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ABSTRACT 19 

Patterns of benthic community structure are driven by a range of biological and physical 20 

processes that act over multiple spatial and temporal scales. Spatially nested, hierarchal 21 

sampling designs and variance component analyses have been used to examine patterns of 22 

multi-scale spatial variability in populations and assemblages and to infer key scale-23 

dependent processes that drive such patterns. Here, settlement panel arrays were deployed in 24 

relatively ‘pristine’ subtidal habitats off southwest Australia, to examine spatial variability in 25 

assemblage structure at multiple spatial scales, from centimetres to 100s of kilometres. Panel 26 

assemblages were harvested after 3, 9 and 14 months of maturation, to test the following 27 

hypotheses: (i) that the magnitude of variability at large spatial scales increases with 28 

assemblage development time, (ii) that variability at the smallest spatial scales is consistently 29 

high regardless of assemblage development time, and (iii) that patterns of spatio-temporal 30 

variability differ between taxa. No clear trends in the magnitude of variability at each spatial 31 

scale examined, in relation to assemblage development time, were recorded. Sessile 32 

assemblages were highly variable at all spatial scales examined, and variability at the 33 

smallest-spatial scale (cms) was consistently high. Although, as predicted, the magnitude of 34 

variability at the largest spatial scales (i.e. between locations 100s of km apart) was lowest 35 

for immature assemblages, overall patterns of large-scale variability did not alter predictably 36 

with assemblage development time and differed between assemblage metrics examined (i.e. 37 

multivariate assemblage structure, taxon richness, total cover). Subtidal sessile assemblages 38 

in southwest Australia, like elsewhere, are seemingly structured by a complex, interacting 39 

suite of biological and physical processes that vary in their relative importance throughout 40 

assemblage maturation.  As such, predicting spatial variability patterns in ecological structure 41 

is challenging, and requires greater appreciation of variability in physical processes across 42 
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multiple spatial and temporal scales and improved knowledge of the life histories and 43 

population structures of key taxa.   44 

Key words: Benthic communities, spatial variation, recruitment, temperate reefs, southwest 45 

Australia, hierachal designs, variance components 46 
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INTRODUCTION 49 

Natural communities are structured by a complex suite of interacting physical and biological 50 

forces that act across varying spatial and temporal scales (Dayton 1985, Schiel & Foster 51 

1986, Levin 1992, Connell 2007). The rate and trajectory of community development, or 52 

succession, is strongly influenced by environmental factors (Denslow 1980, Ritter et al. 53 

2005), while the relative importance of different processes in structuring communities is 54 

influenced by the developmental stage of the community (Sousa 1980). For example, it has 55 

long been known that immature communities may respond differently to physical disturbance 56 

(Sousa 1980), be more influenced by small-scale abiotic processes that affect recruitment 57 

(Underwood & Fairweather 1989) and less influenced by biotic interactions (Connell & 58 

Slatyer 1977) than more mature communities. Thus, the relative importance of key abiotic 59 

and biotic processes, which act across varying spatial and temporal scales, in structuring a 60 

community is mediated to some degree by the maturation stage of that community.   61 

In marine ecosystems, ecologists have examined spatial or temporal variability in community 62 

structure, at multiple scales, and correlated these patterns with scales of variability in physical 63 

and biological factors to make inferences about the relative importance of processes that 64 

shape natural communities (Underwood & Chapman 1996, Benedetti-Cecchi et al. 2001). 65 

Pronounced variability in community structure at small spatial scales (i.e. centimeters to 66 

meters) has emerged as a ubiquitous pattern in coastal ecosystems, whereas the degree of 67 

variability over larger spatial scales (i.e. 10s to 100s of kilometers) differs among habitats and 68 

taxonomic groups (Fraschetti et al. 2005). Previous studies that have adopted a multi-scale 69 

approach have, however, tended to focus on either spatial (e.g. Terlizzi et al. 2007, Smale et 70 

al. 2010) or, less commonly, temporal variability (Morrisey et al. 1992), and very few studies 71 

have examined the influence of time on multi-scale spatial variability patterns, despite the 72 

fact that populations and communities vary concurrently through both time and space (but see 73 
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Glasby 1998, Hewitt & Thrush 2007). Furthermore, quantitative comparisons of both spatial 74 

and temporal variability (e.g. Glasby 1998, Benedetti-Cecchi et al. 2001) have been 75 

conducted over relatively short time scales (i.e. weeks to a few months) and have not, 76 

therefore, compared assemblages along a broad spectrum of maturity.    77 

Immature marine benthic communities are, to a large degree, a product of settlement, post-78 

settlement survival and recruitment processes, which are highly variable at both small 79 

(Rodríguez et al. 1993, Edwards & Stachowicz 2011) and large (Gaines & Bertness 1992) 80 

spatial scales. As communities mature, biotic interactions become more important so that 81 

competitive or facilitative processes may occur over small spatial scales to promote 82 

patchiness at the scale of centimeters to meters (e.g. Wahl 2001, Smale et al. 2011c). At 83 

larger spatial scales, biotic interactions influenced by variability in the identity and 84 

abundance of community dominants or ‘ecosystem engineers’ may promote large-scale 85 

variability in ecological pattern  (e.g. Fowler-Walker & Connell 2002). Moreover, large-scale 86 

‘between-region’ variability in community structure is likely to increase with community 87 

maturity as more ‘unique’ members of the local species pool may colonize the available 88 

habitat (Witman et al. 2004).   89 

This study aimed to experimentally assess spatial variability patterns at multiple scales, from 90 

centimeters to hundreds of kilometers, in the structure of sessile assemblages across 91 

developmental stages. To achieve this goal, settlement panels were deployed in subtidal 92 

habitats off southwest Australia, which is a global hotspot of marine biodiversity and 93 

endemism (Phillips 2001, Tittensor et al. 2010), but relatively poorly understood in terms of 94 

early-stage benthic community dynamics (Smale et al. 2011a). The shelf waters off southwest 95 

Australia are strongly influenced by the Leeuwin Current (LC), which originates in the Indo-96 

Pacific and flows polewards along the coast of Western Australia, before deviating eastwards 97 

into the Great Australian Bight (Pearce 1991, Smith et al. 1991). The LC transports tropical 98 
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(and subtropical) dispersal stages and warm, nutrient-poor water polewards, which enhances 99 

north to south mixing of species and effectively raises winter water temperatures (Ayvazian 100 

& Hyndes 1995, Caputi et al. 1996, Smale & Wernberg 2009). Here, sessile assemblages 101 

were cultivated in comparatively pristine reef-dominated habitats with minimal human 102 

impact (i.e. relative to embayments and harbours) to examine ‘natural’ patterns of spatial 103 

variability in relation to assemblage development time.  104 

This study tested 3 hypotheses. First, that the magnitude of variability at large spatial scales 105 

would increase with assemblage development time.  This is because the structure of mature, 106 

subtidal reef assemblages is known to vary at scales of 100s of km along the southwest 107 

Australian coastline (Wernberg et al. 2003b, Smale et al. 2010). This variability is, at least in 108 

part, driven by a well-defined  regional-scale temperature gradient (Smale & Wernberg 2009) 109 

that influences the local species pool and promotes sequential turnover in assemblage 110 

structure along the coastline (Wernberg et al. 2003b, Smale et al. 2010). However, as the 111 

coastline is well-connected through oceanography and other key environmental variables 112 

(e.g. primary productivity, habitat availability, wave exposure) remain relatively constant 113 

across the region (Pearce 1991, Smale & Wernberg 2009), some cosmopolitan species exhibit 114 

extensive geographical distributions (e.g. the common kelp Ecklonia radiata, see Wernberg 115 

et al. 2003a).  Thus, it is hypothesized that early-stage assemblages will be characterized by 116 

widespread ‘pioneer’ species that are common to local species pools separated by 100s km. 117 

As assemblages mature, more species ‘unique’ to the local pool will colonize the artificial 118 

habitat, so that the magnitude of large-scale variability increases with time. The second 119 

hypothesis is that variability at the smallest spatial scales, centimeters to meters, will be 120 

consistently high regardless of assemblage development time, because variability driven by 121 

abiotic and biotic forces acting at these scales is a ubiquitous feature of marine benthic 122 

assemblages, regardless of assemblage maturity (Fraschetti et al. 2005). The third hypothesis 123 
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is that patterns of spatio-temporal variability will differ between dominant taxa. Previous 124 

research has shown that, even when different species perform similar functions, variability 125 

patterns can alter markedly between species because of (sometimes subtle) differences in life 126 

histories, which consequently influence successional patterns (e.g. Benedetti-Cecchi 2000, 127 

Anderson et al. 2005). In the context of the current study, sessile species of pioneer flora and 128 

fauna were predicted to exhibit different spatio-temporal variability patterns because of 129 

dissimilarities in life histories, geographical distributions and population structures.  130 

MATERIALS AND METHODS 131 

Study locations 132 

Colonisation and assemblage development patterns were examined at 2 locations off 133 

southwest Australia; Jurien Bay (30°23'40"S, 115° 1'20"E) and Marmion Marine Park 134 

(31°45'26"S, 115°41'49"E), which are located 180 km apart (Fig. 1A). At each location, 2 135 

comparable study sites were selected 1.0 to 1.5 km apart from one another. All study sites 136 

were at 13-15 m depth, 3-5 km offshore and were characterized by a conglomeration of 137 

limestone reef and sandy habitats. All sites were moderately exposed to the considerable 138 

oceanic swell systems that influence the ecology and geomorphology of the region (Searle & 139 

Semeniuk 1985). A series of offshore islands and submerged limestone reefs offer some 140 

protected from waves at both locations. The southwest Australian coastline experiences a low 141 

magnitude diurnal tidal regime. Subtidal limestone reefs at these locations support a rich flora 142 

and fauna that exhibit high levels of diversity and endemism. Reefs surfaces are characterized 143 

by stands of large, canopy-forming macroalge (e.g. the kelp Ecklonia radiata), a rich array of 144 

understory macroalgae and a high abundance and diversity of reef-associated fish (see 145 

Wernberg et al. 2003b, Smale et al. 2010, Langlois et al. 2012 for quantitative descriptions of 146 

biodiversity patterns).   147 
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Experimental design 148 

Colonisation patterns were examined by deploying standardised artificial substrata (PVC 149 

settlement panels) at each site. Although assemblage composition on artificial substrata is 150 

known to differ from that on natural substrata (Glasby 2000), a previous study in Marmion 151 

Marine Park (Smale et al. 2011c) indicated that assemblages on roughened PVC panels are 152 

largely representative of those found on subtidal limestone reefs. Settlement panels were 153 

deployed using a moored ring system, modified from Svensson et al. (2007). First, 6 grey 154 

settlement panels (200 x 200 mm, 3 mm thick) were attached to an ‘upper’ ring and a ‘lower’ 155 

ring using cable ties and stainless steel wire. Rings were 800 mm in diameter, constructed 156 

from strips of PVC (40 x 2400 mm, 6 mm thick). Panels were attached ~200 mm apart from 157 

one another and were suspended >100 mm from the rings. As such, panels within a ring were 158 

at least 200 mm apart and at most 800 mm apart. Panels were first roughened with an 159 

industrial sandblaster; the duration and areal coverage of sandblasting were standardized. The 160 

upper ring was tied to a buoy, while the lower ring was tied to ~20 kg iron weight, which in 161 

turn was tethered to a galvanized iron Danforth anchor with 5 m of chain. Thus, each ring 162 

comprised 6 independent, inward-facing, vertically orientated settlement panels (Fig. 1B).  163 

At each site 7 rings were deployed from a research vessel and then arranged in 3 rows by 164 

scuba divers, so that rings were ~7-14 m apart from one another. Rings were deployed on 165 

sand to ensure good anchorage and to standardize the immediate habitat. However, rocky 166 

habitat (principally low profile platform reef) was observed within 20 m of all panel arrays. 167 

Panels were suspended ~2 m from the seabed below the subsurface buoy, at depths of 11 to 168 

13 m. Two of the panel rings were randomly selected and retrieved by scuba divers after 3, 9 169 

and 14 months of immersion. At ‘Marmion Marine Park site 2’ after both 3 and 14 months,  2 170 

panels were lost from one of the rings as a result of damage to the wire and cable ties, so only 171 

4 replicates were available for analysis for one of the rings at each of these sampling periods. 172 
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Panel assemblages on subtidal reefs at these locations are generally complex and well-173 

developed after 14 months (Smale et al. 2011c, Smale 2012), while panel assemblages 174 

elsewhere have been shown to reach maturity in considerably less time (e.g. Sugden et al. 175 

2008). Panels were checked and maintained regularly (i.e. every ~3 months) during the study 176 

period and very few benthic grazers were observed on the panels (i.e. a maximum of 2 177 

grazers on all panels within a location). The nested hierarchal design facilitated examination 178 

of spatial variability at the scale of 100s of kilometers (between locations), kilometers 179 

(between sites), meters (between rings) and centimeters (between panels) as a function of 180 

assemblage development time (Fig. 1C).  181 

Analysis 182 

Panels were returned to the laboratory for analysis, where the percent cover of all flora and 183 

fauna (>5 mm in size) was estimated using a gridded overlay. A 25 mm perimeter was 184 

excluded from analysis to account for ‘edge effects’ (see Todd & Turner 1986 and references 185 

therein), providing an analytical area of 150 x 150 mm for each panel. Macro images of flora 186 

and fauna were collected, and voucher specimens of all discernible taxa were taken and 187 

preserved accordingly to aid identification. All sessile organisms were identified to the lowest 188 

taxonomic level possible (generally species for macroalgae and family or genus for fauna). In 189 

this manner, 41 distinct faunal groups (comprising principally of ascidians and bryozoans) 190 

and 19 floral groups (principally red algae) were used to quantify assemblage structure on the 191 

panels.  192 

Patterns of spatial variability in assemblage structure over time were initially examined with 193 

a four-factor design using permutational multivariate analysis of variance (PERMANOVA, 194 

see Anderson 2001). Factors were: ‘Month’ (fixed, crossed with ‘Location’), ‘Location’ 195 

(random), ‘Site’ (random, nested within ‘Location’) and ‘Ring’ (random, nested within 196 
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‘Site’). Permutations were based on a Bray-Curtis similarity matrix generated from square-197 

root transformed percent cover data; the transformation was used to down-weight the 198 

influence of large space occupiers. Tests used up to 4999 permutations under a reduced 199 

model and significance was accepted at P < 0.05. A PCO plot based on the Bray-Curtis 200 

similarity matrix was used to visualize shifts in multivariate structure through time and space. 201 

To investigate the influence of development time on spatial variability further, differences 202 

between spatial scales were examined for each sampling period (i.e. 3, 9 and 14 months) 203 

using a fully nested hierarchal design (i.e. ‘Location’, ‘Site’ and ‘Ring’, all random and 204 

spatially nested). As fully nested sampling designs provide biased and independent 205 

assessments of variability across multiple spatial scales (Underwood & Chapman 1996) this 206 

approach allowed (pseudo) variance components to be compared between spatial scales and 207 

across sampling periods. Where negative various components were generated, they were re-208 

set to zero (Benedetti-Cecchi 2001). Variability in univariate metrics, including total cover, 209 

taxon richness and the cover of dominant taxa, was also tested with PERMANOVA, using 210 

the model described above (but with matrices based on Euclidean distances of untransformed 211 

data, which is analogous to traditional ANOVA). As many statistical tests were conducted, 212 

the probability of falsely rejecting at least one null hypothesis would have been greater than 213 

the conventional alpha value of 0.05. Rather than employ sequential Bonferroni corrections, 214 

which may be overcautious and impractical for this type of study (Moran 2003), variability 215 

was deemed significant at P≤0.01 to reduce the risk of Type 1 error. Even so, conducting >20 216 

sequential tests increases the chance of  Type 1 error and, as such, the tests were used to 217 

examine general variability patterns across sampling times and taxa, rather than generating 218 

specific significance values. Finally, for each location differences in multivariate dispersion 219 

within sampling periods was tested with PERMDISP, which essentially tests for homogeneity 220 

of variance across levels of a given factor (in this case ‘Month’). All analysis was conducted 221 
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with PRIMER 6 (Clarke & Warwick 2001), using the PERMANOVA add-on (Anderson et 222 

al. 2008).  223 

RESULTS 224 

Sessile assemblage structure changed with development time, as assemblages after 3 months 225 

were distinct from those after 14 months at both locations (Fig. 2). This was particularly 226 

evident at Marmion Marine Park, where assemblage structure shifted sequentially through 227 

time (Fig. 2). The full PERMANOVA model detected a highly significant interaction 228 

between development time (‘Month’) and ‘Site’ (Table 1), and examination of the PCO plot 229 

showed that patterns of temporal change in assemblage structure at Jurien Bay varied 230 

considerably between sites (Fig. 2). The PCO plot also suggested that the direction of 231 

assemblage development differed between the study locations. In general, sessile 232 

assemblages at Marmion Marine Park comprised more macroalgae than at Jurien Bay, and 233 

tended to shift from a low-richness pioneer assemblage towards a high coverage, moderate 234 

richness, macroalgal dominated assemblage (Fig. 3). Conversely, assemblages at Jurien Bay 235 

were more fauna-dominated, with variable but occasionally high areal coverage of sponges, 236 

bivalves and bryozoans (Fig. 3). With regards to heterogeneity in assemblage structure over 237 

time, within-group multivariate dispersion was significantly different between months at both 238 

Marmion Marine Park and Jurien Bay (Table 2). Within both locations, assemblages were 239 

least heterogeneous after 3 months and most heterogeneous after 9 and 14 months (Table 2).   240 

Patterns of multi-scale spatial variability were subsequently examined separately for each 241 

month with PERMANOVA.  For multivariate assemblage structure, between-location (i.e. 242 

100s km) variability was non-significant for all months, whereas significant between-ring 243 

variability (i.e. meters) was recorded for all months. Significant variability at the intermediate 244 

scale of site (i.e. ~1 km) was also recorded at 3 and 9 months (Table 3). Examination of the 245 
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pseudo-variance components generated from the PERMANOVA model indicated no clear 246 

pattern in the contribution of variance components to total variability over time, although 247 

large-scale variability was markedly low for immature 3 month old assemblages (Fig. 4A). 248 

Variability at the smallest spatial scale, (i.e. between panels, ~20 cm apart) was consistently a 249 

principal source of spatial variability (Fig. 4A).  250 

Patterns of spatial variability for assemblage-level univariate metrics (i.e. total cover and 251 

taxon richness) were similarly inconsistent through time (Table 3, Fig. 4B&C). Total cover 252 

varied significantly only at the smallest scale of ring after 3 months and the largest scale of 253 

location after 9 months (Table 3). This was also reflected in the pseudo-variance components, 254 

as variability at the smallest scales of ring and panel were major contributors to total 255 

variability, whilst variability between locations was only prominent for the 9 month samples 256 

(Fig. 4B). Plots of mean total cover for each site showed that total cover was considerably 257 

greater at Marmion Marine Park after 9 months, but not after 3 or 14 months (Fig. 5A). 258 

Taxon richness varied significantly only at the scale of site after 3 months and at the scale of 259 

location after 9 months (Table 3). This was clearly reflected in the pseudo-variance 260 

components, as variability at the scale of site was pronounced after 3 months and variability 261 

between locations was prominent after 9 months (Fig. 4C). As with total cover, variability at 262 

the scale of panel was consistently a major contributor to total observed variability in taxon 263 

richness (Fig. 4C). Plots of mean taxon richness for each site showed that richness varied 264 

considerably between the sites at Jurien Bay after 3 months, and thereafter richness was 265 

markedly greater at Marmion Marine Park compared with Jurien Bay (Fig. 5B).     266 

Spatial variability patterns were also examined for the 4 most abundant taxa (Table 3, Fig. 267 

5C-F). The bryozoan Triphyllozoon moniliferum demonstrated a general increase in percent 268 

cover over time (Fig. 5C) and was a major space occupier after 14 months, covering almost 269 

20% of available space at Jurien Bay. The cover of T. moniliferum, however, varied markedly 270 
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between sites, so that after 14 months its spatial coverage differed by a factor of ~20 between 271 

the two sites at Jurien Bay (Fig. 5C). Indeed, significant variability in the cover of T. 272 

moniliferum between sites was recorded after 3 months and 14 months, but not after 9 months 273 

(Table 3).  The serpulid polychaete, Hydroides sp. a, was sampled at every site and sampling 274 

period, being a ubiquitous component of the sessile assemblages (Fig. 5D). Significant 275 

variability in the cover of Hydroides sp. a was observed between sites and rings after 3 276 

months, and rings after 14 months (Table 3). The bivalve Ostrea angasi, which was common 277 

at Jurien Bay, varied significantly at the scale of ring after 3 and 9 months and at the scale of 278 

site after 14 months (Fig. 5E, Table 3). Finally, the bivalve Anomia trigonopsis, which was 279 

common at both locations, varied significantly among sites after 3 months (Fig. 5F, Table 3). 280 

In general, taxon-specific spatial variability patterns were largely inconsistent between taxa 281 

and showed no clear trend through time. However, significant variability was recorded more 282 

often after 3 months, compared with 9 and 14 months, and significant variability at 283 

intermediate to small spatial scales (i.e. site and ring) was recorded more often than at the 284 

largest scale of location (Table 3).   285 

DISCUSSION 286 

The first hypothesis, that the magnitude of large scale variability would increase with 287 

assemblage development time, was partially supported in that between-location variability in 288 

multivariate assemblage structure and taxon richness was considerably lower after 3 months 289 

compared with 9 and 14 months. In southwest Australia, variability in the structure and 290 

richness of mature macroalgal assemblages on subtidal reefs at this spatial scale has been 291 

documented previously (Wernberg et al. 2003b, Smale et al. 2010, Smale et al. 2011b). The 292 

Leeuwin Current generates a regional-scale temperature gradient and enhances the north-293 

south mixing of species, so that benthic assemblage composition shifts fairly predictably 294 

along the coastline (Smale et al. 2010, Langlois et al. 2012). Moreover, variability in the 295 
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Leeuwin Current and its eddies influences particle retention rates, so that some coastal areas 296 

retain larvae and propagules more than others. A particle tracking study by Feng et al. (2010) 297 

indicated that dispersive bodies are retained within the Perth coastal region (which 298 

encompasses Marmion Marine Park) to a greater extent than within the Jurien Bay region, 299 

which would influence the number and identity of larvae and propagules available for 300 

settlement. As such, the 2 study locations would, to some extent, support distinct local 301 

species pools that are available to colonize new habitat, which would promote between-302 

location variability. In addition, the fact that assemblages at Jurien Bay were more fauna-303 

dominated and less flora-dominated than those at Marmion Marine Park could indicate 304 

differences in light-attenuation or nutrient/food availability between locations. Although there 305 

are no reported differences in primary productivity, nutrient levels or light availability 306 

between these locations (Wernberg et al. 2005, Koslow et al. 2008, Wernberg unpublished 307 

data), it is plausible that local-scale variation in, for example, turbidity, influences the 308 

development of sessile assemblages. 309 

The magnitude of large-scale variability did not, however, increase predictably with 310 

development time but instead peaked after 9 months when between-location variability in 311 

assemblage structure, total cover and taxon richness was the major contributor to total 312 

variability. As 9 month panel assemblages were harvested towards the end of the austral 313 

winter, whereas 3 and 14 month assemblages were harvested in late summer, localised 314 

seasonal influences may have promoted between-location variability. For example, at 315 

Marmion Marine Park total cover and taxon richness peaked after 9 months, being 316 

significantly greater than at Jurien Bay. While Marmion Marine Park is relatively unimpacted 317 

by human activities and nutrient levels are low compared with many other temperate coastal 318 

systems (Lourey et al. 2006), the Perth Metropolitan Area (1.7 million inhabitants) sprawls 319 

northwards along the bounding coastline so that anthropogenic influences are likely to be 320 
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substantially greater than at Jurien Bay (1500 inhabitants). It could be that increased nutrient 321 

levels through the winter rainy season, as a result of terrestrial run-off (Lourey et al. 2006), 322 

sediment resuspension during storms (Lourey et al. 2006), groundwater discharge (Johannes 323 

& Hearnes 1985) or effluent outlets (Thompson & Waite 2003), promoted macroalgal growth 324 

on panels in Marmion but not in Jurien, thereby creating seasonality in the magnitude of 325 

variability between locations. Repeating these experiments with initial panel deployments in 326 

different seasons would elucidate the degree of seasonality in patterns of multi-scale spatial 327 

variability with assemblage development time.        328 

The second hypothesis, that the magnitude of small-scale variability would be consistently 329 

high regardless of assemblage maturity, was supported. Variability at the spatial scale of 330 

centimetres (i.e. between panels within rings) was consistently a major contributor to total 331 

observed variability for all the assemblage-level metrics examined. Pronounced variability in 332 

populations and assemblages at this spatial scale has been documented many times before, 333 

primarily in intertidal or very shallow subtidal habitats, suggesting that local biological 334 

interactions and small-scale physical processes are characteristic of marine systems 335 

(Underwood & Chapman 1996, Benedetti-Cecchi 2001, Coleman 2002, Fraschetti et al. 336 

2005). In intertidal habitats, variability at the scale of centimetres may be promoted by habitat 337 

heterogeneity, which in turn influences sedimentation, desiccation stress, wave action and 338 

predation pressure (Coleman 2002, Fraschetti et al. 2005). Moreover, recruitment of habitat-339 

forming species may vary across similar spatial scales in shallow subtidal habitats (e.g. 340 

Kendrick & Walker 1995), promoting variability in both populations and assemblages (but 341 

see Coleman 2003).  342 

In the current study, habitat structure and orientation was standardised with the use of 343 

suspended settlement plates, suggesting that processes other than habitat structure varied 344 

across small spatial scales. Variability in settlement and recruitment can occur at very small 345 
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to very large spatial scales, as it is influenced by physical processes ranging from micro-scale 346 

boundary layer flow (Mullineaux & Butman 1990) through to regional-scale ocean current 347 

dynamics (Gaines & Bertness 1992).  As small-scale variability was consistently high for 3, 9 348 

and 14 month assemblages, it cannot be attributed to recruitment variability alone, although 349 

small-scale patterns of water movement around panels and rings would almost certainly have 350 

been important. As such, biological interactions, including ‘priority effects’ (i.e. where the 351 

identity of early colonists influences subsequent patterns of assemblage development, see 352 

Benedetti-Cecchi 2000 and references therein) may have promoted variability between 353 

panels. Certainly, stochastic recruitment of the dominant kelp in the region, Ecklonia radiata, 354 

influences the structure of developing assemblages (Smale et al. 2011c). Biotic interactions, 355 

both positive and negative, would certainly have influenced assemblage structure at Marmion 356 

Marine Park after 9 months, where >15 sessile taxa occupied >60% of panel surfaces. Large, 357 

structural organisms (e.g. macroalgae, demosponges, ascidians) can influence the structure of 358 

surrounding benthic assemblages, by altering fine-scale water movement and light levels 359 

(Kendrick et al. 1999, Wernberg et al. 2005, Toohey et al. 2007), and it is plausible that 360 

colonisation by some taxa would have promoted between-panel variability in assemblage 361 

development trajectories.  362 

Variability in grazing and predation pressure has long been known to promote variability in 363 

benthic assemblage structure at multiple spatial scales (e.g. Paine & Vadas 1969, Andrew 364 

1993). In southwest Australia, however, invertebrate herbivores are generally low in 365 

abundance and exhibit highly patchy distributions (Vanderklift & Kendrick 2004, Wernberg 366 

et al. 2008), so that direct grazing pressure is thought to be relatively weak (Smale et al. 367 

2011a). Moreover, as the panels were suspended above the seabed and very few invertebrate 368 

grazers or predators (e.g. molluscs, echinoderms) were observed on the panels, it seems 369 

unlikely that variability in consumer pressure promoted small to medium scale variability. 370 
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The design of the moored ring structure would have restricted access to panel assemblages 371 

for large demersal fish (e.g. the Silver Drummer, Kyphosus sydneyanus), but smaller 372 

demersal fish may have preferentially consumed sessile organisms on certain panels or rings 373 

and influenced variability patterns. However, there was little evidence of direct feeding on 374 

panels at these study locations, and top down processes are assumed to be weak at most 375 

locations along the temperate coastline of Western Australia (but see Smale 2012). 376 

Ultimately, focussed experimental manipulation is required to test the underlying mechanistic 377 

processes driving both small and large scale variability (Underwood 1990).         378 

For multivariate assemblage structure, site-level variability was a major contributor to total 379 

variability after 3 and 14 months, but not 9 months, and taxon richness varied significantly 380 

between sites only after 3 months. Pronounced variability in sessile assemblage development 381 

at the scale of kilometres has been observed previously in relatively pristine subtidal systems 382 

(Glasby 1998, Bowden et al. 2006). It is likely that the between-site variability observed at 383 

Jurien Bay after 3 months was, at least partly, caused by recruitment variability or proximity 384 

to source populations, so that assemblages at one of the study sites were structurally distinct 385 

and more diverse. As the sites selected were similar in terms of habitat type, proximity to reef 386 

and surrounding benthic assemblages, variability in local water movement and the supply of 387 

recruits remains the most plausible explanation for ecological variability at the scale of ~1 388 

km. Interestingly, structural differences were again evident after 14 months, suggesting that 389 

post-recruitment processes such as competition, light or food availability varied among sites.  390 

The final hypothesis was supported as spatial variability patterns differed between dominant 391 

species, presumably due to different life history characteristics, from timing of reproduction 392 

through to growth and competitive ability (Butler 1986, Glasby 1998, Benedetti-Cecchi et al. 393 

2001). After 3 months, however, all species varied significantly between sites, again 394 

suggesting the importance of recruitment variability at the scale of kilometres (e.g. Glasby 395 
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1998, O’Leary & Potts 2011). Pronounced between-site variability persisted through 396 

maturation for all species, perhaps as a consequence of initial recruitment variability. The 397 

assemblage dominants examined were all pioneer species, having long-lived planktotrophic 398 

larvae with high dispersal potential (as inferred from congeners, see below), and are fairly 399 

typical components of sessile assemblages in southwest Australia (Chalmer 1982, Smale 400 

2012). Although species-specific information on the timing of reproduction, larval duration 401 

and dispersal potential is lacking, information on closely related species can be used to 402 

cautiously infer important life history traits. For example, Anomia ephippium exhibits pulsing 403 

recruitment throughout the year (Bramanti et al. 2003), whereas larval release and 404 

recruitment of Ostrea species is generally highly seasonal (Wilson & Simons 1985, Fournier 405 

1992). This seems to be reflected in the occurrence of congeners off southwest Australia, as 406 

Anomia trigonopsis was present at low cover in all sampling periods, whereas the cover 407 

Ostrea angasi was considerably more variable in time. As such, differences in species cover 408 

with time were perhaps due to timing and modes of larval release (i.e. continuous, pulsing or 409 

highly seasonal), while relatively low variability between locations was mostly likely 410 

attributable to the high reproductive and dispersal capabilities of these pioneer species. 411 

Similarly, serpulid worms – including the genus Hydroides – are typical early-colonisers, 412 

exhibiting high reproductive output, dispersal potential and growth rates, as well as broad 413 

environmental tolerances (Grave 1933, Qui & Qian 1997). In the current study, the 414 

recruitment of Hydroides spp. onto panels was spatially variable but considerably greater 415 

during the early stages of community development, as would be expected of this pioneer 416 

genus. In contrast, the bryozoan Triphyllozoon moniliferum, which appears to function as a 417 

mid-successional species in sessile assemblages in temperate Australia (Butler & Connolly 418 

1996) and presumably exhibits distinct life history traits (see Bock 1982 for an account of the 419 
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Australian Phidoloporidae), was again spatially variable but much more abundant at the latter 420 

stages of community development encompassed by the study.  421 

In conclusion, the structure of sessile assemblages varied at multiple spatial scales and 422 

patterns of variability were neither consistent with, nor predictably affected by, assemblage 423 

development time. The hypothesis that large scale variability would increase with community 424 

development time was not fully supported, whereas the hypothesis that small scale variability 425 

would be ubiquitous was supported. It was also evident that spatio-temporal variability 426 

patterns vary between taxa. In marine ecosystems, assemblages are influenced by a complex 427 

suite of interacting physical and biological processes that act over varying spatial and 428 

temporal scales. In southwest Australia, key processes that influence subtidal sessile 429 

assemblages act at spatial scales ranging from regional climate variability, driven by 430 

fluctuations of the Leeuwin Current (Kendrick et al. 2009, Wernberg et al. 2012), through to 431 

small-scale biotic interactions mediated by habitat heterogeneity at the scale of meters or less 432 

(Wernberg et al. 2005, Toohey et al. 2007). Clearly, hierarchal analyses of spatial variability 433 

can provide insights into processes that may influence organisms and assemblages and help 434 

to focus experimental work on key processes at relevant scales (Benedetti-Cecchi 2001). In 435 

the coastal ecosystem off southwest Australia, as elsewhere, assemblages are highly variable 436 

at multiple spatial scales and the relative importance of structuring processes may vary 437 

unpredictably with time. This study further emphasises the need for ecologists to adopt a 438 

multi-scale approach when describing patterns of benthic community structure and 439 

elucidating the processes that drive them.  440 
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Table 1. Results of multivariate PERMANOVA to test for differences between months (‘mo’, 647 

fixed), locations (‘lo’, random), sites (‘si’, random and nested within locations) and rings 648 

(‘ri’, random and nested within sites). Permutations were based on a Bray-Curtis similarity 649 

matrix generated from square-root transformed percent cover data. All main tests used a 650 

maximum of 999 permutations under a reduced model. Significant P values (at <0.05) are in 651 

bold. 652 

                                    653 

Source  df SS MS F P  654 

Mo   2 12875 6437.6 1.96 0.142  655 

Lo   1 8913.9 8913.9 4.95 0.335  656 

Si(Lo)   2 3595.5 1797.7 3.57 0.001     657 

Mo x Lo   2 6537.2 3268.6 1.33 0.271    658 

Mo x Si(Lo)  12 6042.3 503.53  4.85 0.001                       659 

Total  23  47749                                660 

 661 

662 
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Table 2. Results of PERMDISP test to examine differences in multivariate dispersion 663 

between sampling periods (i.e. between levels of the ‘month’ factor), for each location. 664 

Degrees of freedom used were F2,65 for Marmion Marine Park and F2,69 for Jurien Bay, 665 

significant P values (at <0.05) are in bold. Also shown are mean distances (± SE) between 666 

centroids for each sampling period.    667 

 668 

Location  F  P  3 mo  9 mo  14 mo 669 

Marmion 6.07 0.009  26.3 ± 1.4 33.1± 1.3 29.2 ± 1.4 670 

Jurien  15.85 0.001  37.8 ± 1.3 46.3 ± 1.3 46.4 ± 1.2 671 

  672 
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Table 3. Results of PERMANOVA tests to examine differences in ecological structure between locations (‘lo’, random), sites (‘si’, random and nested within 

locations) and rings (‘ri’, random and nested within sites) at each sampling period, using a fully nested hierarchal design. For multivariate assemblage structure, 

permutations were based on a Bray-Curtis similarity matrix generated from square-root transformed percent cover data. For all other univariate responses (i.e. 

total cover, taxon richness and the cover of 4 dominant taxa), permutations were based on matrices generated from Euclidian distances between untransformed 

percent cover data. Tests used a maximum of 999 permutations under a reduced model. Significant P values (at <0.01, to account for multiple tests) are in bold. 

____________________________________________________________________________________________________________________________________________________ 

   3 Months     9 Months     14 Months 

Response variable Lo   Si (Lo)   Ri (Si)  Lo  Si (Lo)   Ri (Si)  Lo  Si (Lo)   Ri (Si) 

F 1,2 P F 2,4 P F 4,38 P F 1,2 P F 2,4 P F 4,38 P F 1,2 P F 2,4 P F 4,38 P 

_____________________________________________________________________________________________________________________________________________________ 

Assemblage structure 1.03 0.66 20.61 0.003 1.90 0.001 3.56 0.323 1.44 0.175 8.24 0.001 1.98 0.196 7.05 0.003 2.36 0.001  

Total cover  1.26 0.368 1.17 0.386 6.57 0.001 176.3 0.009 0.30 0.825 3.84 0.011 4.63 0.153 0.13 0.903 2.59 0.050 

Taxon richness  0.02 0.885 110.6 0.001 0.54 0.687 169.7 0.010 0.31 0.784 3.78 0.011 23.5 0.05 2.71 0.174 3.00 0.035  

T. moniliferum  1.04 0.523 437.0 0.001 0.01 0.955 25.0 0.350 0.60 0.700 1.39 0.263 0.17 0.837 11.49 0.005 3.51 0.013  

Hydroides sp. a  0.54 0.685 21.62 0.004 4.60 0.002 1.03 0.356 45.28 0.015 1.34 0.281 0.08 0.842 0.77 0.509 9.88 0.001  

Ostrea angasi  1.09 0.340 8.07 0.011 10.16 0.001 0.87 0.955 4.21 0.017 8.87 0.001 0.84 0.843 84.45 0.009 0.13 0.991  

Anomia trigonopsis 1.02 0.526 36.69 0.004 0.40 0.814 0.55 0.662 3.57 0.077 2.92 0.025 0.51 0.654 4.31 0.146 0.34 0.854 

TOTAL SIGNIFICANT  0  5  4  2  0  2  0  3  2  

 



28 
 

FIGURES 

 

 

 

Fig. 1. (A) The position of the Marmion Marine Park (M) and Jurien Bay (J) study locations 

on the coastline of southwest Australia. Average winter isotherms (SSTs in °C, 2005-07) for 

the region are also shown. (B) A settlement panel ring in situ, at ~13 m depth in a mixed-

substrata habitat. (C) The experimental design used to assess spatial variability at multiple 

scales (see methods for further details).  
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Fig. 2. PCO ordination of panel assemblages based on a Bray-Curtis similarity matrix 

generated from square-root transformed percent cover data. Centroids represent each ring (6 

panels pooled), with 2 rings per site, 2 sites nested within each location and 3 sampling 

periods. Centroid colours represent locations, centroid symbols represent sites, while centroid 

labels show assemblage development time (in months). 
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Fig. 3. Representative images to illustrate the trajectory of assemblage development at 

Marmion Marine Park (A-C) and Jurien Bay (D-F). At Marmion Marine Park, panels after 3 

months (A) were characterised by a high cover of red macroalgae (e.g. Spyridia dasyoides), 

serpulid polychaetes (Hydroides spp.) and occasional bivalves (e.g. Anomia trigonopsis). 

After 9 months (B) panels were dominated by a variety of macroalgae species (e.g. Ulva spp. 

and Sargassum spp.), while fauna including sponges (e.g. Scyon spp.) and bryozoans (e.g. 

Triphyllozoon moniliferum) were more prominent in the 14 month samples. At Jurien Bay, 

panels were colonised by far fewer macroalgal taxa, and serpulids dominated after 3 months 

(D), while bivalves (e.g. Ostrea angasi and Anomia trigonopsis) and the bryozoan 

Triphyllozoon moniliferum were abundant taxa in the 9 (E) and 14 month (F) samples. 

Images depict an area of panel of ~160 x 160 mm.  
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Fig. 4. Size of (pseudo) variance components for each spatial scale for variability in (A) 

assemblage structure, (B) total cover and (C) taxon richness, plotted against assemblage 

development time. Assemblage structure was based on a Bray-Curtis similarity matrix 

generated from square-root transformed percent cover data. Results of PERMANOVA tests 

are provided in Table 2.  
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Fig. 5. Mean values (±SE) of total cover (A), taxon richness (B) and the percent cover of 

dominant taxa (C-F) at each site within each location, plotted against assemblage 

development time. Values are means of 2 panel rings within each site (6 panels pooled per 

ring). Key taxa included the bryozoan, Triphyllozoon moniliferum (C), the serpulid 

polychaete Hydroides sp. a (D), the oyster Ostrea angasi (E) and the bivalve Anomia 

trigonopsis (F).  Note differences in scale between y-axes.   


