Environmental Impact 

The score assigned to wind piles/devices dimension slightly increases from floating (score = 2.5) to 

fixed (score = 3) wave energy arrays due to the combination of the larger surface area occupied by 

floating DEXA and the presence of a number of piles supporting the WaveStar floaters. When  

mini-wind is added to the WaveStar, installation does not require further foot space and therefore the 

score does not increase. When large wind turbines are combined with WECs, the score increases to  

4, since the turbine foundations and the anchors cannot be combined in case of DEXA, and only a few 

can be integrated in the WaveStar foundations, due to the need of a sufficient distance among the 

turbines. The Size of the farm is estimated to have a fairly high impact, especially due to the large number 

of WECs and the distance among turbines; therefore, two fixed scores of 3 and 4 are selected in absence 

and in presence of large wind, respectively. Due to the particularly valuable environment and the 

expected productivity/minimum size required for viability of the plant, the size of aquaculture farm plays 

a relevant role, and therefore, again, the score is equal to 5 for all the MUPs including this use. 

Foundation type is evaluated to be 2 and 3 for moorings (DEXA) and for fixed foundations 

(WaveStar), respectively. The score increases by 1 point when wind piles are present. The contribution 

due to aquaculture lines and cables was considered to similarly affect all the MUPs. 

The score assigned to materials equals 4 for the majority of the MUPs, mainly due to the use of steel 

components and related corrosion and fouling problems. A lower score equal to 3 is applied to the 

WaveStar due to the greater use of other materials (concrete for piles, fiber glass for floaters) and the 

lack of impact from chains for moorings. 

The impact on the coast is assumed to be modest (score = 2) in all cases, due to the water depth at 

installation, the mild climate, and the depth limited wave conditions. 
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The score for the inclusion of exposed components/parts is never below than 3, since it is assumed to 

be driven by the potential debris generated by the WECs (pontoons of DEXA, floaters of WaveStar). 

This score measures the likelihood of materials breaking during heavy storms and the effect of such 

debris on the environment. It is expected that mini-wind can also generate debris, and therefore a  

(1 point) greater score is assigned when this additional use is present.  

Noise/vibration is essentially associated with the presence of wind turbines; therefore the scores equal 

to 2, 3 and 4 are, respectively, assigned to WECs only, to WECs and mini-wind, and to WECs, mini and 

large wind. 

The aesthetic impact is lower for DEXA (score = 2) than for WaveStar (score = 3) and is strongly 

affected by the presence of large wind, which is leading to a (2 points) greater score. 

The Local energy storage/use is considered to produce a lower impact than the connected-to-grid 

solution, since it allows the avoidance of power cables from the site to the shore and minimize the  

need of power hubs. However, it requires an electrical infrastructure including a generator and an 

accumulation system, whose size and impact depend on the production of the installation. Therefore a 

score equal to 2 and to 3 is assigned to the stand-alone solution, respectively, in absence and in presence 

of large wind (i.e., the major potential power source with high discontinuity over time), while a score 

equal to 5 is given to the connected-to-grid solution. 

Regarding Maintenance, MUPs require regular periodic transportation for feeding the aquaculture 

system. While specific transportation due to the wind farm is considered minimum due to technological 

reliability, transportation for maintenance of the WECs (moorings, reflectors, fouling) can be high  

(score = 3 for WaveStar, score = 4 for DEXA). Fouling is expected to occur without consequences on 

the aquaculture cages and on the wind piles, while it can represent a serious problem for the floating 

WECs (score = 2 for WaveStar, score = 3 for DEXA). The impact induced by material durability is 

considered to be high and mainly ascribed to the steel components of the wind and wave farms, therefore 

a higher score is given to MUPs, including DEXA (score = 3 for WaveStar, score = 4 for DEXA). 

5.2.4. Risks 

Structural failure depends on the following. 

• Modular or single/rigid structure: the WECs, especially the DEXA devices, consist of parts that 

have to be built up ad hoc and are also particularly exposed to intense storms (score = 3 for 

WaveStar, score = 4 for DEXA); based on existing experience, due to the fragility of mini-wind 

components the scores are increased of a 0.5 point when this use is included. 

• Geotechnical failure: a lower score is given when only anchors are present (score = 3 for DEXA, 

due to the huge number of anchors), while a higher score is assigned to piles due to potential 

liquefaction problems (score = 4 for WaveStar, increase of 1 point for each configuration 

including large wind). 

• Moorings: based on recent documented failures and maturity of technology, the score is lower 

for aquaculture in combination with fixed structures (score = 2 for WaveStar and aquaculture and 

wind) and maximum importance for floating WECs (score equal to 5 for DEXA). 
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Power failure risk derives from the following.  

• The type of Power take off, which is considered to be driven by the more immature WEC 

installations; a score equal to 2 is assigned to WaveStar, since it has experienced a large amount 

of working hours, while a score equal to 5 is given to DEXA, which has never even reached a 

prototype installation. 

• The local energy storage/use, which is assumed to lead to a lower risk (score = 2), due to  

energy discontinuity and insufficient combined electrical infrastructure, with respect to the 

connected-to-grid solution (score = 4), due to the failure of one or more of the power cables. 

Pollution is essentially due to the nutrients and other substances required for aquaculture use and by 

the need to use antifouling paints, but since these pollutions characterize all the MUPs, it is driven by 

the expected corrosion and abrasion of WECs (score = 3 and 4 for WaveStar and DEXA, respectively, 

due to the larger surface exposed to the sea). 

5.2.5. Costs 

Costs increase with increasing installation depth. In this case, a constant score equal to 3 is assigned 

to all MUPs since the minimum required bottom depth of 27 m is determined by aquaculture (to 

guarantee legislative compliance, good animal health and mitigation of environmental impact). 

The complexity of the installation type is essentially driven by the WECs, since the devices contain 

many components that are non-commercially available (a.o. DEXA pontoons, WaveStar floaters) and 

have to be built ad hoc. All the DEXA installations are expected to lead to a higher cost than the 

WaveStar (since piles and modular emerged parts are commercially available). 

Moorings are required for the aquaculture system (minimum score = 2 when the WEC is fixed) and 

especially for the DEXA (score = 5). 

Power extraction and storage depends on the following. 

• The PTO type, which is expensive for WaveStar, since it is related to each floater, but even more 

for DEXA, since it has never been tested at prototype scale (score = 3 for WaveStar, score = 4 for 

DEXA); in the presence of large and mini-wind, the scores increase, respectively, by 0.5 and 1 point. 

• The local energy storage/use, which reduces the costs due to the reduction of power cables to shore. 

However, this solution includes costs related to the storage system and electrical stabilization (score 

= 3). The connected-to-grid solution is supposed to have the highest costs (score = 5) due the huge 

distance from shore (>20 km due to the mild bottom slope). 

Installation/maintenance requirements derive from the following. 

• The level of accessibility, for which a lower score is assigned to the fixed WECs, because more 

monitoring and maintenance of the anchors for the floating WECs is expected (score = 2 for 

WaveStar, score = 3 for DEXA). 

• the materials, depending on the type and volumes; a lower score is assigned to aquaculture and 

WECs (3); with respect to aquaculture, WECs and mini (3.5) or large wind farm/s (4).  

Transportation cost depends on the following. 

• Installation, whose cost is driven by volumes, i.e., piles and number of devices to be transported; 

therefore, the minimum score is assigned to the MUPs, including WECs only (score = 3), while 
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additional points are given when large- and mini-wind are also present (0.5 and 1 point, 

respectively); in case of connection to the grid, an additional 0.5 point is considered. 

• Operation mean cost, which is mainly due to the regular maintenance of the aquaculture plant but 

can be significantly higher considering exceptional maintenance to wind and wave farms; here the 

costs due to ordinary maintenance are accounted for, with a score equal to 4 for all MUPs. 

5.3. Selection of the Most Promising Alternative and Preliminary Design Layout 

The sum of the mean scores achieved for each criterion gives the total score of the different MUPs 

and therefore their ranking from the lowest score to the highest score, i.e., from the best to the worst 

scheme. It can be observed that: 

• all the stand-alone MUPs are more suited than the connected-to-grid-solutions, essentially due to 

greater innovation, lower environmental impact and lower costs;  

• all the MUPs including the WaveStar device, despite the potential higher environmental impact 

and higher geotechnical risks, are more suited than the DEXA installation, due to the maturity of 

the technology, more reliable foundations and power take off and to the relatively limited water 

depth that is close to the suggested range for this device; and 

• the stand-alone alternatives including WaveStar, aquaculture and large/mini-wind (MUPS 1, 3, 

5) provide global scores that are very close to each other, especially when the difference is given 

by the inclusion of the mini-wind only (MUPs 1 and 3)—this result may suggest that more 

detailed analysis should be carried out when considering the effects of fixed foundations, 

especially for wind turbines. 

Based on these results, some preliminary design considerations are drawn for the selected scheme, 

MUP 3, including aquaculture and mini-wind placed on WaveStar devices, while using part of the energy 

produced to sustain the MUP and part for local energy storage. 

The separated layouts for mini-wind, WaveStar, and aquaculture have already been discussed together 

with their constraints in Section 3 and presented in Figures 9, 11 and 12, respectively. 

The MUP design should optimize the use of marine space while combining constraints related to each 

single use (such as minimum safety distances, maximum distances from the shore, required space for 

ordinary and extraordinary operation/maintenance, etc.) and desirable features (i.e., minimize the 

occupied space, protect aquaculture, maximize energy harvesting for wind and wave energy  

devices, etc.). The MUP design has to account for potential synergistic use of components (piles, 

emerged supports, etc.) or indirect benefits deriving from different uses (e.g., wave absorption by WECs 

for protecting aquaculture installation). 

The orientation of the MUP is selected to be 110°N, accounting for the Bora and Scirocco  

wave conditions. 

The selection of a stand-alone MUP leads to some essential design constraints, as it is not technically 

feasible to set-up huge local energy storage and to stabilize the energy production without a detailed 

analysis of the power production outputs in time. The detailed numerical modeling of the electrical 

synergies and the overall stability of the MUP are out of the scope of this paper and, therefore, we are 

here referring to the more relevant results. 
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The number of WECs and the related number of mini-wind turbines have thus to be defined based on 

two main issues: (1) the power consumption of the fish farm; and (2) the power continuity. In this site, 

the combination of wind and wave energy devices does not lead to any significant reduction of the 

unproductive hours of the MUP, as in this site waves are typically wind generated with a very limited 

time shift. 

The power required by the fish farm is about 200 kWh for 6 h during winter time and 12 h during 

summer time, for a total of about 0.8 GWh/year, which is a figure close to the production assured  

by two WaveStar platforms consisting of three arms placed in a “star” configuration. The layout of  

MUP 3 (Figure 13) will therefore include two2 WaveStar platforms with three mini-wind turbines 

installed at the each arm edges and one module of the fish farm. The configuration for the mini-wind 

installations is made to avoid wake effects, balance structural loads and maximize the power production, 

which would be produced by a perpendicular exposure to Bora winds. However, such exposure is never 

perfectly achieved with the selected arms orientation. In this particular case (only two WECs and mild 

climate), the WECs are placed inshore of the fish farm, to avoid asymmetrical wakes on the fish farm. 

An additional back-up generator set has to be introduced, since the capacity of the actual storage 

systems is quite limited and the power load for the fish farm has to be guaranteed during unproductive 

intervals from marine renewables. 

 

Figure 13. Suggested layout for the selected MUP 3. 
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As this study allowed developing relevant synergies among the experts, it is worth reporting here 

some considerations also regarding the layout of the corresponding connected-to-grid solution  

(MUP 4), as an exercise leading to guidelines exportable to similar cases. 

When connected to the grid, the energy produced by the MUP is not upper limited. It will be necessary 

to design the number and type of marine renewable energy devices in such a way that their combination 

leads to the minimum hours of energy-generating idleness and to stable electrical conditions. This issue 

is not considered here in the set-up of this preliminary layout. 

To assure protection to the aquaculture cages, the WECs should be installed in front and on the sides 

of the aquaculture cages in a “C” configuration, facing both Bora and Scirocco waves. 

As in the previous design, the mini-wind is also installed at the edges of the three arms of the 

WaveStar, for a total of 39 mini-wind turbines. 

The MUP total area to maximize power production and sheltering effects would be around 2 km2, 

being about 1.4 km long in both long-shore and cross-shore directions (see the layout in Figure 14). 

 

Figure 14. Suggested layout for the MUP 4, i.e., MUP 3 but connected to the grid. Dashed 

boxes represent the minimal mutual distance among WEC modules to reduce wake effects 

and allow for navigation. Dimensions are in meters. 
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The power production is roughly estimated as 4.2 GWh/year, of which only the 19% is needed for 

the operation of the aquaculture plant. In this specific case, it would be worth also including four large 

wind turbines integrated in correspondence of the central axis of four Wave Stars placed at the corners 

of the “C” configuration, leading to an increase of the production of additional 12.6 GWh/year, for a 

MUP total power production of around 16.8 GWh/year.  

It is also worth remarking that all these considerations related to power production of both MUP 3 

and MUP 4 do not account for power losses (PTO, cables, wake effects, etc.), as the performance of 

wind and wave energy devices is based on hydraulic efficiency only. 

6. Conclusions 

Based on a hypothetical installation in the mildest area of the Mediterranean Sea, the Northern 

Adriatic, this paper examined the potential of offshore installations for renewable energy and aquaculture. 

The steps to examine the different solutions have been synthesized, including the site environmental 

conditions, the policy constraints and the interaction with local stakeholders. A preliminary assessment 

of the requirements and production potential of the single-purpose solutions has been carried out, 

showing that these solutions would never lead to viable projects at the site. The analysis, however, 

proceeded further in depth to investigate the synergies achievable by combining different uses within 

the same installation. 

An objective multi-criteria procedure has been applied to integrated conceptual alternatives, leading 

first to the identification of 12 MUP schemes combining in different ways the fish farm, the (mini and/or 

large) wind and the (floating or fixed) wave energy installation within either a stand-alone or a 

connected-to-grid solution. Then the MUP concepts have been ranked, accounting for the expected 

benefits related to production and technological innovation, the impacts on local and costal environment, 

the installation and maintenance costs, and the risks due to structural, geotechnical, electrical failures, 

and pollution. 

The results of this expert judgment ranking identified as the most promising solution, the  

stand-alone MUP integrating the fixed wave energy devices, the mini-wind and the fish farm.  

The preference for the stand-alone solution is mainly given by the large distance of the MUP from the 

shore, which increases the costs significantly, and by the strong impact that power cables would have on 

the soft bottom assemblages in this area. 

This selected MUP is designed for a power production close to the requirements of the fish farm, to 

fulfill the constraints posed by the electrical infrastructure for power stabilization and local storage. A 

critical issue for the design of both stand-alone and connected-to-grid solutions is the power 

discontinuity at the site, due to the mild climate, and the close correlation between wind and wave power, 

due to the wind-generated waves in the semi-enclosed Adriatic basin. 

The technological constraints of each single use platform and the synergies derived from the 

combined uses provided some general main suggestions for the preliminary design layout. Wave energy 

arrays can offer protection to aquaculture and should therefore be placed on the exposed side and around 

the fish farm cages (depending on the number of the devices), along the direction of the more energetic 

wave states. In this specific case, with a bi-directional wave climate, the main axis of the MUP should 

be oriented almost perpendicularly to the two prevailing directions of incoming waves to maximize wave 
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energy production and protection to aquaculture. Stand-alone solutions are particularly suited to 

minimize the impacts on valuable ecosystems; however, they still require some technological advance 

to overcome the strong limitation on MUP allowable power production. 

The main result of this application is not in the site-specific considerations as such, but in the global 

result that installations integrating more functions at the same site may lead to projects that would have 

otherwise been unfeasible and to significantly optimize the use of marine resources and space, boosting 

a more sustainable blue growth. 
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